
When to Trust AI: Advances and Challenges for

Certification of Neural Networks

Marta Kwiatkowska, Xiyue Zhang

0000-0001-9022-7599

0000-0003-1649-7165

University of Oxford, UK

Email: {marta.kwiatkowska, xiyue.zhang}@cs.ox.ac.uk

Abstract—Artificial intelligence (AI) has been advancing at
a fast pace and it is now poised for deployment in a wide
range of applications, such as autonomous systems, medical
diagnosis and natural language processing. Early adoption of
AI technology for real-world applications has not been with-
out problems, particularly for neural networks, which may
be unstable and susceptible to adversarial examples. In the
longer term, appropriate safety assurance techniques need to
be developed to reduce potential harm due to avoidable system
failures and ensure trustworthiness. Focusing on certification and
explainability, this paper provides an overview of techniques that
have been developed to ensure safety of AI decisions and discusses
future challenges.

I. INTRODUCTION

A
RTIFICIAL intelligence (AI) has advanced significantly

in recent years, largely due to the step improvement

enabled by deep learning in data-rich tasks such as computer

vision or natural language processing. AI technologies are

being widely deployed and enthusiastically embraced by the

public, as is evident from the take up of ChatGPT and Tesla.

However, deep learning lacks robustness, and neural networks

(NNs), in particular, are unstable with respect to so called

adversarial perturbations, often imperceptible modifications

to inputs that can drastically change the network’s decision.

Many such examples have been reported in the literature and

the media. Figure 1 (left) shows a dashboard camera image

from [1], for which a change of a single pixel to green changes

the classification of the image from red traffic light to green,

which is potentially unsafe if there is no fallback safety mea-

sure; while this is arguably an artificial example, some modern

cars have been observed to mis-read traffic signs, including

the physical attack in Figure 1 (middle), where the digit 3 has

been modified. Traffic sign recognition is a complex problem

to specify and solve, see Figure 1 (right), which shows a real

traffic sign in Alaska. As with any maturing technology, it is

natural to ask if AI is ready for wide deployment, and what

steps – scientific, methodological, regulatory, or societal – can

be taken to achieve its trustworthiness and reduce potential for

harm through rushed roll-out. This is particularly important

given the fast-paced development of AI technologies and the

natural propensity of humans to overtrust automation.

For AI to be trusted, particularly in high-stakes situations,

where avoidable failure or wrong decision can lead to harm

or high cost being incurred, it is essential to provide provable

Fig. 1: Challenges of safe traffic sign recognition. Single-pixel

adversarial attack from [1] (left), physical attack (middle) and

a real traffic sign (right).

guarantees on the critical decisions taken autonomously by

the system. Traditionally, for software systems this has been

achieved with formal verification techniques, which aim to

formally prove whether the system satisfies a given spec-

ification, and if not provide a diagnostic counter-example.

Founded on logic, automated verification, also known as model

checking, achieves this goal by means of executing a verifi-

cation algorithm on a suitably encoded model of the system.

Software verification has become an established methodology

and a variety of tools of industrial relevance are employed in

application domains such as distributed computation, security

protocols or hardware. Beginning with [2], [3], over the past

few years a number of formal verification techniques have

been adapted to neural networks, which are fully data-driven

and significantly differ from the state-based transition system

models of conventional software, and have given rise to prac-

tical, algorithmic techniques that provide provable guarantees

on neural network decisions [4].

This paper aims to provide an overview of existing tech-

niques that can be used to increase trust in AI systems and

outline future scientific challenges, while at the same time

raising awareness of potential risks with early adoption. It is

taken as granted that safety assurance of AI systems is com-

plex and needs to involve appropriately regulated processes

and assignment of accountability. The topics discussed in this

paper are by no means exhaustive, but offer a representative

selection of techniques and tools that can be used within such

safety assurances processes, and can be adapted, extended or

built upon to increase robustness and trustworthiness of AI

systems. The paper will focus on highlighting the following

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 25–37

DOI: 10.15439/2023F2324

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 25 Invited contribution

two aspects:

• Certification: focusing on individual decisions (possibly

critical to the integrity of the system) that are made

by neural networks, we provide an overview of the

main methodological approaches and techniques that have

been developed to obtain provable guarantees on the

correctness of the decision, which can thus be used for

certification. The sources of computational complexity of

neural network verification will be discussed, as well as

limitations of existing methods and ways to address them.

• Explainability: neural networks are ‘black boxes’ that

are trained from data using obscure optimization pro-

cesses and objectives, and it is argued that users of AI sys-

tems will benefit from the ability to obtain explanations

for the decisions. We summarise the main approaches to

producing explanations and discuss that they may lack

robustness and how this issue can be addressed.

The overview includes high-level description of main algo-

rithms, which are illustrated by worked examples to explain

their behaviour to the interested reader. This is followed

by a selection of case studies of robustness analysis and/or

certification drawn from a variety of application domains,

with the aim to highlight the strengths and weaknesses of

the approaches. Finally, future challenges and suggestions for

fruitful directions to guide the developments in this actively

studied and important area will be outlined.

The paper is organised as follows. Section II introduces the

main concepts, focusing on neural networks in the supervised

learning setting. Section III provides an overview of the main

(forward and backward) analysis approaches, with a descrip-

tion of the working for a selection of algorithms illustrated by

worked examples. Section IV includes a few excerpts from a

selection of verification and certification experiments, aimed

at highlighting the uses of the main methods, and Section V

outlines future challenges. Finally, Section VI concludes the

paper.

II. SAFETY, ROBUSTNESS AND EXPLAINABILITY

In the context of safety-critical systems, safety assurance

techniques aim to prevent, or minimise the probability of, a

hazard occurring, and appropriate safety measures are invoked

in case of failures. In this paper, we focus on critical decisions

made by neural networks, which we informally refer to as

safe if they satisfy a given property, which can be shown or

disproved by formal verification. Before discussing formal ver-

ification techniques, we begin with background introduction

to the main concepts of deterministic neural networks, their

(local) robustness and explanations.

A. Neural Networks

We consider neural networks in the supervised learning

setting. A neural network is a function f : Rn → R
m mapping

from the input space to the output space, which is typically

trained based on a dataset D of pairs (x, y) of input x and

ground truth label y. A neural network consisting of L + 1
layers (including the input layer) can be characterized by a

!!

!"

"!

""

"#

"$

#!

#"

1

1

1

-1

1

-1

3
2

1

-2

0
-1

Fig. 2: A feed-forward neural network.

set of matrices {W (i)}Li=1 and bias vectors {b(i)}Li=1 for lin-

ear (affine) transformations, followed by pointwise activation

functions, such as ReLU , Sigmoid , and Tanh , for nonlinear

transformations. We use ẑ(i) and z(i) to denote the pre-

activated and activated vectors of the i-th layer, respectively.

The layer-by-layer forward computation of neural networks

can be described as follows:

• Linear transformation. The linear transformation gener-

ates a pre-activated vector ẑ(i) = W (i) · z(i−1) + b(i)

(i ∈ [1, L]) from the output of the previous layer, and

z(0) = x denotes the input vector.

• Pointwise nonlinear transformation. The pointwise non-

linear transformation generates the activation vector

z(i) = σ(ẑ(i)) (i ∈ [1, L]). In practice, softmax is usually

employed as the activation function for the output layer

in classification tasks, which provides the normalised

relative probabilities of classifying the input into each

label.

Given an input x ∈ R
n, the output of f on x is defined by

f(x) = f (L) ◦ · · · ◦ f (1)(x), where f (i) denotes the mapping

function of the i-th layer, which is the composition of linear

and pointwise nonlinear transformations.

Example 1. Figure 2 shows a simple feed-forward (and fully

connected (FC)) neural network with four layers and ReLU

as the activation function. x1, x2 represent two input neurons.

z1, z2 and z3, z4 represent the activated neurons of the two

hidden layers. y1, y2 are two output neurons. The forward

computation from the input layer to the output layer is as

follows (ReLU is denoted as σ).

z1 = σ(x1 + x2), z2 = σ(x1 − x2) (1)

z3 = σ(z1 + 3z2), z4 = σ(−z1 + 2z2) (2)

y1 = z3, y2 = −2z3 − z4 (3)

We will use this neural network as a running example to illus-

trate different problem formulations and methods to address

them.

B. Robustness

Robustness focuses on neural networks’ resilience to ad-

versarial attacks, noisy input data, etc., at test time, known as

evasion attacks [6], [7], [8]. Attacks at training time are known

as poisoning attacks [9], which have been omitted from this

overview.

