
Comparative Analysis of Exact, Heuristic and

Metaheuristic Algorithms for Flexible Assembly

Scheduling

Octavian Maghiar, Teodora Selea, Adrian Copie, Flavia Micota, Mircea Marin

West University of Timişoara,

Department of Computer Science,

blvd. Vasile Pârvan, 4,

300223, Timişoara, Romania

Email: {octavian.maghiar98, teodora.selea, adrian.copie, flavia.micota, mircea.marin}@e-uvt.ro

Abstract—Real-world manufacturing scenarios usually lead to
difficult assembly scheduling problems. Besides strict precedence
constraints between jobs or operations, such problems incor-
porate constraints related to maintenance activities on working
stations (machines) and specific setup times when different op-
erations are executed on the same machine. This paper analyzes
the performance of several approaches, based on mathematical
programming and on (meta)heuristics, to solve flexible assembly
scheduling problems characterized by an arbitrary tree-like
structure of the operation network. In this context, a specific
encoding of candidate solutions and some specific perturbation
operators are proposed. The encoding and the operators allow
the distribution of sub(batches) of operations on several machines
which leads, for some assembly scheduling problems, to a
significant decrease of the makespan.

I. INTRODUCTION

S
CHEDULING represents a class of optimization problems

with significant practical impact. The most studied prob-

lem is the Job Shop Scheduling problem (JSSP) [1] aiming

to find an assignment of a set of inter-related jobs on a set

of working resources (machines) such that some performance

measures are optimized.

Assembly production scheduling is a class of scheduling

problems (as identified in [2]), where a product is obtained

by assembling several components (also referred to as sub-

assemblies, subproducts or make-parts) which are a result of

either some production operations or other assembling steps.

Hence, the final product is the result of a particular set of

operations, which are inter-related according to a hierarchical

structure. Numerous factors, such as the number of operations,

the number of products, the number of machines, the com-

plexity of product structure, and the number of constraints,

can increase the scheduling problem’s complexity. Therefore,

ongoing research in the field of scheduling is always necessary.

As is mentioned in [3] flexible assembly job-shop schedul-

ing is less studied than job-shop scheduling. Previous work on

Assembly Production Scheduling includes effective heuristics,

This work was supported by project POC/163/1/3/ "Advanced computa-
tional statistics for planning and monitoring production environments" (2022-
2023)

genetic algorithms [4], or machine learning-based solutions.

In [5], the authors propose a heuristic, based on the con-

cept of the critical path, for solving the problem of large

assembly production having as objective the minimization of

the makespan. Another heuristic that targets the problem of

assembly scheduling by taking into account the splitting of

the operations in several (sub)batches was introduced in [6].

The load is distributed among the available machines using

the proposed heuristic, followed by actual scheduling based

on the critical path approach. In [7], the authors also include

a batch splitting procedure; however, it is followed by a genetic

algorithm to perform the scheduling.

The aim of this paper is to analyze several assembly

scheduling strategies that are flexible enough to accommodate

specific characteristics of the production process, e.g. the

maintenance activities. The main contributions of the paper

include:

• specific encoding of candidate solutions and specific per-

turbation operators which ensure the feasibility of gener-

ated schedules and allow the distribution of sub(batches)

of operations on several machines, leading to a significant

decrease of the makespan;

• design and implementation of a highly configurable gen-

erator of assembly scheduling test problems;

• a comparative analysis of the performance of an exact

solver, a heuristic based on the critical path concept, and

two metaheuristic algorithms.

The rest of the paper is organized as follows. Section

II proposes a motivating manufacturing scenario, while the

particularities and the formal description of the scheduling

problem are presented in Section III. A short review of recent

works addressing similar problems is presented in Section IV.

Sections V and VI provide details on the heuristic based on the

critical path and present the proposed encoding, the algorithm

for generating feasible initial schedules, the decoding and

evaluation procedures as well as the proposed search operators

used by the metaheuristic algorithms. The data generator

structure, the experimental setup and results for some test

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 615–625

DOI: 10.15439/2023F2715

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 615 Thematic track: Computational Optimization

problems are presented in Section VII, while Section VIII

concludes the paper.

II. A REAL-WORLD SCENARIO

A real-world problem that triggered our study is the pro-

duction of flexible metal tubes for car exhaust systems. The

final product is composed of subproducts that are result of pro-

duction (SP) or assembly (As) operations. The manufacture

process of the product is described using the bill of materials

(BOM), that contains all information used to produce an

item: the raw materials (RM), the (sub)products, the quantity

needed to by for each manufactured product (BOM for mill-

tube production - Figures 1).

A mill tube is formed from two component tubes (referred

as IT and OT in Figure 1) that are covered with a metal

mesh. Interlock rings are used as a fastening system. The

production process can be shortly described as follows: (1)

the inner tube (subproduct IT) and the outer tube (subproduct

OT) are produced from a metal sheet (RM) that has to be

rolled, welded and cut on a specific machine (operations O6

and O7); (2) the resulting tubes are transformed in bellows

(subproduct E) through a stuffing process (O5); (3) meantime:

(i) the metal mesh (product F), that covers the tube built in the

hydroforming process (O4), is produced from metal wire (O10,

O9, and O8); (ii) the interlocks (subproduct C) are produced

also from metal wire (O3).

The assembling process, that has as result the product B,

is executed on assembling workstations (O2) and it consists

of: (i) the bellows are wrapped with the metallic mesh; (ii)

the interlocks and garnish are added; (iii) the final product is

pressed; (iv) some identification information is written on the

product. Then a quality assurance control (O1) is done and

the product, A, is packed.

Beside the information related to BOM other production

information, like the machine characteristics on which the

operations are executed, must be provided. Table I contains

the characteristics (setup-time, unit processing time) of the set

of machines ({M1,M2, . . . ,M19}) that are used in mill tube

production.

