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Abstract—Re-colorization of images or movies is a challenging
problem due to the infinite RGB solutions for a monochrome
object. In general, the process is assisted by humans, either by
providing colorization hints or relevant training data for ML/AI
algorithms. Our intention is to develop a mechanism for fully
unguided (and with no training data used) colorization of movies.
In other words, we aim to create acceptable colored counterparts
of movies in domains where only monochrome visualizations
physically exist (e.g. IR, UV, MRI, etc. data). Following our past
approach to image colorization, the method assumes arbitrary
rgb2gray models and utilizes a few probabilistic heuristics.
Additionally, we maintain the temporal stability of colorization
by locally using structural similarity (SSIM) between adjacent
frames. The paper explains the details of the method, presents
exemplary results and compares them to the state-of-the art
solutions.

NOTE: All figures are best viewed in color and high resolution.

I. INTRODUCTION AND MOTIVATION

C
OLORIZATION of monochrome objects is an ill-posed

problem due to the infinite number of RGB solutions

for given grayscale data. Nonetheless, this topic holds no-

table practical and commercial significance, particularly in the

restoration of historical photos and movies, e.g. [1], [2].

In general, the development of colorization techniques in-

volves incorporating more and more human knowledge and ex-

pectations into the algorithms [1]. To that end, earlier methods

involved providing reference color images [3], [4] or manually

scribbling important fragments [5], [6]. Recently, AI-based

techniques have dominated, with architectures designed to

learn color patterns suitable for specific domains, semantics,

and/or contents, such as [7], [8].

Some works consider recognizing/learning the image do-

main (or specific objects within images) to further improve

the results, e.g., [9], [10].

In other works, inter-domain transfer learning is consid-

ered [11], or multiple alternative colorizations are proposed

by exploiting learned probability densities [12], [13].

Colorization methods for monochrome movies basically

follow the same principles. In some works (for example, [2]),

there is no distinction between the colorization of still images

and movies. That is, each frame of a movie is considered

a separate item and is re-colorized individually. However,

such an approach may introduce temporal colorization dis-

continuities. Therefore, in recent works, including [14], [15]

or [16], the issue of colorization continuity between adjacent

frames is addressed, mainly by combining spatial and temporal

consistencies of colors assigned to pixels with similar intensity

levels.

Nevertheless, in all typical papers on re-colorization of

monochrome objects, the algorithms are assisted by human

knowledge/experience/expectations, even if the assistance is

disguised as training datasets of relevant images/videos.

Therefore, the solution discussed in this paper may seem

audacious. We propose a mechanism for fully automatic video

colorization without additional metadata, manual assistance,

learning processes, or domain identification. In other words,

we aim to create plausible colored representations of gray

worlds using only monochrome videos as the data source. By

"plausible," we mean results that are visually attractive, statis-

tically repeatable, and deliver convincingly rich sensations of

colors.

It should be noted that we exclude simple pseudo-coloring

techniques that use a limited number of colors corresponding

to the number of intensity levels, resulting in a limited richness

and diversity of coloristic effects.

The problem addressed appears to be relevant and practical

because there are numerous domains, such as infrared, ultra-

violet, ultrasound, MRI, X-ray, and others, where only single-

channel visual data physically exist. Then, realistic-looking

automatic colorizations can be synthesized for various reasons,

even if it is just for aesthetic purposes (see examples in Fig. 1).

In our recent papers [17], [18], we overviewed the results

obtained for unguided colorization of monochrome images,

and the method for colorizing videos is a natural extension

of those results. Therefore, Section II revisits a number of

assumptions and techniques adopted in monochrome image

colorization and repeated in video colorization.

Section III presents steps that are specific to the colorization

of videos. A summary of the experimental results and corre-

sponding comments is provided in Section IV. Finally, the

concluding Section V discusses some supplementary details

(mainly related to limiting the number of solutions) and

outlines prospective directions for future research.
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Fig. 1. Examples of monochrome images from non-visual domains (IR and
X-ray), and their color-rich and visually plausible colorizations.

II. PRINCIPLES OF AUTOMATIC COLORIZATION

A. Significance of Decolorization Models

Generally, colorization methods assume that the intensity of

grayscale objects defines the luminance channel of the colored

outputs, so only two channels of chrominance need to be

reconstructed. It seems like a matter of arbitrary choice which

chrominance models are used (e.g., CIELab in [8], [9] or YUV

in [2], [5]). Sometimes, the model is not even specified, and

only the final outcomes in RGB format are discussed.