Adversarial robustness [7] of neural networks formalizes

the desirable property that a well-trained model makes con-

sistent predictions when its input data point is subjected to

26 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 3: The IG explanation for each of the classes of the MNIST dataset, where red indicates a positive contribution and blue

a negative. Figure taken from [5].

small adversarial perturbations. Local (adversarial) robustness

pertains to a given input point x with ground truth label y,

and is usually defined in terms of invariance of the network’s

decision within a small neighbourhood Bp(x, ϵ) of x, for a

class of perturbations bounded by ϵ with respect to the ℓp
norm.

Definition 1. Given a (deterministic) neural network f , a

labelled input data point (x, y), and a perturbation bound

ϵ, the local robustness property of f on x is defined as

∀x′ ∈ Bp(x, ϵ). argmax
i=1,··· ,m

fi(x
′) = y,

where Bp(x, ϵ) denotes the adversarial ℓp-ball of radius ϵ

around input x.

Should there exist a point x′ in the neighbourhood whose

class is different than y, it is referred to as an adversarial

example.

A related concept is that of a maximal safe radius

(MSR) [10], denoted MSR(x), which is the minimum

distance from x ∈ R
n to the decision boundary, and

is defined as the largest ϵ > 0 such that ∀x′ ∈
Bp(x, ϵ). argmaxi=1,··· ,m fi(x

′) = argmaxi=1,··· ,m fi(x).
Computing the value of MSR, say γ, provides a guarantee

that the decision is robust (safe) for perturbations up to γ. On

the other hand, finding an adversarial example at distance γ′

is witness to the failure of robustness.

Global robustness [11] concerns the stability of predictions

over the whole input space and is omitted.

C. Explainability

Explainability [12], [13] aims to understand and interpret

why a given neural network makes certain predictions. The

term explainability is often used interchangeably with in-

terpretability in the literature, though interpretability usually

refers to explaining how the model works. In this overview,

we focus on local (pointwise) explainability for an individual

model decision, which is categorised into feature attribution

methods, which heuristically estimate feature attribution scores

for model predictions and include gradient-based [14], [15]

and perturbation-based techniques [16], [17], and abduction-

based methods [18], [19], which identify the features that

imply the decision and can thus provide (safety) guarantees.

Attribution scores can also be used for feature importance

ranking [20] to provide an overall understanding of the im-

portance of different input attributes on the model decisions.

1) Gradient-based methods: Gradient-based methods aim

to estimate feature attribution scores for model predictions.

Among these, a prominent method is the integrated gradients

(IG) [15], which measures the attribution score of each input

feature to the model’s prediction by integrating the gradients

of the model’s output with respect to the input features along

the path from a baseline input to the actual input.

Definition 2. Given a neural network f , an input x and

a baseline input x′, the integrated gradients for each input

feature i ∈ [1, · · · , n] are defined as the weighted (by input

feature difference) integral of the gradients over the straight

line path between x and x′:

IGi(x) = (xi − x′
i)×

∫ 1

α=0

∂f(x′ + α× (x− x′))

∂xi

dα (4)

Figure 3 from [5] presents an illustrative example of IG

explanations, showing the explanation for each class of a

correctly classified handwritten-digit “8” from the MNIST

dataset. In this example, positive contributions are highlighted

in red, while negative contributions are indicated by blue.

2) Perturbation-based methods: LIME [16] and its succes-

sor Anchors [17] are representatives of explainability methods

that deploy a perturbation-based strategy to generate local ex-

planations for model predictions. LIME assumes local linearity

in a small area around an input instance and generates a set of

synthetic data by perturbing the original input. Anchors [17]

explains the model predictions by identifying a set of decision

rules that “anchors” the prediction. Compared with LIME, An-

chors generates more explicit decision rules and derives local

explanations by consulting x’s perturbation neighbourhood in

different ways. In particular, Anchors evaluates the coverage

fraction of the perturbed data samples sharing the same class

as x, matching the decision rules.

3) Robust explanations: The explanation techniques men-

tioned above use different heuristics to derive local expla-

nations, demonstrating effective generality beyond the given

input but lacking robustness to adversarial perturbations. The

robustness notion for explanation is important to ensure the

stability of the explanation in the sense that the explanation

is logically sufficient to imply the prediction. Intuitively, the

computed explanation for a perturbed input should remain the

same as the original input.

To this end, [18], [19] introduce a principled approach

to derive explanations with formal guarantees by exploiting

abduction reasoning. This ensures the robustness of the expla-

nation by requiring its invariance w.r.t. any perturbation of the

MARTA KWIATKOWSKA, XIYUE ZHANG: WHEN TO TRUST AI: ADVANCES AND CHALLENGES FOR CERTIFICATION OF NEURAL NETWORKS 27

remaining features that are left out. The explanation method

of [19] focuses on optimal robust explanations (OREs), to

provide both robustness guarantees and optimality w.r.t. a cost

function. Optimality provides the flexibility to control the

desired properties of an explanation. For instance, the cost

function could be defined as the length of the explanation to

derive minimal but sufficient explanations.

III. CERTIFICATION FOR NEURAL NETWORKS

In this section, we present an overview of recent advances

for certification of neural networks, with a focus on formal

verification. Given a neural network f : R
n → R

m, we

consider the formal verification problem [4], defined for a

property specified as a pair (ϕpre, ϕpost) of precondition and

postcondition, by requiring that ∀x ∈ R
n. x |= ϕpre =⇒

f(x) |= ϕpost, that is, for all inputs satisfying the precondition

the corresponding (optimal softmax) decision must satisfy the

postcondition. Typically, ϕpre ⊆ R
n and ϕpost ⊆ R

m, but can

be respectively induced from subsets of input features or sets

of labels. Formal verification then aims to establish algorithmi-

cally whether this property holds, thus resulting in a provable

guarantee. Otherwise, the property may be falsified, in which

case a witness is provided, or inconclusive. Sometimes, we

may wish to compute the proportion of inputs that satisfy the

postcondition, known as quantitative verification [21].

Various formal verification methods have been proposed to

provide provable guarantees for neural networks. We classify

existing verification methods into forward and backward anal-

ysis, depending on whether they start from the input or output

space.

• Forward analysis: Forward analysis methods start from

the precondition X = {x ∈ R
n | x |= ϕpre} defined on

the input space, and check whether the outputs (corre-

sponding to the input region) satisfy the postconditions

ϕpost. For example, robustness verification approaches

[22], [23], [24], [25] start from the perturbation neigh-

bourhood of a given input, e.g., an l∞ ball around an

input point x, and compute bounds on the outputs to

check whether the predicted labels over the adversarial

region are preserved.

• Backward analysis: Backward analysis methods start

from the postcondition Y = {y ∈ R
m | y |= ϕpost} and

aim to find the set of inputs that lead to such outputs.

For example, preimage generation (inverse abstraction)

approaches [26], [27], [28], [29] start from the output

constraints, e.g., a polytope constraining the probability

of the target label is greater than the other labels, and

derive the input set that provably leads to this particular

decision.

We remark that, similarly to formal verification for conven-

tional software, certification for machine learning models is

computationally expensive, and it is therefore recommended

for use in safety- or security-critical settings. In less critical

situations, diagnostic methods [30], which approximate model

decisions to analyse their predictions, can be employed to

investigate both model- and data-related issues.

!!
(#)

"!
(#)

#!
(#)

$!
(#)

!!
(#)

"!
(#)

#!
(#)

$!
(#)

!!
(#)

"!
(#)

#!
(#)

$!
(#)

Fig. 4: Illustration of the convex relaxation for inactive (left),

active (middle) and unstable (right) ReLU neurons.

A. Forward Analysis Methods

We categorize the forward analysis methods into two

groups: sound but incomplete and complete methods. Sound-

ness and completeness are essential properties of verification

algorithms, which are defined as follows.

• Soundness: A verification algorithm is sound if the algo-

rithm returns True and the verified property holds.

• Completeness: A verification algorithm is complete if

(i) the algorithm never returns unknown; and (ii) if the

algorithm returns False, the property is violated.