III. PROBLEM DESCRIPTION

The result of an assembly manufacturing process is a

product that consists of many components, each of the com-

ponents being either manufactured or obtained by assembling

several other (sub)components (also called make-parts). The

operations involved in this process are either of manufacturing

type or assembling type.

The main difference between these two types of operations

is that a manufacturing operation usually requires only one

previously produced component (and potentially several raw

materials), while an assembling operation requires several

other (sub)components which should be produced by the time

the assembling operation starts. In the tree-like structure of an

assembly (see Figures 1 and 2) the manufacturing operations

correspond to nodes having only one child, while the assembly

operations correspond to nodes having at least two children.

A; Q:1; T:SP

B; Q:1; T:As

C; Q:2; T:SP

RM4

D; Q:1; T:SP

E; Q:1; T:As

F; Q:1; T:SP

G; Q:1; T:SP

H; Q:10; T:SP

RM3

IT ; Q:1; T:SP

RM1

OT ; Q:1; T:SP

RM2

O1 QA check

O2 press

O3 interlock O4 hydroform O8 meshover

O9 braid

O10 interlock

O5 stuffed

O6 inner tube O7 outer tube

Fig. 1. Bill of materials networks for mill tube scenario. Each node contains
information regarding the obtained (sub)product: name (A, B, C, . . .) quantity
(Q:number), type (corresponding to a production process - SP or to an
assembly process - As)

O1

O2

O4

O5

O3 O8

O9

O10O6 O7

Fig. 2. Operation network for mill tube example

The Assembly Scheduling Problem (ASP) aims to schedule

all types of operations on a set of machines in such a way

that all make-parts are finalized before they are required for

an assembly operation. The main particularity of this problem

with respect to the standard Job Shop Scheduling Problem is

that the precedence relation between operations corresponding

to one assembly product (i.e. one job) is not a total order

relation.

This allows the extension of one assembly product schedul-

ing to several products by just considering a dummy assembly

operation that would virtually group all products.

Therefore, in the following, we will consider the operations

corresponding to all products (jobs) being grouped in one set

of operations on which there is a partial order precedence

relation.

A. Characteristics of the assembly scheduling problem

The class of assembly scheduling problems addressed in

this paper is characterized by:

• all required raw materials are available, thus at the

beginning of the scheduling time horizon all operations

that do not have predecessors can start;

616 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE I
PRODUCTS, OPERATIONS, AND ELIGIBLE MACHINES FOR MILL TUBE EXAMPLE

Product Operation Machine (ID, setup time, unit production time)

A O1 QA check (M1, 600s, 2s)

B O2 press (M2, 600s, 40s), (M3, 600s, 40s), (M4, 500s, 40s), (M5, 600s, 40s), (M6, 500s, 40s)

C O3 interlock (M7, 600s, 4s), (M19, 600s, 4s)

D O4 hydroform (M8, 800s, 1s), (M9, 800s, 1s), (M10, 800s, 1s), (M11, 700s, 2s), (M12, 700s, 2s)

E O5 stuffed (M13, 1000s, 5s)

IT O6 inner tube (M14, 900s, 2s),

OT O7 outer tube (M15, 900s, 2s),

F O8 meshoverline (M16, 900s, 12s), (M17, 900s, 12s)

G O9 braid (M18, 900s, 30s)

H O10 interlock braid (M7, 600s, 4s), (M19, 600s, 4s)

• at a given moment, a machine can process only one oper-

ation and once started, an operation cannot be interrupted

(non-preemptive);

• the operations can be grouped in batches and (producing

a batch of components or products) started, it cannot be

interrupted;

• once established, the size of a batch is not modified;

• for a given operation only one batch of executions can

be scheduled on a machine (re-entrance is not allowed);

• there is no cost for transferring components between

machines;

• no setup is required if the operations (corresponding

to different batches of same type of (sub)components

or products) are scheduled in sequence on the same

machine;

• the setup times are sequence-independent and non-

anticipatory (the machine is available and the operation

is ready to be started);

• the maintenance activities are considered as machine-

assigned operations with fixed starting time and duration.

B. Formal description

1) Notations and input data:

• Set of n operations: {Oj |j = 1, n};
• Set of m machines: {Mi|i = 1,m};
• tji = time to execute on machine Mi one unit of the

(sub)component which is a result of operation Oj ;

• sji = setup time for executing the operation Oj on

machine Mi;

• Qj = total number of executions of operation Oj derived

from the quantities specified in the BOM structure;

• F = matrix of eligibility, an n × m matrix specifying

which machines are eligible for each operation, i.e.

Fji =

{

1 if Oj can be executed on Mi

0 if Oj cannot be executed on Mi
(1)

• R = array of n entries which can be used to identify the

subset of maintenance operations, i.e.

Om = {Oj |Rj > −1},

in which case Rj denotes the maintenance starting time

(SMi) on the machine Mi which satisfies the condition

Fji = 1. More specifically, the elements of R are defined

as:

Rj =

{

SMi if Oj is a maintenance operation for Mi

−1 if Oj is not a maintenance operation
(2)

The maintenance starting times are fixed and known

before the scheduling process is started.

• π(j) = {k|Ok is a child of Oj in the operation network}
describes the direct predecessor relation, i.e. π(j) is

the set of indices of operations which directly precedes

Oj , thus they should be finalized before the starting

moment of Oj (one operation can have several direct

predecessors);

• σ(j) = k where k ∈ π(j) (one operation can have only

one direct successor) and σ(j) = −1 if Oj is a final

operation (its result is a final product);

• Deadline for the final operations: Dj ∈ [0, T] for any

j ∈ {1, . . . , n} such that σ(j) = −1.