However, almost no papers on re-colorization address the

opposite question: How was the original (real or hypotheti-

cal) RGB object decolorized to obtain a grayscale object?

Typically applied decolorization (rgb2gray) models, i.e.

YUV or YIQ, assume linear functions of primary colors:

I = kRR+ kGG+ kBB (1)

where kR = 0.299, kG = 0.587 and kB = 0.114 (or, based

on [19], kR = 0.2126, kG = 0.7152 and kB = 0.0722).

Nevertheless, given that we assume that colored objects

only exist hypothetically, any combinations of non-negative

coefficients kR, kG, and kB can be formally used (subject to

the straightforward condition kR + kG + kB = 1).

Therefore, as shown in Fig. 2, a colored object can be

converted into a variety of its monochrome counterparts, which

may significantly differ depending on the adopted rgb2gray

model.

Fig. 2. A colored image and its three monochrome variants ob-
tained using three different rgb2gray models, namely [0.299, 0.587, 0.114],
[0.44, 0.14, 0.42] and [0.14, 0.11, 0.75]).

Correspondingly, by assuming a certain rgb2gray model,

we can restrict the re-colorization results in a specific way.

Any pixel with intensity I can only be assigned colors that

satisfy Eq. 1 with the adopted [kR, kG, kB ] values. Fig. 3

shows examples of the same image re-colorized using the same

algorithm, but with different rgb2gray models adopted.

Fig. 3. The same monochrome image colorized (by the method discussed
in [17], [18]) with different rgb2gray models adopted.

B. Colorization of Individual Pixels

In coloring monochrome objects depicting some non-

existent color worlds, we are not restricted by the propertiess

of YUV or YIQ models, which provide the best consistency

between the brightness of the color and its monochrome

counterpart, as perceived by human observers. Therefore, in

the developed colorization scheme, we assume that:

Monochrome visual objects are derived from (only

hypothetically existing) color counterparts by an rgb2gray

model with arbitrarily selected kR, kG, and kB coefficients.

If we assume that the coefficients are uniformly sampled

into n values each (for example, n = 101 for a 0.01 stepsize),

it can be easily obtained that the total number of available

rgb2gray models is:

N =
n(n+ 1)

2
or N =

(n− 3)(n− 2)

2
(2)

The first variant includes zero-coefficient models (e.g.,

[0.4, 0, 0.6] or [0, 1, 0]). These models are excluded in the

second variant, where each primary color must have a non-

zero contribution to the intensity levels.

In the experiments, we use 0.05, 0.01 or 0.002 stepsizes,

so that the total numbers of rgb2gray models are 231(171),
5151(4851) or 125, 751(124, 251). However, in the end, we

only consider a limited number of 20 − 40 models (see

Sections IV and V for more details), resulting in the same

number of alternative colorization outputs.

In rendering digital images, we adopt finite numbers of

intensities and colors. Thus, given a monochrome intensity

level Ip from the discrete range 0 to 255, it can only be

assigned colors from a pool of colors that satisfy (subject to

color discretization) Eq. 1. The size of those pools varies,

depending on the intensity level. As an example, the numbers

of colors assigned to intensity levels in two arbitrarily selected

rgb2gray models are shown in Fig. 4.
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The figure shows that the largest pools of colors are for

mid-range intensities, with the number of colors gradually

decreasing to a single choice for extremely dark or light inten-

sities. (Monochrome white/black should remain white/black in

color.)

Fig. 4. Numbers of RGB colors assigned to intensities in two exemplary
rgb2gray models.

As an example, Fig. 5 displays the pool of colors for

intensity level 208 under two rgb2gray models. Note that the

first model is actually YUV, and all colors are perceived as

having almost the same brightness. In contrast, the perceived

brightness of colors varies significantly for the second model.

(a)

(b)

Fig. 5. Colors assigned to 208 intensity in (a) [0.299, 0.587, 0.114] and (b)
[0.69, 0.12, 0.19] rgb2gray models.

With no prior information provided, all colors available to

the Ip level can be assigned to a pixel of that intensity with

the same probability. However, if the pixel has an adjacent

pixel with an intensity I1 and its already assigned color C1,

the probabilities of colors that could be assigned to Ip should

be influenced by the intensity and color of the neighbor.