1) Incomplete methods: Incomplete verification methods

leverage approximation techniques, such as search [1], [10],

convex relaxation [31] and abstract interpretation [32], respec-

tively to compute lower/upper bounds on MSR or the non-

convex optimization problem. A safety property is verified

when the reachable outputs satisfy the postcondition; other-

wise, no conclusion can be drawn. At the same time, due

to the relaxation introduced by the approximation techniques,

incomplete methods have better scalability than complete ones.

a) Game-based search: Knowledge of the maximum

safe radius (MSR) can serve as a guarantee on the max-

imum magnitude of the allowed adversarial perturbations.

Unfortunately, MSR computation is intractable, and instead

approximate algorithms have been developed for images in

[10], and extended to videos in [33], that compute lower

and upper bounds on MSR with provable guarantees, i.e.,

bounded error. The method relies on the network satisfying

the Lipschitz condition and can be configured with a variety

of feature extraction methods, for example SIFT. Given an

over-approximation of the Lipschitz constant, the computation

is reduced to a finite optimization over a discretisation of

the input region X corresponding to the precondition ϕpre.

The resulting finite optimization is solved in anytime fashion

through a two-player game, where player 1 selects features and

player 2 perturbs the image representation of the feature, and

the objective is set to minimise the distance to an adversarial

example. Under the assumptions, the game can be unfolded

into a finite tree and Monte Carlo Tree Search (MCTS) used

to approximate MSR upper bound, and Admissible A* MSR

lower bound, respectively.

b) Bound propagation: A common technique for in-

complete verification is applying convex relaxation to bound

nonlinear constraints in neural networks. This way, the original

non-convex optimization problem is transformed into a linear

programming problem. With the relaxed linear constraints,

the global lower and upper bounds can be computed more

28 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

!!

!"

"!

""

"#

"$

#!

#"

1

1

1

-1

1

-1

3
2

1

-2

0
-1

!"#$#%

!"#$#%

&!
" ' ()* +! , +# , #

!"-$-%

!"-$-%

.&!
$' (

&#
" ' ()* +! " +# , #

.&#
$' (

!($/%

&%
" ' !

!
" #!

"

&%
$ ' !

!
" #!

"

!"-$0%

&&
" ' $ #% &'!

!
" $!

"
(") #%

.&&
$' (

!"#/)0$(%

!($/%

Fig. 5: Verification via bound propagation.

efficiently for the associated (relaxed) linear program. Rep-

resentative methods that adopt efficient bound propagation

include convex outer adversarial polytope [31], CROWN [34]

and its generalization [35], [25]. Figure 4 illustrates convex

relaxation using linear bounding functions to bind ReLU

neurons. Note that relaxation is only introduced for unstable

neurons, while the ReLU constraints for inactive and active

ones are exact. For unstable neurons, the lower and upper

bounding function for the j-th neuron of the i-th layer a
(i)
j (x)

(activated value) with regard to h
(i)
j (x) (before activation) are:

α
(i)
j h

(i)
j (x) ≤ a

(i)
j (x) ≤ −

u
(i)
j l

(i)
j

u
(i)
j − l

(i)
j

+
u
(i)
j

u
(i)
j − l

(i)
j

h
(i)
j (x) (5)

where a flexible lower bound function with parameter α
(i)
j as

in [35] is used, which leads to a valid lower bound for any

parameter value within [0, 1].
By propagating the linear (symbolic) upper and lower

bounds layer by layer, we can obtain the linear bounding func-

tions fL, fU for the entire neural network f , and it holds that

∀x ∈ X. fL(x) ≤ f(x) ≤ fU (x). The non-convex verification

problem is thus transformed into a linear program with the

objective linear in the decision variables. The certified upper

and lower bounds can be computed by taking the maximum,

maxx∈Bp(x,ϵ) f
U (x), and the minimum, minx∈Bp(x,ϵ) f

L(x),
which have closed-form solutions for linear objectives (fU ,

fL) and convex norm constraints Bp(x, ϵ).

Example 2. Consider the neural network illustrated in Ex-

ample 1. The verification problem we consider is given by the

pre-condition ϕpre = {x ∈ R
2|x ∈ [−1, 1] × [−1, 1]} and the

post-condition ϕpost = {y = f(x) ∈ R
2 | y1 ≥ y2}, and we

want to prove that ∀x. x |= ϕpre =⇒ f(x) |= ϕpost.

Figure 5 shows the overall bound propagation procedure

for this verification problem, where the interval [·, ·] represents

the concrete value range computed for each neuron. zUi , zLi
represent the linear upper and lower bounding functions for

nonlinear neurons, which are computed according to Equation

5 based on the concrete value intervals. Starting from the input

layer, we can first compute the concrete bounds ([−2, 2]) for z1

and z2 (before activation). The bounding functions (zL1 , zU1),
(zL2 , zU2) are then computed according to Equation 5, where

α = 0 is taken as the lower bounding function coefficient. The

linear bounding functions can directly propagate to the next

layer via the linear matrix transformation. Then, by taking

the minimum value of the lower bounding function and the

maximum of the upper one, concrete value ranges ([0, 7] and

[−2, 4]) are computed for z3 and z4, based on which symbolic

functions (zL3 , zU3), (zL4 , zU4) can be derived and further

propagated to the output layer. In the end, we compute the

global lower and upper bounds for y1 and y2, which are [0, 7]
and [−17.4, 0], respectively. From the certified bounds on the

output layer, it holds that min(y1) ≥ max(y2) for any input

(x1, x2) ∈ [−1, 1]× [−1, 1]. Therefore, the bound propagation

method certifies that the neural network is robust in the input

domain with respect to the ground-truth label y1.

c) Abstract interpretation: Abstract interpretation [32],

[36] is a classic framework that can provide sound and com-

putable finite approximations for infinite sets of behaviours. To

provide sound analysis of neural networks, several works [22],

[37], [38], [24] have exploited this technique to reason about

safety properties. These methods leverage numerical abstract

domains to overapproximate the inputs and compute an over-

approximation of the outputs layer by layer. To this end,

an abstract domain is selected to characterize the reachable

output set for each layer as an abstract element. The choice of

abstract domain is essential to balance the analysis precision

and scalability. Commonly used abstract domains for neural

network verification [39] include Interval, Zonotope, and Poly-

tope, of which the general formulations are summarized in the

following (increasing in precision):

Interval: {x ∈ R
n|li ≤ xi ≤ ui}

Zonotope: {x ∈ R
n|xi = ci0 +

m
∑

j=1

cij · ϵj , ϵj ∈ [−1, 1]}

Polytope: {x ∈ R
n|xi = ci0 +

m
∑

j=1

cij · ϵj , F (ϵ1, · · · , ϵm)}

where ϵj (j = 1, · · · ,m) denote m generator variables. The

generator variables are bounded within the interval [−1, 1] for

zonotopes and constrained by F for polytopes, where F takes

in the form of a convex polytope cx ≤ d.

With the abstract domain capturing the reachable outputs

of each layer, abstract transformers are defined to compute

the effect of different layers on propagating the abstract

element. Affine transformers are usually supported by the

underlying abstract domain, such as Zonotope and Polytope,

to abstract the linear functions. For nonlinear functions, case

splitting and unifying is proposed in [22] by defining the meet

and join operators to propagate zonotope abstraction through

piecewise-linear layers. Convex approximations are adopted in

[24] for abstract transformers of nonlinear functions where the

approximation can be captured with the proposed polyhedra

abstraction. At the end of the analysis, the abstract element of

the output layer is an over-approximation of all possible con-

MARTA KWIATKOWSKA, XIYUE ZHANG: WHEN TO TRUST AI: ADVANCES AND CHALLENGES FOR CERTIFICATION OF NEURAL NETWORKS 29

crete outputs corresponding to the input set. Then we can di-

rectly verify the over-approximation of the outputs against the

postcondition ϕpost, i.e., check whether the over-approximation

is fully contained within ϕpost. One drawback of this method

is that the over-approximation may be quite loose.

2) Complete methods: Early complete verification ap-

proaches for neural networks [40], [3] encode the neural

network into a set of constraints exactly and then check the

satisfaction of the property with constraint solvers, e.g, SMT

(Satisfiability Modulo Theory) or MILP (Mixed Integer Linear

Programming) solvers. Since such constraint-solving methods

encode the neural network in an exact way, they are able to

ensure both soundness and completeness in providing certifi-

cation guarantees. One limitation is that these methods suffer

from exponential complexity in the worst case. To address the

computational intractability, Branch and Bound techniques are

adopted and customized for neural network verification, where

efficient incomplete methods can be exploited to speed up the

bound computation.

a) SMT solver: Reluplex [3] is proposed as a customized

SMT solver for neural network verification. The core idea

is to extend the simplex algorithm, a standard algorithm to

solve linear programming problems, with additional predicates

to encode (piecewise linear) ReLU functions and transition

rules (Pivot and Update) to handle ReLU violations. The

extended Reluplex algorithm allows variables that encode

ReLU nodes to temporarily violate the ReLU constraints.