2) Decision variables:

For j = 1, n and i = 1,m:

• Assignment matrix:

Aji =

{

1 if Oj is executed on Mi

0 if Oj is not executed on Mi.
(3)

• Batch splitting matrix:

Bji =

{

bji if Oj is executed on Mi

0 if Oj is not executed on Mi
(4)

where bji ∈ N denotes the number of consecutive

executions of operation Oj on machine Mi leading to

the production of a batch of bji (sub)components that are

specific to operation Oj ;

• Sji ∈ [0, T): starting time of Oj on Mi (T is the time

horizon for the assembly production);

• Cji ∈ [0, T]: completion time of Oj on Mi.

C. Constraints

• (C1) All operations are assigned on eligible machines:

n
∑

j=1

m
∑

i=1

(1− Fji)Aji = 0 (5)

• (C2) The assignment and batch splitting matrices are

consistent (an operation assigned to a machine should be

OCTAVIAN MAGHIAR ET AL.: COMPARATIVE ANALYSIS OF EXACT, HEURISTIC AND METAHEURISTIC ALGORITHMS FOR FLEXIBLE ASSEMBLY 617

executed at least once and the number of executions of an

operation on a machine is nonzero only if the operation

is assigned to that machine):

Bji > 0, ∀j, i such that Aji = 1 (6)

Bji = 0, Sji = 0, Cji = 0 ∀j, i such that Aji = 0

• (C3) The completion time of any operation Oj is smaller

than the starting time of its succeeding operation Oσ(j):

Cji1 ≤ Sσ(j)i2 (7)

∀j ∈ {1, . . . , n}, ∀i1, i2 ∈ {1, . . . ,m}, Aji1=Aσ(j)i2=1
• (C4) The time intervals corresponding to operations exe-

cuted on the same machine are disjoint:

[Sj1i, Cj1i) ∩ [Sj2i, Cj2i) = ∅, ∀j1 ̸= j2, (8)

∀i ∈ {1, . . . ,m} such that Aj1i = Aj2i = 1
• (C5) Completion time of a batch of operations:

Cji = Sji + sji +Bji · tji (9)

∀j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, such that Aji = 1
• (C6) The sum of all batch sizes corresponding to an oper-

ation equals the total quantity which should be produced

by that operation:

m
∑

i=1,Aji=1

Bji = Qj , ∀j ∈ {1, . . . , n} (10)

• (C7) All final operations are finalized before the corre-

sponding deadlines:

Cji ≤ Dj , ∀j ∈ {1, . . . , n}, i ∈ {1, . . . ,m} (11)

such that σ(j) = −1, Aji = 1.

• (C8) The starting time for maintenance operations is

fixed:

Sji = Rj , ∀j ∈ {1, . . . , n}, i ∈ {1, . . . ,m} (12)

such that Rj ̸= −1, Aji = 1.

D. Objective function

The goal of the scheduling is to minimize the makespan,

Cmax, defined as:

Cmax = max
j∈E

max
i∈{1,...,m}

{Cji | Aji = 1} (13)

where E = {j|σ(j) = −1} is the set of final operations. Thus,

the optimization problem is:

min
A,B,S,C

Cmax (14)

IV. RELATED WORK

The authors of [8] addressed the problem of flexible as-

sembly job-shop scheduling with lot streaming. The analyzed

production structure is a two-stage one, characterized by the

presence of an assembly stage at the end of a flexible job shop.

The jobs in the first stage are processed in large batches which

might lead to waiting time. The proposed approach is to split

the batch into sub-batches, thus the initial scheduling problem

is split into two sub-problems: batch splitting and batch

scheduling. The proposed solution is based on an Artificial

Bee Colony (ABC) algorithm using a population of candidates

encoded based on four one-dimensional arrays: (i) an array

containing the number of (sub)batches corresponding to each

job; (ii) an array containing the size of each (sub)batch; (iii) an

array encoding the sequence of all (sub)batches of operations;

(iv) an array specifying the machine on which each (sub)batch

of operations is assigned. The size of each candidate solution

depends on the number of (sub)batches.

The idea of using sub-batches of unequal sizes is exploited

also in our study but in the more general context when the

production process involves several assembly stages.

An assembly scheduling problem involving several assem-

bly stages which induce additional precedence constraints

between jobs is approached in [3] where a genetic algorithm

(GA) is used to solve it. Each element of the population

evolved by the GA consists of two parts: (i) a one-dimensional

array used to encode the machine assignment; (ii) a two-

dimensional array for encoding the sequence of operations

based on the concept of level in the operations’ network. A

schedule is constructed through a decoding process in which

the operations are allocated to the first time slot where they

fit, in the order given by the structure of the two-dimensional

array.

With respect to the structure of the operations’ network, the

approach proposed in [3] is consistent with the particularities

of the problem addressed in this paper, but it does not allow

batch size control and to distribute sub-batches of operations

to different machines.

In [9] a lot streaming technique, that splits jobs into sub-

jobs, is applied on an assembly job shop scheduling problem

(AJSP). The authors split the problem into two sub-problems

(i) determine a sub-lot split; (ii) solve AJSP problem. In order

to solve the sub-lot split, a genetic algorithm is used that uses

a matrix, that stores on each line the number of lots for each

operation and the quantity for each lot. In order to resolve the

assembly problem four simple dispatching rules are used. The

lots are scheduled by shortest/longest processing time, earliest

due date, minimal slack time (difference between the due date

and the total processing time of the operation) such that the

constraints derived from the BOM are satisfied. In [10] the

authors extend the work for [9] and use genetic algorithm

and particle swarm optimization metaheuristics to solve also

the second problem, by incorporating into the solutions the

information related to the order of operation on each machine.

The approaches proposed in [9], [10] are different from the

618 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

ones discussed in this paper by the fact that the operations

can be execute on a sub-set of machines not on all available

machines.