Therefore, we propose a simple but (as shown later) sur-

prisingly effective heuristic rule:

The greater the difference in brightness between adja-

cent pixels, the higher the likelihood that their assigned

colors will also differ significantly.

Under this rule, we prioritize colors from the pool available

to the Ip level, which are at distances from the C1 color

proportional to the difference in intensity levels ∥Ip − I1∥.

Let’s assume a pixel with Ip intensity, which has an

already colored neighbor with I1 value and C1 color. Let

C = {Cp1
, ..., CpN

} be the list of colors assigned to Ip in

the adopted rgb2gray model.

The neighbor (with I1 value and C1 color) contributes a

color from the above C list. First, the list is ordered by the

distances of its colors from C1, i.e. Cmod = {Cpi1 , ..., CpiN
},

where

∥Cpin
− C1∥ ≤

∥

∥Cpi(n+1)
− C1

∥

∥ (3)

It should be noted that inter-color distances are measured

in the HSV space, as differences in this space are sufficiently

close to represent perceived color similarities, e.g. [20].

Then, a uniform distribution is used to randomly select a

color from a specific sub-range of the Cmod list. The location

of this sub-range depends on the difference ∥Ip − I1∥. In

general, for smaller differences, the sub-range is narrower

and shifted to the left of Cmod, while for larger differences,

it is wider and shifted towards the end of Cmod). Detailed

description of this step can be found in [18].

In particular, if the neighboring pixel has the same intensity,

i.e. Ip = I1, the Ip intensity pixel would be (preliminarily)

assigned the same color C1.

Actually, images are colored incrementally (details in the

following subsection), and it may happen that an uncolored

pixel has several already-colored neighbors. Then, the color

selection can be performed several times for that pixel, and

the final choice is the mean of the colors obtained from all

colored neighbors.

Cp =
1

K

K
∑

j=1

Cj (4)

where K = 1, 2, 3 or 4.

This step allows us to generate a larger variety of colors than

from the (possibly limited) pools of colors that are assigned

to individual intensity levels.

C. Incremental Colorization

Colorization of monochrome images is performed incre-

mentally, starting from the darkest and brightest pixels, for

which the unique color choice exists (see Fig. 4). They are

considered the initial list of already colorized pixels for the

algorithm, which is actually a randomized variant of a popular

flood-fill method.

Pseudo-code of the colorization algorithm is provided be-

low.

Step 4 (which does not exist in the standard flood-fill

method) is introduced to randomize the expansion of colorized

patches, i.e. to avoid unnecessary regularities in the coloriza-

tion process.
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Algorithm 1 Monochrome image colorization

Require: Initial list L of colored pixels

Ensure: Colorized images

1: remove from L pixels which do not have uncolored

neighbors;

2: copy L to Q queue

3: while Q is not empty do

4: move a random pixel from Q to the front of Q;

5: get the front pixel p of Q;

6: if ps (south neighbor of p) exists and is uncolored then

7: colorize ps (Eq. 4);

8: append ps to the end of Q;

9: end if

10: repeat Steps 6-9 for pn, pe, pw (north, east, west

neighbors of p);

11: remove p from Q;

12: end while

D. Other Remarks

Despite the heavy presence of randomizing factors, the

results produced by the outlined method are surprisingly

repeatable, depending only (as expected) on the adopted

rgb2gray model. Actually, all images shown in Figs 1 and 3

are generated by the method, and many more examples can

be found in [17], [18].

The visual plausibility of the results can be further im-

proved by projecting the colors of each pixel p onto the

corresponding YUV plane Ip = 0.299R+0.587G+0.114B (or

Ip = 0.2126R+0.7152G+0.0722B). This is because colors

assigned to the same intensity level can vary significantly in

terms of their perceived brightness, see Fig. 5b. Projecting

the colors on the YUV planes unifies the perceived brightness

of colors with intensities of the original monochrome image,

although it may alter the colors somewhat, as shown in Fig. 6.

(a) (b) (c)

Fig. 6. Original monochrome images (a) and their colorizations before (b)
and after (c) projections on the YUV planes.

III. FROM IMAGES TO MOVIES

Formally, the colorization of monochrome movies does not

differ from the colorization of images, and both operations are

often considered to be almost equivalent, e.g, [21]. Each frame

can be independently colorized to provide the corresponding

frame of the color movie. Such a simplified approach may be

used if image colorization performs nearly flawlessly, which

can only be achieved in specific and well-defined domains.