Then, as the iteration proceeds, the solver picks variables

that violate a ReLU constraint and modifies the assignment

to fix the violation using Pivot and Update rules. When the

attempts to fix a ReLU constraint using Update rules exceed

a threshold, a ReLU splitting mechanism is applied to derive

two sub-problems. Reluplex is then invoked recursively on

these two sub-problems. Compared with the eager splitting on

all ReLU neurons, Reluplex proposes a splitting-on-demand

strategy to reduce unnecessary splitting and limit splits to

ReLU constraints that are more likely to cause violation

problems. Due to the exact encoding nature, Reluplex suffers

from exponential complexity in the worst case and thus cannot

scale to large neural networks.

b) MILP: MILP-based verification methods [41], [42],

[43] encode a neural network with piecewise-linear functions

as a set of mixed integer linear constraints. To encode the

nonlinearities, they introduce an indicator decision variable δ

to characterize the two statuses of unstable ReLU neurons. An

unstable ReLU neuron z = max(ẑ, 0) with concrete bounds

(l, u) can be encoded exactly using the following constraints:

z ≥ 0, z ≤ u · δ,

z ≥ ẑ, z ≤ ẑ − l · (1− δ),

δ ∈ {0, 1}

Note that the MILP constraints require the pre-computation

of finite bounds for the nonlinear neurons, i.e., (l, u). It

is known that the tightness of lower and upper bounds in

the indicator constraints is crucial to the resolution of the

MILP problem [44], [42], and consequently, the verification

efficiency. MIPVerify [43] thus proposes a progressive bound

tightening approach to improve upon existing MILP-based

verifiers. The algorithm starts with coarse bounds computed

using efficient bound computation procedures such as Interval

Arithmetic. Bound refinement is performed only when the

MILP problem can be further tightened. In such a case,

more precise but less efficient bound computation procedures,

e.g., Linear Programming (LP), are adopted to derive tighter

bounds. This progressive bounding procedure can also be

extended to other bound computation methods, such as dual

optimization, to achieve a trade-off between tightness and

computational complexity.

Example 3. In this example, we encode the neural network,

shown in Example 1, into the exact MILP formulation. The

verification problem is the same as shown in Example 2, i.e.,

to determine whether ϕpost = {y ∈ R
2 | y1 ≥ y2} holds for

all inputs in the input domain [−1, 1] × [−1, 1]. We encode

the output property by specifying its negation, i.e., ϕ′
post =

¬ϕpost. If there exists an instance where ϕ′
post does hold, then

a witness to ϕ′
post is the counter-example for ϕpost. If ϕ′

post is

unsatisfiable, then the property ϕpost is proved.

Assume we have computed the concrete value of lower and

upper bounds of zi employing efficient bound propagation

techniques. Then the neural network and the verification

problem can be formulated as follows:

x1 ≥ −1, x1 ≤ 1, x2 ≥ −1, x2 ≤ 1 (ϕpre) (6)

ẑ1 = x1 + x2, ẑ2 = x1 − x2, δ1, δ2 ∈ {0, 1} (7)

z1 ≥ 0, z1 ≤ 2δ1, z1 ≥ ẑ1, z1 ≤ ẑ1 + 2(1− δ1), (8)

z2 ≥ 0, z2 ≤ 2δ2, z2 ≥ ẑ2, z2 ≤ ẑ2 + 2(1− δ2), (9)

ẑ3 = z1 + 3z2, ẑ4 = −z1 + 2z2, δ4 ∈ {0, 1} (10)

z3 = ẑ3, (stable neuron) (11)

z4 ≥ 0, z4 ≤ 4δ4, z4 ≥ ẑ4, z4 ≤ ẑ4 + 2(1− δ4), (12)

y1 = z3, y2 = −2z3 − z4 (13)

y1 < y2 (¬ϕpost) (14)

The lower and upper bounds li and ui (i ∈ {1, 2, 3, 4})

are derived as shown in Example 2. The binary variables

δi (i ∈ {1, 2, 4}) are introduced to indicate the status of

unstable ReLUs and it holds that δi = 0 ⇔ zi = 0 and

δi = 1 ⇔ zi = ẑi. Checking the feasibility of the above model

using MILP solvers (e.g., Gurobi) will return infeasible, thus

proving the original property.

c) Branch and Bound: To improve the scalability of

verification algorithms to larger neural networks, a branch and

bound framework (BaB) [45] has been proposed. The BaB

framework mainly consists of two components: a branching

method that splits the original verification problem into mul-

tiple subproblems and a bounding method to compute the

upper and lower bounds of the subproblems. This modularized

design provides a unifying formulation paradigm for differ-

ent verifiers, with the main difference lying in the splitting

function and the bounding method. For example, the verifier

30 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

ReluVal [46] performs splitting on the input domain according

to sensitivity analysis, e.g., input-output gradient information,

and computes bounds using symbolic interval propagation.

The aforementioned SMT-based verifier Reluplex [3] performs

splitting on ReLU neurons guided by the violation frequency

of the ReLU constraints and computes the bounds on the

relaxed problems by dropping some constraints on the nonlin-

earities (which yields an over-approximation of the constraint

optimization problems).

To further improve neural network verification, the BaB

method introduces two new branching strategies: BaBSB

for branching on input domains and BaBSR for branching

on ReLU neurons. Both branching methods adopt a similar

heuristic to decide which dimension or ReLU neuron to split

on. BaBSB computes a rough estimate of the improvement

on the bounds obtained with regard to every input dimension,

where the estimation makes the split decision be set more

efficiently. On the other hand, BaBSR estimates the bound

improvement with regard to each unfixed ReLU neuron by

computing the ReLU scores. The bounding methods resort

to LP solvers to tighten the intermediate bounds on the

subdomains or use more computationally efficient methods

such as Interval Arithmetic.

B. Backward Analysis Methods

Backward analysis methods for neural networks, also known

as preimage generation or inverse abstraction, aim at comput-

ing the input set that will lead the neural network to a target

set, e.g., a safe or unsafe region. They complement the forward

analysis methods, which may result in over-approximated

bounds worsening as the computation progresses through the

layers of the network. In the following, we categorize the

representative approaches broadly into two groups: exact and

approximate methods.

1) Exact methods: Exact backward analysis methods reason

about the preimage of a target output set by encoding the

neural network behaviours in an exact manner. These methods

are able to compute the exact symbolic representation of

the preimage for different output properties. One limitation

suffered by these methods is that they can only process neu-

ral networks with piecewise-linear activation functions (e.g.,

ReLU), as they aim at an exhaustive decomposition of the

non-convex function (the neural network) into a set of linear

functions. The preimage (input set) for a target output set with

regard to a neural network f is characterized as a union of

polytopes, where the mapping functions are completely linear

on each subregion.

a) Exact preimage: The exact preimage generation

method [26] complements the forward analysis methods to

reason about the inputs that lead to target outputs. The

algorithm computes the exact preimage by relying on two

elementary properties: (1) preimage of the composite functions

is the reversed composition of preimages for each layer, i.e.,

(f (L) ◦ · · · ◦ f (1))−1 = (f (1))−1 ◦ · · · ◦ (f (L))−1, and (2)

preimage of a union set can be built up from the preimages

of each subset in the union, i.e., f−1(∪jSj) = ∪jf
−1(sj).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
z2=-0.18z1
z2=-0.33z1
z2=0.50z1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
z2=-0.33z1
z2=0.50z1

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
z2=0.50z1
z2=-0.33z1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00 z2=-0.33z1
z2=0.50z1

Fig. 6: Preimage polytopes by exact method.

This method assumes that the output set, e.g., a safe region,

can be formulated as a polytope (intersection of half-planes)

{y ∈ R
m|Ay − b ≤ 0}. It then propagates the polytope

backwards through the layers.

For linear layers, the preimage is computed by applying

the linear operations corresponding to the layer. Suppose we

have a linear mapping in the form of y = Wz + a, then the

preimage of the output polytope under this linear operation

can be formulated as {z ∈ R
nL−1 |AWz + (Aa − b) ≤ 0}.