V. HEURISTIC BASED ON THE CRITICAL PATH

In [5], the authors introduced the Lead Time Evaluation

and Scheduling Algorithm (LETSA) that uses a critical path

heuristic in order to construct a scheduling. Based on the

operation networks, the LETSA algorithm creates a list of fea-

sible operations, F , i.e. operations for which their successors

have been already scheduled. In the beginning, F contains the

operations generating the final product(s).

The scheduling process consists of several steps (see Al-

gorithm 1) starting with the identification of critical paths

that originate in all operations of F . For an operation Oj , a

critical path is a sequence [Oj = Ol1 , Ol2 , . . . , Olr] such that

Olq = σ(Olq+1
) and

r
∑

q=1

tlq∗ is maximal. The notation tj∗

refers to the execution time of operation Oj on the slowest

machine (if the machines would have different execution

times).

It should be mentioned that if a machine satisfying all

conditions specified in Step S3 of Algorithm 1 is not found,

then the tentative execution interval is shifted toward the left

until the first availability interval is reached. In this way, a

machine is always identified.

The problem addressed in [5] is slightly different from that

addressed in this paper because the operations are executed in

a work-centers that contain one or more identical machines.

In our approach, the machines are not necessarily identical, so

the following adaptations were done: (i) in order to calculate

the critical path in Step S1 of Algorithm 1, the maximal

execution times over all eligible machines are used; (ii) the

list of potential machines analyzed at Step S3 of Algorithm 1

is limited to eligible machines characterized by the smallest

execution times for the corresponding operation. This has

been done with the aim of increasing the chance to generate

schedules with smaller makespan.

VI. METAHEURISTIC APPROACHES

For the metaheuristic algorithms used in the experimental

analysis, the encoding and decoding procedures, as well as the

search operators are described in the following.

A. Encoding and search space

According to [8], a flexible assembly scheduling with batch

splitting involves several decisions: (i) in which sequence

are executed the operations on each machine; (ii) on which

machine is executed each sub-batch corresponding to each

operation; (iii) which is the size of each sub-batch for each

operation.

In order to incorporate the information required by these

decisions we propose the following encoding for a candidate

solution:

• a list of distinct operation indices, L = [o(1), . . . , o(n)]
with o(l) ∈ {1, . . . , n}, such that for any 1 ≤ l, r ≤ n, if

o(l) ∈ π(o(r)) then l < r;

• the batch-splitting matrix Bji defined as in Eq. (4).

The order of operations given by list L corresponds to a

topological order of the nodes in the operation network. L
provides the order in which the operations are dispatched to

machines, during the decoding step, but not necessarily the

order in which they are executed in the production stage. More

specifically, if Oo(l) and Oo(r) belong to the same branch in the

operation tree-like network, then Oo(l) will be executed before

Oo(r), but if they belong to different branches then Oo(l) will

be dispatched before Oo(r), but not necessarily executed before

Oo(r). It should be noted that the maintenance operations are

not explicitly included in the encoding, as their starting times

and durations are fixed. They are taken into consideration only

during the evaluation step.

An operation list, L, corresponding to the operation network

described in Figure 2 is illustrated in Figure 3 where the arrows

highlight the direct predecessor relations between operations.

As follows from this figure, such an operation list corresponds

to a topological order of the operation network. This ordering

is not unique. In fact, for an oriented tree T with n nodes

the total number of topological orderings is n!/
∏

v∈T µ(Tv)
where v denotes a node, Tv denotes the (sub)tree rooted in the

node v and µ(Tv) denotes the number of nodes in the (sub)tree

rooted in v. For the tree corresponding to the operation

network from Figure 2 the number of distinct topological

orderings is 10!/(10 · 9 · 4 · 3 · 3 · 2) = 560.

O10 O7 O9 O6 O8 O3 O5 O4 O2 O1

Fig. 3. An operation list corresponding to the tree-like BOM described in
Figure 1 which illustrates the topological order of the operations.

Taking into account both the operation list and the batch size

matrix, B (see Table II), the proposed encoding allows solving

batch splitting and batch sequencing problems simultaneously

and corresponds to a structure of size n+ n ·m. This size is

larger than that corresponding to traditional encoding based on

two one-dimensional arrays of n elements (operation sequence

array and machine assignment array). However this traditional

encoding does not allow to distribute batches of operations on

parallel machines.

B. Generation of initial candidates

The metaheuristics start from one or several initial candi-

dates, which are further modified with the aim of improving

its/their quality. The generation of initial candidates should

take into account the encoding rules and the structural con-

straints which should be satisfied by a feasible candidate,

i.e. precedence constraints induced by the operation network

and constraints related to the number of components to be

produced (induced by the corresponding bill of materials). The

construction of the list L, corresponding to the topological

OCTAVIAN MAGHIAR ET AL.: COMPARATIVE ANALYSIS OF EXACT, HEURISTIC AND METAHEURISTIC ALGORITHMS FOR FLEXIBLE ASSEMBLY 619

Algorithm 1 LETSA Algorithm

Input: n, m, F1..n×1..m, O1..n, t1..n×1..m, s1..n×1..m

Output: A1..n×1..m, S1..n, C1..n

F ← {Oj |σ(j) = −1}
while F ̸= ∅ do

(S1): select Oj ∈ F s.t. Oj belongs to a critical path

(S2): set the tentative completion time for Oj : Cj∗ ← Sσ(j)k, where k satisfies Aσ(j)k = 1
(S3): find Mi such that Fji = 1, Mi is available in [Cj∗ − tji, Cj∗) and maximizes Cj∗ − tji
(S4): update the assignment matrix and the completion and starting times: Aji ← 1; Cji ← Cj∗; Sji ← Cji − tji
(S5): update the list of feasible operations: F ← F\{Oj} ∪ π(j)

end while

return A, S, C

TABLE II
BATCH SIZE MATRIX (B) FOR MILL TUBE EXAMPLE

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19

O1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O2 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