Nevertheless, this method has been successful in a number of

works, including the commercial system described in [2].

In our application, we cannot use this approach due to

randomizing factors in the image colorization scheme. In such

cases, even if the same rgb2gray model is used, adjacent

frames with nearly identical content may have noticeably

different colorization. An example is given in Fig. 7. Thus,

the temporal continuity/stabilization of rendered colors over

sequences of similar frames is particularly important for our

problem.

(a) (b) (c) (d)

Fig. 7. Four subsequent monochrome frames individually colorized (using
the same rgb2gray model) by the method outlined in Section II.

Recently, more attention has been paid to the temporal

continuity of colors in the colorized movies. Several papers,

e.g., [14], [15], [16], consider the regularization or stabilization

of colors in adjacent video frames. In [22], a more general

problem of stabilizing any visual properties in processed video

files is considered.

Nonetheless, in all these papers, the results are obtained by

training dedicated neural networks on sufficiently representa-

tive ground-truth data. Therefore, these approaches are not ap-

plicable to the considered problem of colorizing monochrome

videos for which the color counterparts never existed.

In the proposed solution, we assume that the colorization

continuity should reflect not only intensity similarities between

adjacent frames but also content similarities, particularly the

local ones.

After evaluating several popular metrics of image quality

and similarity, e.g. [23], [24], the structural similarity index

measure (SSIM) has been identified as the top candidate, [25].

SSIM is particularly suitable for monochrome images and is

applicable to images of any content.

In general, the SSIM is defined by a weighted combination

of three measures that broadly represent statistical similarities

between the intensity, contrast, and structure of two image
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samples, X and Y :

SSIM(X,Y ) = i(X,Y )α × c(X,Y )β × s(X,Y )γ (5)

where i(X,Y ) = 2µXµY +c1
µ2
X
+µ2

Y
+c1

, c(X,Y ) = 2σXσY +c2
σ2
X
+σ2

Y
+c2

and

s(X,Y ) = σXY +c3
σXσY +c3

.

Depending on the area over which means and standard

deviations are computed, SSIM can indicate image similarities

either globally (i.e., between whole images) or locally (i.e.,

between small neighborhoods of the same coordinates (m,n)
in both images).

When coloring the current frame in the context of the

previous one, we actually utilize both aspects of SSIM.

First, we calculate the global SSIM measure between

the current monochrome frame (to be colored) and its

monochrome predecessor (already colored). If the value is

too low (the recommended threshold is 0.5), we assume no

perceptual similarity between the frames, and the current frame

is colorized independently.

In practice, such situations occur infrequently, mainly when

assembling longer movies from shorter unrelated fragments,

and high values of global SSIM similarity between adjacent

frames can typically be expected. For example, the SSIM

values between the neighboring pairs of monochrome frames

in Fig. 7 are as follows: 0.9511 (frames a,b), 0.9756 (frames

b,c), and 0.9508 (frames c,d).

Therefore, we normally define colors of the colorized frame

Ik as weighted combinations of the independent colorization

of Ik and colors of the previous frame Ik−1, i.e., for given

pixel coordinates (m,n) we use the local values of SSIM:

Colk(m,n) = sim×Colk−1(m,n)+(1−sim)×Colk(m,n)
(6)

where sim = SSIM(Ik(m,n), Ik−1(m,n)).
Additionally, the colors computed by Eq. 6 are projected

onto the corresponding YUV planes (defined by pixel intensi-

ties in frame Ik) as explained in Section II-D.

Fig. 8 provides exemplary effects of the proposed color

regularization over neighboring frames. First, we display the

local SSIM indexes between the monochrome frames from

Fig. 7 in Figs 8(a-c). Then, the lower row of Fig. 8 shows the

colored frames after the regularization.

IV. EXPERIMENTS

The proposed method of monochrome movie colorization

involves heuristic assumptions, arbitrary model selection, and

probabilistic computational schemes. Furthermore, the ob-

tained results cannot be objectively assessed since reference

or ground-truth results are assumed to be non-existent.

Therefore, the performance of the method and quality of

its outputs can only be evaluated through extensive experi-

mentation. In particular, the final results are typically assessed

using subjective criteria such as visual plausibility, coloristic

attractiveness, aesthetic value, etc.