For nonlinear layers, the algorithm restricts the backward

propagation to a subset where the activation pattern of the

ReLU neurons is fixed. Let s(z) denote the activation status

vector of the nonlinear neurons where s(z)j = 1 if zj ≥ 0
and s(z)j = 0 otherwise. A diagonal matrix diag(s(z)) is

introduced to restrict to a fixed activation pattern, on which

only linear computation is required to compute the preimage

subset. The exact preimage can then be computed by taking

the union of each partition (preimage property (2)).

ReLU−1({y ∈ R
m|Ay − b ≤ 0})

=
⋃

s∈{0,1}ni

{z ∈ R
ni |Adiag(s)z − b ≤ 0,−diag(s)z ≤ 0,

diag(1− s)z ≤ 0}

Example 4. In this example, we consider the same verification

problem as in Example 2 and 3, but from the backward

perspective. Preimage analysis aims to investigate whether

the input region [−1, 1]× [−1, 1], which is expected to result

in decision y1, fails the safety check. We first formulate the

target output region as a polytope. Since we only have two

labels, the output constraint is, therefore, a single half-plane

encoded as {y ∈ R
2|y1 − y2 ≥ 0}. We then proceed to

compute the preimage of the target polytope under the linear

mapping (from the 2nd hidden layer to the output layer), of

which the result is {(z3, z4) ∈ R
2 | 3z3 + z4 ≥ 0}. Next,

MARTA KWIATKOWSKA, XIYUE ZHANG: WHEN TO TRUST AI: ADVANCES AND CHALLENGES FOR CERTIFICATION OF NEURAL NETWORKS 31

preimage computation for ReLU starts with partitioning the

neuron vector space R
2 into 22 sets where, for each subset, the

status of nonlinear neurons is fixed and preimage computation

proceeds similarly to the linear mapping. The partition leads

to four result polytopes.

Figure 6 shows the result of four preimage polytopes derived

in the two-dimensional space (z1, z2). As an example, the

preimage polytope derived corresponding to the partition

where both neurons are active is (upper left of Figure 6):

{z(1) ∈ R
2 : A(1)z(1) ≥ 0} where

A(1) =





2 11
1 3
−1 2



 , z(1) =

(

z1
z2

)

The other three polytopes are derived in the same way. The

four preimage polytopes are then partitioned further into 16

polytopes to characterize the exact preimage of the input layer.

Note that the combination of the four polytopes actually covers

the hidden vector space [−2, 2] × [−2, 2], and the result-

ing preimage polytopes on the input layer cover the region

[−1, 1] × [−1, 1], which certifies that the correct decision is

taken for the entire region under investigation.

b) SyReNN: SyReNN is proposed in [47] to compute the

symbolic representation of a neural network so as to under-

stand and analyze its behaviours. It targets low-dimensional

input subspaces and computes their exact symbolic partition-

ing, on which the mapping function is completely linear. This

methodological design is also referred to as neural network

decomposition. We classify it as a backward analysis method,

as this method provides a symbolic representation in the input

space. SyReNN focuses on neural networks with piecewise-

linear activation functions. This restriction enables a precise

characterisation of the input space X as a finite set of

polytopes {X1, · · · , Xn}. Within each input polytope Xi, the

neural network is equivalent to a linear function. By means of

such a symbolic representation, safety verification is reduced

to checking whether the vertices of every bounded convex

polytope Xi satisfy the output property.

To compute the symbolic decomposition on the input do-

main, this algorithm starts with the trivial partition X and

derives the linear partitions layer by layer. Given the partition

hyperplanes of the nonlinear layer i, e.g., z1 = 0, z2 =
0, · · · , zni

= 0 with ni ReLUs, and the symbolic represen-

tation f̂i−1 (a set of polytopes) computed until layer i− 1, f̂i
is computed by recursively partitioning the current polytopes

based on the newly-added hyperplanes. For example, given

a polytope Zi−1, if an orthant boundary (e.g., hyperplane

zi = 0) is hit when traversing the boundary of Zi−1, then

Zi−1 is further partition into Zi−1,1 and Zi−1,2 which lie on

the opposite sides of the hyperplane. This procedure terminates

until all resulting polytopes lie within a completely linear

region of the neural network f .

2) Approximate methods: Exact methods for preimage

analysis suffer from exponential complexity in the worst case.

Similarly to the development of incomplete verifiers, preimage

approximation techniques begin to emerge by leveraging dif-

ferent approximation (relaxation) techniques. They compute

a symbolic approximation of the preimages to bypass the

intractability of computing exact preimage representations.

Computational efficiency and scalability can be greatly im-

proved with the sacrifice of precision.

a) Symbolic interpolation: Symbolic interpolation [48]

has been used for program verification and SMT solving.

To compute provable preimage approximations, [27] leverages

interpolants, especially those with simple structures, and com-

putes preimages from the output space through hidden layers

to the input space. The generated approximations can then be

applied to reason about the properties of the neural network

itself. For example, in the case that a desired property (a target

output set) Y should be satisfied when starting from a certain

input set X , an under-approximation X of the preimage for

Y can be computed. Then the property can be verified by

checking whether X → X holds.

[48] proposes an algorithm to compute the preimage approx-

imation by iterating backwards through the layers. It encodes

the neural network as constraints in the theory of quantifier-

free linear rational arithmetic (QFLRA) and requires the

output set to be encoded as a Boolean combination of atoms

in the form of half-spaces. Suppose we now focus on deriving

preimage over-approximations of the target output set Y . The

algorithm starts by computing the (overapproximated) set of

inputs to the last layer, denoted as p
f,Y
L , which leads to

the output set Y , i.e., f (L)(pf,YL) |= Y . The algorithm then

iteratively computes preimages of the other layers that satisfy

p
f,Y
i = {z | f (i)(z) |= p

f,Y
i+1}. This procedure leverages

sampling techniques to construct a set of points mapped to

the complement of Y , which are used to tighten the over-

approximations. The algorithm relies on Craig’s Interpolation

theorem to guarantee the existence of an (over- and under-

) approximation. It also leverages the bound propagation

framework to compute a bounded domain on each layer, which

speeds up the interpolation condition checking.

b) Inverse bounding: [28] points out two important

applications based on preimage analysis: safety verification

for dynamical systems and out-of-distribution input detection.

Motivated by these use cases, an inverse bound propagation

method is proposed to compute the over-approximation of

the preimage. Bound propagation has been widely employed

to build efficient verifiers in the forward direction (certified

output bound computation). Compared with forward analysis,

it is challenging to adopt bound propagation methods directly

to compute tight intermediate bounds, and thus difficult to

compute tight over-approximations. This is because, for the

inverse problem, the constraints on the input are quite loose

and even unbounded in some control applications. Simply ap-

plying the bound propagation procedure will not lead to useful

intermediate bounds, which further impacts the tightness of the

symbolic relaxation on nonlinear neurons.

Given this, an inverse propagation algorithm is proposed in

[28] to compute a convex over-approximation of the preimage

represented by a set of cutting planes. It first transforms

32 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y=1.82x

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
x=0
y=2.21x

Fig. 7: Preimage approximation.

the preimage over-approximation problem to a constrained

optimization problem over the preimage and further relaxes

it to Lagrangian dual optimization. To tighten the preimage

and intermediate bounds, they introduce a dual variable with

respect to the output constraints and tighten these bounds

iteratively, leveraging standard gradient ascent algorithm.

c) Preimage approximation: Motivated by the practical

needs of global robustness analysis [49], [11], [21] and quanti-

tative verification [50], [51], an anytime algorithm is proposed

in [29] to compute provable preimage approximation. The

generated preimage is further applied to verify quantitative

properties of neural networks, which is defined by the relative

proportion of the approximated preimage volume against the

input domain under analysis, formally defined as follows.

Definition 3. Given a neural network f : Rn → R
m, a mea-

surable input set with non-zero measure (volume) X ⊆ R
n,

a measurable output set Y ⊆ R
m, and a rational proportion

p ∈ [0, 1], the neural network satisfies the quantitative property

(X,Y, p) if
vol(f−1

X
(Y))

vol(X) ≥ p.

This approach targets safety properties that can be rep-

resented as polytopes and characterizes preimage under-

approximation using a disjoint union of polytopes. To avoid the

intractability of the exact preimage generation method, con-

vex relaxation is used to derive sound under-approximations.