O3 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10

O4 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0

O5 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0

O6 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0

O7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0

O8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 0 0

O9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

O10 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 50

order, starts from the root node, O1, and the frontier, F , con-

sisting of its directly preceding operations, π(O1), and select,

at each step, a random element from the current frontier to be

added in the front of list L. As soon as an operation is included

in L, it is removed from F which is instead extended with all

operations which directly precede the operation included in

L. In this way, one of the possible topological orderings of

the nodes in the operation network is generated. The matrix

B can be initialized using random decisions concerning both

the selection of machines from the eligible list and the choice

of the batch size. The random function used in Algorithm 2

generates an integer value in {0, 1, . . . , q}. A minimum batch,

minQj
size of 10% of operation quantity is used in order to

restrict small batch sizes.

C. Decoding and evaluation

From a candidate solution, represented by the one-

dimensional array L and the two-dimensional array B, a

schedule is obtained through decoding. The decoding process,

described in Algorithm 3 allows also the computation of the

makespan value, and it is activated any time a candidate solu-

tion has to be evaluated. The operations are scheduled based

on the order specified in the operations list (L). If a part of

the quantity (Bji) of operation Oj is planned to be scheduled

on machine Mi, the decoding procedure identifies the time

interval in which it can be executed on that machine. The

operation is scheduled as close as possible to the completion

time of all of its preceding operations (π(j)). This means that

for each machine the completion time of the last scheduled

operation is dynamically updated and further used to establish

the starting time of next operation to be scheduled on that

machine. Thus the order defined by L is preserved on each

machine.

It should be mentioned that the value of the makespan is

influenced by the following decisions:

• split the batch of operations scheduled in a time in-

terval which overlaps with a maintenance interval in

such a way that the maximum possible amount operation

products is executed before the maintenance activity and

the remaining ones immediately after the maintenance

(opt_maintenance flag is activated in Algorithm 3) ;

• no setup is required when two consecutive batches involv-

ing the same operation/product are scheduled (opt_setup
flag is activated in Algorithm 3).

D. Search operators

Both trajectory and population-based metaheuristics require

operators which generate new candidate solutions from exist-

ing ones. The metaheuristic algorithms involved in the analysis

we conducted involve two main types of operators which

generate new candidate solutions:

• Mutation-like. This operator generates a new candidate

solution in the neighborhood of an existing one by

applying a perturbation strategy.

• Crossover-like. A new feasible candidate solution is con-

structed by combining information from two existing

candidate solutions.

620 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Algorithm 2 Initialization of a feasible candidate

Input: n, m, F1..n×1..m, Q1..n

Output: L1..n, B1..n×1..m

L← [1] // index of the root operation

F ← π(1) // direct predecessors of the root operation

while F ̸= ∅ do

j ← select(F) // random selection from F
L← prepend(L, j) // add in the front of the list

F ← F\{j} ∪ π(j) // update the frontier

end while

for j ← 1..n do

q ← Qj ; i← 1
while (i ≤ m) and (q > 0) do

if Fji = 1 then

Bji ← max(minQj
,random(0, q))

q ← q −Bji

i∗ ← i
end if

i← i+ 1
end while

if q > 0 then

Bji∗ ← Bji∗ + q
end if

end for

return L, B

The way of action of these operators is shortly presented in the

following, the guiding idea being to preserve the feasibility.

1) Mutation : Let us consider a candidate solution encoded

by (L,B). A new candidate is generated in the neighbourhood

of (L,B) by following the steps:

• randomly select o(q) ∈ L;

• search for the largest l ∈ {1, . . . , n} such that o(l) ∈
π(o(q)) and for the smallest r ∈ {1, . . . , n} such that

o(q) ∈ π(o(r)); if operation o(q) does not have predeces-

sors then l = 1 and if o(q) does not have a successor then

r = n;

• randomly select an insertion position p ∈ {l, l+1, . . . , r}
and insert the element o(q) on position p in L;

• if there are several eligible machines for operation o(q),
then randomly select two of them and move the batch

(totally or partially) from the source to the destination

machine; the decision to perturb B is taken with a given

probability.

It is easy to observe that all operations in the sublist of L
delimited by l and r (Ll..r) do not contain operations that are

in a precedence relation with o(q), meaning that the perturbed

candidate solution is still feasible.

It should be also mentioned that if the list of eligible

machines for operation o(q) and the lists of machines cor-

responding to the operations in the sublist Ll..r are disjoint,

then any insertion of o(q) in another position of the sublist will

have no impact on the makespan of the schedule obtained by

decoding the candidate solution. On the other hand, if o(q)

Algorithm 3 Decoding and evaluation of a solution

Input: L1..n, B1..n×1..m, R1..n,D
Output: S1..n, C1..n, Cmax // start time, completion time

S1..n ← D; C1..n ← 0
MFT [1..m]← 0 // current makespan per machine

for h← 1..n do

j ← Lh // schedule operation Oj

for i ∈ {1, . . . ,m} such that Bji > 0 do

if opt_setup = True and Oj is identical with the last

operation scheduled on Mi then

st← 0
else

st← sij
end if

ST ← max(max{Ck|k ∈ π(j)},MFT
i)

ET ← Bji · tji
if there exists k such that Rk > 0 and

[ST, ST + st+ ET) ∩ [Rk, Rk + tki) ̸= ∅ then

if opt_maintenance = True then

Cj ← max{ST + st+ ET + tki, Cj}
else

ST ← Rk + tki
Cj ← max{ST + st+ ET,Cj}

end if

else

Cj ← max{ST + st+ ET,Cj}
end if

Sj ← min{ST, Sj}
end for

end for

Cmax ← max
j=1,n

Cj − min
j=1,n

Sj

return Cmax

is one of the final assembly operations, then l = r and the

perturbation will be ineffective.