However, one challenge is that the generated preimage under-

approximation can be quite conservative when reasoning about

properties in large input spaces with relaxation errors accumu-

lated through each layer. To refine the preimage abstraction,

a global branching method is introduced to derive tighter

approximations on the input subregions. This procedure pro-

poses a (sub-)domain search strategy prioritizing partitioning

on most uncovered subregions and a greedy splitting rule

leveraging GPU parallelization to achieve better per-iteration

improvement. To further reduce the relaxation errors, this

method formulates the approximation problem as an opti-

mization problem on the preimage polytope volume. Then

it proposes a differentiable relaxation to optimize bounding

parameters using projected gradient descent.

Example 5. In this example, we demonstrate how to construct

a provable preimage (under-)approximation for the target

output region, and apply it to quantitative analysis of the

verification problem shown in previous examples. Consider the

quantitative property with input set ϕpre = {x ∈ R
2 | x ∈

Fig. 8: Convergence of maximum safe radius computed using

the game-based method for a traffic sign image from the

GTSRB dataset originally classified as “keep right”. Left: The

convergence trends of the upper bound obtained with Monte

Carlo Tree Search and the lower bound with Admissible A*.

Right: unsafe images (top two rows) and certified safe images

(bottom two rows). Figure taken from [10].

[−1, 1]2}, output set ϕpost = {y ∈ R
2 | y1 − y2 ≥ 0},

and quantitative proportion p = 0.9. We apply the preimage

approximation algorithm to verify this property. Figure 7

presents the computed preimage before (left) and after one-

iteration refinement (right). Note that the partition is per-

formed w.r.t. input x1, which results in two polytopes for the

subregions. We compute the exact volume ratio of the refined

under-approximation against the input set. The quantitative

proportion reached with the refinement is 94.3%, which verifies

the quantitative property.

IV. APPLICATION EXAMPLES

In this section we provide a selection of experimental

results and lessons learnt from applying formal verification

and certification approaches described in the previous section

to neural network models drawn from a range of classifica-

tion problems. These include image and video recognition,

automated decisions in finance and text classification. In addi-

tion to adversarial robustness of the models, we demonstrate

certification of individual fairness of automated decisions and

discuss robust explanations.

A. MSR-based Certification for Images and Videos

The game-based method [10] has been applied to analyse

and certify the robustness of image classification models to

adversarial perturbations with respect to the maximal safe

radius, working with a range of feature extraction methods

and distance metrics. Figure 8 shows a typical outcome of such

analysis, with converging lower and upper MSR bounds for an

image of a traffic sign for l2 distance and features extracted

from the latent representation computed by a convolutional

neural network (CNN) model. It can be seen that the image

is certified safe for adversarial perturbations of up to 1.463 in

l2 distance, which is some distance away from the best upper

bound at approx. 3, but can be improved with more iterations

since the method is anytime.

An extension of the game-based method was developed

in [33] to provide MSR-based certification for videos, and

MARTA KWIATKOWSKA, XIYUE ZHANG: WHEN TO TRUST AI: ADVANCES AND CHALLENGES FOR CERTIFICATION OF NEURAL NETWORKS 33

Fig. 9: Shown in top row are sampled frames of a

HammerThrow video and the corresponding optical flows are

in the 2nd row. Unsafe perturbations of flows are in 3rd row

and safe in 4th. Figure taken from [33].

specifically for neural network models consisting of a CNN

to perform feature extraction and a recurrent neural network

(RNN) to process video frames. Adversarial perturbations

were defined with respect to optical flow, and the algorithmic

techniques involve tensor-based computation. Examples of

safe and unsafe perturbations are shown in Figure 9, and

convergence trends for lower and upper bounds similar to those

in Figure 8 can be observed.

B. Robustness of Language Models

As an example of application of convex relaxation tools

(variants of CROWN [34]), we mention the study of [52],

which aims to assess the robustness of Natural Language

Processing tasks (sentiment analysis and text classification) to

word substitution. It was reported that standard fully connected

(FC) and CNN models are very brittle to such perturbations,

which may make their certification unworkable. [53] critiqued

the appropriateness of the classical concept of adversarial

robustness defined in terms of word substitution in the context

of NLP models. It was observed in an empirical study that

models trained to be robust in the classical sense, for example,

trained using interval bound propagation (IBP), lack robustness

to syntax/semantic manipulations. It was then argued in [53]

that a semantic notion of robustness that better captures

linguistic phenomena such as shallow negation and sarcasm

is needed for language models, where a framework based on

templates was developed for evaluation of semantic robustness.

C. Robust Explanations for Language Models

Explainability of language models was studied in [19], with

a focus on robust optimal explanations that imply the model

prediction. Figure 10 shows examples of high-quality robust

optimal explanations (using the minimum length of explana-

tion as the cost function). In contrast, heuristic explanations

such as integrated gradients or Anchors my lack of robustness,

but it is possible to repair non-robust Anchors explanations by

minimally extending them, see Figure 11.

D. Fairness Certification Using MILP

[54] developed methods for certification of individual fair-

ness of automated decisions, defined, given a neural network

and a similarity metric learnt from data, as requiring that the

output difference between any pair of ϵ-similar individuals is

bounded by a maximum decision tolerance δ ≥ 0. Working

with a range of similarity metrics, including Mahalanobis

distance, a MILP-based method was developed not only to

compute certified bounds on individual fairness, but also to

train certifiably fair models. The computed certified bounds

δ∗ are plotted in Figure 12 for the Adult and the Crime

benchmarks. Each heat map depicts the variation of δ∗ as a

function of ϵ and the NN architecture. It can be observed that

increasing ϵ correlates with an increase in the values for δ∗,

as higher values of ϵ allow for greater feature changes.

V. FUTURE CHALLENGES

Formal verification and certification of neural network mod-

els has made steady progress in recent years, with several

tools released to the community and an established tool com-

petition [4]. Nevertheless, considerable scientific and method-

ological progress is needed before these tools are adopted by

developers. Below we outline a number of research challenges.

a) Beyond ℓp-norm robustness: The vast majority of

robustness evaluation frameworks consider bounded ℓp-norm

perturbations. While these suffice as proxies for minor vi-

sual image perturbations, real-world tasks rely on similarity

measures, for example cosine similarity for word embeddings

or Mahalanobis distance for images. It is desirable to define

measures and certification algorithms for semantic robustness,

which considers such similarity measures as first class citizens,

and works with perturbations that reflect visual or geomet-

ric aspects characteristic of the application, such as object

movement or lighting conditions. More generally, robustness

evaluation frameworks for more complex properties induced

by the use cases will be needed.

b) Beyond supervised robustness: Existing robustness

formulations focus on the supervised learning setting. How-

ever, collecting and labelling large datasets that are necessary

to ensure the high robustness performance needed in safety-

critical applications is costly and may not be feasible for

use cases such as autonomous driving. Instead, it is desirable

to formulate robustness measures and evaluation frameworks

directly in some appropriate semi-supervised, or even unsu-

pervised, setting, where the definition of robustness needs to

focus on the quality of the learned representations rather than

34 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

'# this movie is really stupid and very boring most of the time there are

almost no ghoulies in it at all there is nothing good about this movie on

any level just more bad actors pathetically attempting to make a movie

so they can get enough money to eat avoid at all costs.' (IMDB)

'The main story ... is compelling enough but it is difficult to shrug off the

 annoyance of that chatty fish.' (SST)

'i couldn't bear to watch it and I thought the UA loss was embarrassing

 ...' (Twitter)

'# well I am the target market I loved it furthermore my husband also a

 boomer with strong memories of the 60s liked it a lot too i haven't read

 the book so i went into it neutral i was very pleasantly surprised its now

 on our highly recommended video list br br.' (IMDB)

'Still this flick is fun and host to some truly excellent sequences.' (SST)

'Is delighted by the beautiful weather.' (Twitter)

Fig. 10: Optimal robust explanations (highlighted in blue) for IMDB, SST and Twitter datasets (all the texts are correctly

classified). Figure taken from [19].

`The film just might turn on many people to opera in general,
an art form at once visceral and spiritual wonderfully vulgar
and sublimely lofty.` (SST)

`There are far worse messages to teach a young audience

which will probably be perfectly happy with the sloppy

slapstick comedy.` (SST)

`This one is not nearly as dreadful as expected.` (SST)

Anchors Minimal Robust Extension

Fig. 11: Examples of Anchors explanations (in blue) along

with the minimal extension required to make them robust (in

red). Figure taken from [19].

classification (prediction) because of the lack of labels. This

may involve working with similarity measures such as Maha-

lanobis distance and will be challenging both theoretically and

computationally to achieve provable robustness guarantees.

c) Scalability in network width and depth: Despite much

progress, the scalability of robustness certification and evalu-

ation frameworks remains limited to low-dimensional models.

In order to apply certification to realistic use cases (such

as object detection) will necessitate significant improvements

with respect to input dimensionality and network depth, as

well as the types of activation functions that can be handled.

d) Efficiency and precision trade-off: Robustness certifi-

cations and evaluation involves a variety of methods, including

exact, approximate and statistical. While exact methods offer

completeness, trading off exact precision for approximate

bounding results in more efficient any time methods, and

completeness can be recovered by combining fast approx-

imate methods such as convex relaxation with branch-and-

bound computation. Statistical methods provide estimates of

robustness that may be unsound but fast and, in many cases,

sufficient for the application being considered.

e) Compositionality and modularity of AI systems: Cer-

tification tools that have been developed to date are mono-

lithic, which matches the monolithic structure of the vast

majority of neural network models. Yet, similarly to safety-

critical systems, it is anticipated that better structuring of

models and tools is likely to improve their reliability and

maintainability. Therefore, modularity, compositionality and,

in particular, assume-guarantee compositional frameworks, are

desirable future directions.

f) Calibrating uncertainty: It is recognised that determin-

istic neural networks can be overconfident in their decisions,

and instead a variant known as Bayesian neural networks

(BNNs), which admits a distribution over the weights and

provides outputs in the form of the posterior distribution,

is preferred, as it allows for a principled means to return

an uncertainty measure alongside the network output. BNN

certification methodologies are much more complex than for

deterministic NNs, and still in early stages of development,

including uncertainty quantification [55], computing lower

bounds on safety probability [56] and certifiable adversarial

robustness [57]. Unfortunately, the methods do not scale

beyond small networks and standard Bayesian inference tends

to underestimate uncertainty.

g) Robust learning: A drawback of certification as pre-

sented in this paper is that it pertains to trained models,

and if the model fails certification, it is not clear how it

can be repaired, and expensive retraining may be needed.

A natural question then arises as to whether one can learn

a model that is guaranteed to be robust. Building on the

positive and negative theoretical results in the case of robust

learning against evasion attacks [58], [59], [60], [61], it would

be interesting to generalise these results to neural network

models and development of implementable frameworks that

can provide provable guarantees on robustness.

VI. CONCLUSION

We have provided a brief overview of formal verification

approaches that can be employed to certify neural network

models at test time, to train certifiably robust or fair models,

and to provide meaningful explanations for network pre-

dictions. The methods can be categorised into forward and

backward analysis, and involve techniques such as search,

bound propagation, constraint solving and abstract interpreta-

tion. Both forward and backward analysis have the potential to

support more complex verification properties, which have been

little explored to date. Empirical results obtained on a range

of standard benchmarks show that neural network models

are often brittle to adversarial perturbations, but verification

approaches can be used to strengthen their robustness and

compute certification guarantees, thus improving trustworthi-

ness of AI decisions.

MARTA KWIATKOWSKA, XIYUE ZHANG: WHEN TO TRUST AI: ADVANCES AND CHALLENGES FOR CERTIFICATION OF NEURAL NETWORKS 35

Fig. 12: Certified bounds on individual fairness (δ∗) for different architecture parameters (widths and depths) and maximum

similarity (ϵ) for the Adult and the Crime datasets. Similarity metrics used are Mahalanobis (top row) and weighted ℓ∞ metric

(bottom row). Figure taken from [54].

ACKNOWLEDGMENTS

This project received funding from the ERC under the

European Union’s Horizon 2020 research and innovation pro-

gramme (FUN2MODEL, grant agreement No. 834115) and

ELSA: European Lighthouse on Secure and Safe AI project

(grant agreement No. 101070617 under UK guarantee).

REFERENCES

[1] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box
safety testing of deep neural networks,” in International Conference on

Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2018, pp. 408–426.

[2] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in 29th International Conference on Computer

Aided Verification, ser. Lecture Notes in Computer Science, vol. 10426.
Springer, 2017. doi: 10.1007/978-3-319-63387-9_1 pp. 3–29.

[3] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in 29th International Conference on Computer Aided Verification, ser.
Lecture Notes in Computer Science, vol. 10426. Springer, 2017. doi:
10.1007/978-3-319-63387-9_5 pp. 97–117.

[4] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu,
“First three years of the international verification of neural networks
competition (VNN-COMP),” CoRR, vol. abs/2301.05815, 2023. doi:
10.48550/arXiv.2301.05815

[5] R. Falconmore, “On the role of explainability and uncertainty in ensuring
safety of AI applications,” Ph.D. dissertation, University of Oxford, UK,
2022.

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in European Conference on Machine Learning and Knowl-

edge Discovery in Databases, ser. Lecture Notes in Computer Science,
vol. 8190. Springer, 2013. doi: 10.1007/978-3-642-40994-3_25 pp.
387–402.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in 2nd International Conference on Learning Representations, 2014.
[Online]. Available: http://arxiv.org/abs/1312.6199

[8] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 2018.
doi: 10.1145/3243734.3264418 pp. 2154–2156.

[9] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in 29th International Conference on Machine Learn-

ing. icml.cc / Omnipress, 2012.
[10] M. Wu, M. Wicker, W. Ruan, X. Huang, and M. Kwiatkowska, “A game-

based approximate verification of deep neural networks with provable
guarantees,” Theoretical Computer Science, vol. 807, pp. 298–329, 2020.
doi: 10.1016/j.tcs.2019.05.046

[11] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural net-
works,” in 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, vol. 139. PMLR, 2021,
pp. 6212–6222.

[12] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine
learning,” Commun. ACM, vol. 63, no. 1, pp. 68–77, 2020. doi:
10.1145/3359786

[13] C. Molnar, Interpretable machine learning. Lulu. com, 2020.
[14] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and

W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p.
e0130140, 2015.

[15] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in International conference on machine learning. PMLR,
2017, pp. 3319–3328.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should I trust you?":
Explaining the predictions of any classifier,” in 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.
ACM, 2016. doi: 10.1145/2939672.2939778 pp. 1135–1144.

[17] ——, “Anchors: High-precision model-agnostic explanations,” in Thirty-

Second AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
[18] A. Ignatiev, N. Narodytska, and J. Marques-Silva, “Abduction-based

explanations for machine learning models,” in Thirty-Third AAAI

Conference on Artificial Intelligence. AAAI Press, 2019. doi:
10.1609/aaai.v33i01.33011511 pp. 1511–1519.

[19] E. L. Malfa, R. Michelmore, A. M. Zbrzezny, N. Paoletti, and
M. Kwiatkowska, “On guaranteed optimal robust explanations for NLP
models,” in Thirtieth International Joint Conference on Artificial Intel-

ligence. ijcai.org, 2021. doi: 10.24963/ijcai.2021/366 pp. 2658–2665.
[20] A. Janusz, D. Slezak, S. Stawicki, and K. Stencel, “A practical study

of methods for deriving insightful attribute importance rankings us-
ing decision bireducts,” Inf. Sci., vol. 645, p. 119354, 2023. doi:
10.1016/j.ins.2023.119354

[21] B. Wang, S. Webb, and T. Rainforth, “Statistically robust neural network
classification,” in Uncertainty in Artificial Intelligence. PMLR, 2021,
pp. 1735–1745.

[22] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. T. Vechev, “AI2: safety and robustness certification of neural net-
works with abstract interpretation,” in IEEE Symposium on Security and

36 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Privacy. IEEE Computer Society, 2018. doi: 10.1109/SP.2018.00058
pp. 3–18.

[23] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal
safety analysis of neural networks,” in Annual Conference on Neural

Information Processing Systems, 2018, pp. 6369–6379.

[24] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “An abstract domain
for certifying neural networks,” Proc. ACM Program. Lang., vol. 3, no.
POPL, pp. 41:1–41:30, 2019. doi: 10.1145/3290354

[25] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C. Hsieh, and J. Z.
Kolter, “Beta-crown: Efficient bound propagation with per-neuron split
constraints for neural network robustness verification,” in Annual Con-

ference on Neural Information Processing Systems, 2021, pp. 29 909–
29 921.

[26] K. Matoba and F. Fleuret, “Exact preimages of neural network aircraft
collision avoidance systems,” in Proceedings of the Machine Learning

for Engineering Modeling, Simulation, and Design Workshop at Neural

Information Processing Systems, 2020, pp. 1–9.