Let us consider the L-part encoding corresponding to the

example illustrated in Figure 3: L = [10, 7, 9, 6, 8, 3, 5, 4, 2, 1].
If the selected element is o(5) = 8 then l = 4 and r = 8,

thus there are four alternative insertion positions for the value

8. However, as the machines M16 and M17 are not used by

the other operations, all of these perturbations will be without

impact on the makespan.

2) Crossover : The crossover-like perturbation aims to gen-

erate a new feasible candidate solution by using information

from two existing ones, usually called parents. The feasibility

is preserved if the idea of precedence operation crossover is

used: some elements are taken from one parent, while from

the other parent is used to order in which the remaining

elements are placed. Let us consider L = [o(1), . . . , o(n)] and

L′ = [o′(1), . . . , o
′
(n)] and the corresponding batch size matrices

B and B′. The steps followed to construct a new feasible

candidate, (Lnew, Bnew), are:

• randomly select l < r from {1, . . . , n};
• transfer from L to Lnew all elements with indices be-

OCTAVIAN MAGHIAR ET AL.: COMPARATIVE ANALYSIS OF EXACT, HEURISTIC AND METAHEURISTIC ALGORITHMS FOR FLEXIBLE ASSEMBLY 621

tween l and r;

• scan the elements of L′ and for each element o′(l) which

is not yet in Lnew append it to

– a prefix list LP , if o′(l) is the predecessor (not

necessarily direct) of at least one element of Lnew;

– a suffix list LS if there is no element in Lnew such

that o′(l) is its predecessor.

• the new candidate solution is obtained by joining LP ,

Lnew and LS ;

• the rows of Bnew corresponding to the operations taken

in the first step from L will be identical to the corre-

sponding rows from B, while the other rows are taken

from B′.

Let us consider, in the case of mill tube example, two

candidate solutions: L = [6, 10, 7, 5, 9, 4, 3, 8, 2, 1] and L′ =
[10, 7, 9, 6, 8, 3, 5, 4, 2, 1] In the case when l = 4 and

r = 9, applying the crossover operator leads to Lnew =
[10, 7, 6, 5, 9, 4, 3, 8, 2, 1] which could be also generated from

L by mutation (insertion of the first element on the third

position). However, the crossover-like perturbation allows the

generation of new candidates which would not be generated

through one-step mutation. For instance, for the same L and

L′ from the above example, if l = 2 and r = 5 one obtains

Lnew = [6, 10, 7, 5, 9, 8, 3, 4, 2, 1] which could not be obtained

by mutation neither from L nor from L′. Ensuring the feasi-

bility of the crossover result requires checking the precedence

constraints, thus this operator induces a computational cost

larger than that of mutation.

VII. EXPERIMENTAL ANALYSIS

A. Data generator

Despite the increasing interest in ASP, there are no bench-

marks for the general assembly scheduling problem. Some of

the works addressing the flexible assembly scheduling problem

[8], [11] use benchmarks that have been originally proposed

for flexible job-shop scheduling problems, e.g. Kacem bench-

mark [12] and Fattahi benchmark [13]. Recently, Talens et al.

[14] proposed two extensive sets of instances for the 2-stage

assembly scheduling problem, one corresponding to the case

of one assembly machine and the other one corresponding to

the case of several assembly machines.

Since the problems included in these benchmarks do not

capture all characteristics of flexible assembly scheduling, we

designed a problem generator that allows the generation of a

large variety of assembly scheduling problems characterized

by different operation networks and different sets of eligible

machines.

The problem generator has a simple architecture, as illus-

trated in Figure 4. The generator uses:

• a pool of products that represent the entities included in

the bill of materials corresponding to a client order. Cur-

rently, the generator uses a list of 200 of fictitious entities

(which can be interpreted as products, components or

make-parts), characterized by randomly generated names;

Fig. 4. Architecture of the assembly scheduling problems generator

• a pool of machines that can be used to execute the

operations. Currently, the generator uses a list of 20
available machines.

The characteristics of a problem instance are specified in

a configuration file that contains the values of the parameters

describing the BOM structure.

In order to provide a high level of flexibility to the generated

BOMs, the configurator module can be loaded with a multitude

of parameters such as the number of levels in BOM, meaning

the number of operations needed to be completed to create the

final product, a maximum number of children for each node,

meaning that a certain product is the result of assembling

one or more simpler parts. One can specify the size of the

product pool that is considered for this generator and the

time horizon for scheduling. Also, the quantity of the final

products can be provided. Another important characteristic

that is supported is related to the maintenance applied to the

machines involved in the product fabrication. The generator

supports the setting of maintenance time intervals, the Overall

Equipment Effectivness (OEE) for the machines and also one

can specify the setup time for the machines if there is a need

to change its purpose to support the processing of another

product. The values can be generated using either an uniform

distribution over the range of feasible values (the default case)

or a truncated normal distribution.

The generator produces a JSON file containing the de-

scription of a tree-like structure corresponding to a BOM

with a specified depth and a variable number of children,

each node in the tree representing a specific product and

including the generated set of eligible machines. The root node

corresponds to the final product, while the children correspond

to components that eventually will compose the final product.

622 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

B. Test problems

The experimental analysis is based on several problems

instances/sets that have been generated such that various

characteristics of the problem are emphasized:

• A real-world case study: the mill tube problem incorpo-

rating three orders of sizes 800, 320, and 160, each order

requiring the production of the specified number of tubes

according to the BOM described in Figure 1.

• A deep BOM structure: it is characterized by branches of

up to 50 nodes in the operation network and a branching

factor of 2 (for an operation there are at most two

operations that directly precede it). The problem instance

used in experiments contains 437 nodes.

• A set of BOM structures with a variable number of

operations: it contains 15 problem instances correspon-

ding to operation networks with a specified depth of 3
and a branching factor ranging between 2 and 16. The

number of operations varies between 7 and 273. The

quantity corresponding to each component (make-part)

in the BOM is set to 10 (in this way each component

on to the third level has a quantity equal to 1000). This

set is characterized by rather wide structures and it was

used to analyze the influence of the number of operations

on the performance of exact, heuristic, and metaheuristic

methods.

C. Methods and control parameters

The methods involved in the comparative analysis are:

• An exact solver (CPLEX) used to solve the problem

described in section III-B. The solver is executed using

32 threads and CPLEX control parameters have been

used with their default values. It should be mentioned

that besides the problem described in section III-B which

corresponds to the case when batch splitting is applied, a

simplified version that does not require the B matrix as

decision variables is also analyzed (referred to as standard

in Tables III and IV).

• An implementation of the LETSA heuristic as it is de-

scribed in section V. The standard variant does not use

batch splitting while the variant with batch splitting (BS)

applies a load-balancing strategy in order to distribute the

operations per eligible machines. It should be mentioned

that LETSA heuristic starts the construction of the sched-

ule from the final operation, while the other heuristics

start from the leaf operations in the operation network.

Since the maintenance intervals influence the solution

quality, the solution generated by LETSA is shifted such

that the leaf operations are scheduled closer to the start

time. LETSA does not require control parameters.

• A Tabu Search (TS) algorithm based on the mutation-

like perturbation described in Section VI-D1. It should

be mentioned that when a new candidate (neighborhood

element) is constructed, the batch-size matrix (B) is per-

turbed with a probability equal to 0.15. The neighborhood

size is set to 100 and the tabu-list size to 25. If the

current candidate solution is not improved in the last 50
iterations then it is replaced with an element selected from

the current neighborhood. The implementation uses 32
parallel search processes.

• A Genetic Algorithm (GA) which evolves a population

of 100 elements by applying the same perturbation as

in TS (with the same mutation probability for the batch-

size matrix), the crossover operator described in Section

VI-D2 and proportional selection. The crossover operator

does not use control parameters.

It should be mentioned that the TS and GA implementations

are adapted starting from the JSSP implementation available

at 1.

All experiments have been run on a machine with 64 vCPUs

and 256 GB RAM. The execution timeout was set to 1 hour

for CPLEX and 3 minutes for LETSA, TS and GA. For TS

and GA the reported makespan is the average value of 30
independent runs.

D. Results and discussion

The results obtained for the mill tube study case are

presented in Table III which contains the makespan values

(in hours) corresponding to various methods. Since the BOM

structure is rather simple and most of the operations use

distinct machines the optimal solution is obtained by CPLEX,

TS and GA without batch splitting (BS). On the other hand,

since the number of products and make-parts corresponding to

all orders is rather large, the batch-splitting strategy improves

the makespan by around 40% in the case of CPLEX, TS and

GA, and around 20% in the case of LETSA.

The control of the maintenance intervals and setup times

corresponding to successive execution of batches of identical

operations can further improve the makespan but not signifi-

cantly. The Gantt charts (Figure 5) illustrate the fact that the

benefit of BS is influenced by the number of machines on

which the batch of operations can be distributed.

The positive impact of batch splitting is illustrated also in

the case of the operation networks with deep structure (see

Table IV), particularly in the case of TS. The poorer behavior

of GA can be explained by the fact that the crossover operator

is more time expensive than mutation and, because of the

imposed limit of time, the exploration of the search space is

limited. It should be noted that in this case, CPLEX could not

provide a solution in the allocated amount of time (one hour).

TABLE III
MAKESPAN VALUES (IN HOURS) FOR THE TUBE MILL PROBLEM.
VARIANTS OF THE ALGORITHMS: STANDARD, BS (WITH BATCH

SPLITTING), MSC (WITH CONTROL ON THE MAINTENANCE INTERVALS

AND SETUP TIMES)

CPLEX LETSA TS GA

standard 38.47 40.53 38.47 ± 0 37.42 ± 0.01

BS 21.87 31.23 22.07± 0 24.20 ± 0.75

MSC 38.30 35.22 38.30 ± 0 32.98 ± 0

BS + MSC 21.69 30.37 21.31 ± 0.15 21.71 ± 0.52

1https://job-shop-schedule-problem.readthedocs.io/en/stable/index.html

OCTAVIAN MAGHIAR ET AL.: COMPARATIVE ANALYSIS OF EXACT, HEURISTIC AND METAHEURISTIC ALGORITHMS FOR FLEXIBLE ASSEMBLY 623

(a) Standard TS (b) TS with batch splitting

(c) TS with MSC (d) TS with batch splitting and MSC

Fig. 5. Gantt charts for the Tube mill problem generated using Tabu Search

TABLE IV
MAKESPAN VALUES (IN DAYS) FOR THE PROBLEM INSTANCE WITH DEEP

STRUCTURE. VARIANTS OF THE ALGORITHMS: STANDARD, BS (WITH

BATCH SPLITTING), MSC (WITH CONTROL ON THE MAINTENANCE

INTERVALS AND SETUP TIMES)

LETSA TS GA

standard 36.67 36.48 ± 0.87 37.41 ± 0

BS 34.06 27.28 ± 0.46 36.43 ± 0.11

MSC 35.22 35.47 ± 0.23 36.65 ± 0.19

BS + MSC 32.51 25.79 ± 0.35 35.17 ± 0.20

To analyze the scalability of the investigated methods we

used the set of BOM structures with variable number of

operations in the context when a set of 10 machines are

available and an operation can be executed on at most 5
machines with different or similar characteristics.