[27] S. Dathathri, S. Gao, and R. M. Murray, “Inverse abstraction of
neural networks using symbolic interpolation,” in Thirty-Third AAAI

Conference on Artificial Intelligence. AAAI Press, 2019. doi:
10.1609/aaai.v33i01.33013437 pp. 3437–3444.

[28] S. Kotha, C. Brix, Z. Kolter, K. Dvijotham, and H. Zhang, “Provably
bounding neural network preimages,” CoRR, vol. abs/2302.01404, 2023.
doi: 10.48550/arXiv.2302.01404

[29] X. Zhang, B. Wang, and M. Kwiatkowska, “On preimage approxi-
mation for neural networks,” CoRR, vol. abs/2305.03686, 2023. doi:
10.48550/arXiv.2305.03686

[30] A. Janusz, A. Zalewska, L. Wawrowski, P. Biczyk, J. Ludziejewski,
M. Sikora, and D. Slezak, “Brightbox - A rough set based technology for
diagnosing mistakes of machine learning models,” Appl. Soft Comput.,
vol. 141, p. 110285, 2023. doi: 10.1016/j.asoc.2023.110285

[31] E. Wong and J. Z. Kolter, “Provable defenses against adversarial ex-
amples via the convex outer adversarial polytope,” in 35th International

Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 80. PMLR, 2018, pp. 5283–5292.

[32] P. Cousot and R. Cousot, “Abstract interpretation frameworks,” J. Log.

Comput., vol. 2, no. 4, pp. 511–547, 1992. doi: 10.1093/logcom/2.4.511

[33] M. Wu and M. Kwiatkowska, “Robustness guarantees for deep neural
networks on videos,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition. Computer Vision Foundation / IEEE, 2020. doi:
10.1109/CVPR42600.2020.00039 pp. 308–317.

[34] H. Zhang, T. Weng, P. Chen, C. Hsieh, and L. Daniel, “Efficient neural
network robustness certification with general activation functions,” in
Annual Conference on Neural Information Processing Systems, 2018,
pp. 4944–4953.

[35] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C. Hsieh,
“Fast and complete: Enabling complete neural network verification with
rapid and massively parallel incomplete verifiers,” in 9th International

Conference on Learning Representations. OpenReview.net, 2021.

[36] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Fourth ACM Symposium on Principles of Programming

Languages. ACM, 1977. doi: 10.1145/512950.512973 pp. 238–252.

[37] M. Mirman, T. Gehr, and M. T. Vechev, “Differentiable abstract in-
terpretation for provably robust neural networks,” in 35th International

Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 80. PMLR, 2018, pp. 3575–3583.

[38] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev, “Fast
and effective robustness certification,” in Annual Conference on Neural

Information Processing Systems, 2018, pp. 10 825–10 836.

[39] A. Albarghouthi, “Introduction to neural network verification,” Found.

Trends Program. Lang., vol. 7, no. 1-2, pp. 1–157, 2021. doi:
10.1561/2500000051

[40] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Automated Technology for Verification and Analysis.
Springer International Publishing, 2017, pp. 269–286.

[41] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in 10th International

Symposium on NASA Formal Methods, ser. Lecture Notes in Computer
Science, vol. 10811. Springer, 2018. doi: 10.1007/978-3-319-77935-
5_9 pp. 121–138.

[42] M. Fischetti and J. Jo, “Deep neural networks and mixed integer linear
optimization,” Constraints An Int. J., vol. 23, no. 3, pp. 296–309, 2018.
doi: 10.1007/s10601-018-9285-6

[43] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in 7th International

Conference on Learning Representations. OpenReview.net, 2019.
[44] J. P. Vielma, “Mixed integer linear programming formulation

techniques,” SIAM Rev., vol. 57, no. 1, pp. 3–57, 2015. doi:
10.1137/130915303

[45] R. Bunel, J. Lu, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar,
“Branch and bound for piecewise linear neural network verification,” J.

Mach. Learn. Res., vol. 21, pp. 42:1–42:39, 2020.
[46] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security

analysis of neural networks using symbolic intervals,” in 27th USENIX

Security Symposium. USENIX Association, 2018, pp. 1599–1614.
[47] M. Sotoudeh, Z. Tao, and A. V. Thakur, “Syrenn: A tool for analyzing

deep neural networks,” Int. J. Softw. Tools Technol. Transf., vol. 25,
no. 2, pp. 145–165, 2023. doi: 10.1007/s10009-023-00695-1

[48] A. Albarghouthi and K. L. McMillan, “Beautiful interpolants,” in
25th International Conference on Computer Aided Verification, ser.
Lecture Notes in Computer Science, vol. 8044. Springer, 2013. doi:
10.1007/978-3-642-39799-8_22 pp. 313–329.

[49] W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska,
“Global robustness evaluation of deep neural networks with provable
guarantees for the hamming distance,” in Twenty-Eighth International

Joint Conference on Artificial Intelligence. International Joint Confer-
ences on Artificial Intelligence Organization, 2019, pp. 5944–5952.

[50] T. Baluta, Z. L. Chua, K. S. Meel, and P. Saxena, “Scalable quan-
titative verification for deep neural networks,” in 43rd IEEE/ACM

International Conference on Software Engineering. IEEE, 2021. doi:
10.1109/ICSE43902.2021.00039 pp. 312–323.

[51] P. Yang, R. Li, J. Li, C. Huang, J. Wang, J. Sun, B. Xue, and L. Zhang,
“Improving neural network verification through spurious region guided
refinement,” in 27th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, vol. 12651. Springer, 2021, pp. 389–408.

[52] E. L. Malfa, M. Wu, L. Laurenti, B. Wang, A. Hartshorn, and
M. Kwiatkowska, “Assessing robustness of text classification through
maximal safe radius computation,” in Findings of the Association

for Computational Linguistics, ser. Findings of ACL, vol. EMNLP
2020. Association for Computational Linguistics, 2020. doi:
10.18653/v1/2020.findings-emnlp.266 pp. 2949–2968.

[53] E. L. Malfa and M. Kwiatkowska, “The king is naked: On the notion
of robustness for natural language processing,” in Thirty-Sixth AAAI

Conference on Artificial Intelligence. AAAI Press, 2022, pp. 11 047–
11 057.

[54] E. Benussi, A. Patanè, M. Wicker, L. Laurenti, and M. Kwiatkowska,
“Individual fairness guarantees for neural networks,” in Thirty-First

International Joint Conference on Artificial Intelligence. ijcai.org, 2022.
doi: 10.24963/ijcai.2022/92 pp. 651–658.

[55] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, and
M. Kwiatkowska, “Uncertainty quantification with statistical guaran-
tees in end-to-end autonomous driving control,” in IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 2020. doi:
10.1109/ICRA40945.2020.9196844 pp. 7344–7350.

[56] M. Wicker, L. Laurenti, A. Patane, and M. Kwiatkowska, “Probabilistic
safety for bayesian neural networks,” in Thirty-Sixth Conference on Un-

certainty in Artificial Intelligence, ser. Proceedings of Machine Learning
Research, vol. 124. AUAI Press, 2020, pp. 1198–1207.

[57] M. Wicker, L. Laurenti, A. Patane, N. Paoletti, A. Abate, and
M. Kwiatkowska, “Certification of iterative predictions in bayesian neu-
ral networks,” in Thirty-Seventh Conference on Uncertainty in Artificial

Intelligence, ser. Proceedings of Machine Learning Research, vol. 161.
AUAI Press, 2021, pp. 1713–1723.

[58] P. Gourdeau, V. Kanade, M. Kwiatkowska, and J. Worrell, “On the
hardness of robust classification,” in Advances in Neural Information

Processing Systems, 2019, pp. 7444–7453.
[59] ——, “On the hardness of robust classification,” Journal of Machine

Learning Research, vol. 22, 2021.
[60] ——, “Sample complexity bounds for robustly learning decision lists

against evasion attacks,” in Thirty-First International Joint Conference

on Artificial Intelligence. ijcai.org, 2022. doi: 10.24963/ijcai.2022/419
pp. 3022–3028.

[61] ——, “When are local queries useful?” in Advances in Neural Informa-

tion Processing Systems, 2022.

MARTA KWIATKOWSKA, XIYUE ZHANG: WHEN TO TRUST AI: ADVANCES AND CHALLENGES FOR CERTIFICATION OF NEURAL NETWORKS 37