From Figure 6 it can be observed that the exact solver

was able to find solutions for problems having up to 183
operations in a time interval of one hour. TS and GA heuristics

outperform LETSA heuristic, and TS is slightly better than

GA.

VIII. CONCLUSIONS AND FURTHER WORK

The particularities of the addressed assembly scheduling

problems required the incorporation of some specific decision

variables and constraints. Most mathematical programming

models used in flexible job-shop scheduling include binary

variables which encode the order between any two operations

scheduled on the same machine that leads to n2 · m binary

variables (in the case of n operations and m machines).

The proposed mathematical programming model avoids the

Fig. 6. Scalability results for standard variants of CPLEX, LETSA, TS, and
GA for the 15 BOM structures

usage of such a large number of binary variables, but it uses

instead the starting and completion time values to enforce the

precedence constraints.

The proposed problem description and the candidate solu-

tion encoding allow specifying the distribution of (sub)batches

of identical operations over several machines which led to a

significant reduction in the makespan, particularly in the case

of large orders.

The strategy that takes into account the maintenance time

intervals and removes the unnecessary setup activities proved

also to be beneficial but to a lesser extent.

As the operator inspired by the precedence preserving order-

based crossover proved to be computationally intensive, we

will further investigate other operators which preserve the fea-

sibility of candidate solutions. Since the critical path heuristic

624 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

incorporated in LETSA generates relatively good solutions in

a fraction of the time required by the metaheuristic algorithms,

a further step would be to consider the sub-optimal solution

produced by LETSA among the initial candidate solutions for

the metaheuristic algorithms.

We also plan to conduct a systematic scalability analysis

based on sets of test problems including various typologies of

operation networks and interactions between operations with

respect to the lists of eligible machines, as reflected in the

corresponding conjunctive graphs of the scheduling problem.

REFERENCES

[1] H. Xiong, S. Shi, D. Ren, and J. Hu, “A survey of job shop scheduling
problem: The types and models,” Computers & Operations Research,
vol. 142, 2022. doi: https://doi.org/10.1016/j.cor.2022.105731

[2] T. Morton and D. W. Pentico, Heuristic scheduling systems: with

applications to production systems and project management. John
Wiley & Sons, 1993, vol. 3.

[3] W. Lin, Q. Deng, W. Han, G. Gong, and K. Li, “An effective
algorithm for flexible assembly job-shop scheduling with tight
job constraints,” Int. Trans. Oper. Res., vol. 29, no. 1, pp.
496–525, 2022. doi: 10.1111/itor.12767. [Online]. Available: https:
//doi.org/10.1111/itor.12767

[4] Q. Liu, X. Li, H. Liu, and Z. Guo, “Multi-objective metaheuristics for
discrete optimization problems: A review of the state-of-the-art,” Applied

Soft Computing, vol. 93, p. 106382, 2020.

[5] A. Agrawal, G. Harhalakis, I. Minis, and R. Nagi, “‘just-in-
time’production of large assemblies,” IIE transactions, vol. 28, no. 8,
pp. 653–667, 1996.

[6] S.-G. Dastidar and R. Nagi, “Batch splitting in an assembly scheduling
environment,” International Journal of Production Economics, vol. 105,
no. 2, pp. 372–384, 2007.

[7] H.-y. Wang, Y.-w. Zhao, X.-l. Xu, and W.-L. Wang, “A batch splitting
job shop scheduling problem with bounded batch sizes under multiple-
resource constraints using genetic algorithm,” in 2008 IEEE Conference

on Cybernetics and Intelligent Systems. IEEE, 2008, pp. 220–225.
[8] X. Li, J. Lu, C. Yang, and J. Wang, “Research of flexible assembly job-

shop batch–scheduling problem based on improved artificial bee colony,”
Frontiers in Bioengineering and Biotechnology, vol. 10, p. 909548, 2022.

[9] F. Chan, T. Wong, and L. Chan, “Lot streaming for product
assembly in job shop environment,” Robotics and Computer-

Integrated Manufacturing, vol. 24, no. 3, pp. 321–331, 2008.
doi: https://doi.org/10.1016/j.rcim.2007.01.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584507000063

[10] ——, “The application of lot streaming to assembly job shop
under resource constraints,” IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 14 852–14 857, 2008. doi: https://doi.org/10.3182/20080706-
5-KR-1001.02514 17th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667016413790

[11] A. Maoudj, B. Bouzouia, A. Hentout, A. Kouider, and R. Toumi,
“Distributed multi-agent scheduling and control system for robotic
flexible assembly cells,” J. Intell. Manuf., vol. 30, no. 4, pp. 1629–
1644, 2019. doi: 10.1007/s10845-017-1345-z. [Online]. Available:
https://doi.org/10.1007/s10845-017-1345-z

[12] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization and
multiobjective evolutionary optimization for flexible job-shop scheduling
problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 32, no. 1, pp. 1–13, 2002. doi:
10.1109/TSMCC.2002.1009117

[13] P. Fattahi, M. S. Mehrabad, and F. Jolai, “Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems,” J Intell

Manuf, vol. 18, p. 331–342, 2007. doi: https://doi.org/10.1007/s10845-
007-0026-8

[14] C. Talens, P. Perez-Gonzalez, V. Fernandez-Viagas, and J. M. Framiñan,
“New hard benchmark for the 2-stage multi-machine assembly
scheduling problem: Design and computational evaluation,” Comput.

Ind. Eng., vol. 158, p. 107364, 2021. doi: 10.1016/j.cie.2021.107364.
[Online]. Available: https://doi.org/10.1016/j.cie.2021.107364

OCTAVIAN MAGHIAR ET AL.: COMPARATIVE ANALYSIS OF EXACT, HEURISTIC AND METAHEURISTIC ALGORITHMS FOR FLEXIBLE ASSEMBLY 625