One of the main challenges in conducting such experiments

is the large number of potential rgb2gray models, as discussed

(a) (b) (c)

Fig. 8. SSIM maps (intensities proportional to the numerical values) for
Fig. 7 pairs of monochrome frames: (a) for frames a,b, (b) for frames b,c

and (c) for frames c,d. The bottom row displays the results after the color
regularization.

in Subsection II-B. The sheer quantity of alternative coloriza-

tions may be overwhelming for human evaluators. Therefore,

it is necessary to reduce the number of effectively considered

rgb2gray models.

For moderate numbers of adopted rgb2gray models, e.g.,

231(171) models with 0.05 stepsize, we found that the most

plausible solutions are normally obtained from the 10− 15%
of results with the lowest value of colorfulness (details of

this metric are provided in [1], [26]). Specifically, when the

monochrome objects depict scenes from the real world, this

subset typically includes solutions that vaguely align with

human coloristic expectations (more information in [17]).

With a large number of models, e.g., 5151(4851) or

125, 751(124, 251), the models are preliminarily clustered into

a recommended number of classes (20 − 40), and only the

cluster medoids are used. Details of the clustering algorithm

are outlined in Subsection V-A.

In any case, the users are presented with a limited number

of suggested colorizations, from which they can select the

most satisfactory option. Subject to the quality constraints of

the original monochrome movies, the results always appear

attractive and convincing, resembling scenes from ’fairytale

lands’. Therefore, the preferred colorized version becomes a

matter of personal choice.

In the experiments, the non-visual (IR) movies mainly

come from FLIR ADAS1 and CAMEL [27] datasets. The

visual-frequency movies, which are used to better highlight

the differences between our approach and the ’traditional’

re-colorization expectations, primarily come from personal

collections.

This section includes short representative frame sequences

as illustrations. For example, Fig. 9 once again confirms that

colorization supported by SSIM-based regularization provides

a natural-looking continuity of colored frames, free of flicker-

ing and artifacts.

Fig. 10 showcases a rather unusual (but occasionally pos-

sible) result of re-colorization of a real-world movie. It can

be observed that the selected colorization option appears even

more natural than the original color movie!

1https://www.flir.eu/oem/adas/adas-dataset-form/
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Similar effects can be observed in Fig. 11, where the

re-colorized frames of an underwater movie appear more

authentic than the original shots.

Nevertheless, in typical cases, even if the monochrome

movie has ground-truth colors, there is no correspondence

between the original colors and their re-colorized versions.

In other words, there is no distinction between colorizing

monochrome movies with or without existing color originals.

The results appear visually plausible, but they may or may not

meet the ground-truth coloristic expectations, with the latter

being more typical (see examples in Fig. 12).

Finally, Fig. 13 provides exemplary colorization results

(arbitrarily selected from a number of alternative results) for

a sequence of frames extracted from an outdoor IR movie.

Overall, the experimental results confirm that plausible

video colorization can be achieved fully automatically, without

the need for learning from relevant training data, human assis-

tance, or supplementary metadata. In other words, it appears

possible to synthesize realistically-looking colorful immersion

into the ’gray worlds’ of monochrome visual data. With the

mechanisms provided for pre-selecting the 20 − 40 most

promising rgb2gray models, users can choose their preferred

colorization version from a limited yet sufficiently diverse

number of alternative solutions.

However, considering that only subjective assessment cri-

teria are currently utilized, presenting the actual video clips

would be a more suitable approach to report the experimental

results.

A. Comparing to SOTA

It is generally assumed that AI-based methods deliver state-

of-the-art (SOTA) results for the colorization of monochrome

objects. In particular, some works on video colorization, in-

cluding [14], [16], use individual frame colorization by SOTA

AI methods as benchmarks for the proposed algorithms.

Following the same approach, we colorized sequences of

frames from the tested videos using the publicly available

(at https://deepai.org/machine-learning-model/colorizer) tool

which applies one of the most advanced re-colorization meth-

ods (outlined in [2]).

The results shown in Fig. 14 are utterly disappointing.

While visual plausibility is basically unchanged compared to

the monochrome images, the other subjective criteria, such

as coloristic attractiveness or aesthetic value fall far below

expectations. The color outputs are almost direct replicas of the

grayscale values from the monochrome images. Apparently,

when facing unfamiliar contents, the algorithm decides to

keep the original monochrome colorization. In other words,

satisfactory and visually attractive AI-based colorization is

not possible for monochrome objects for which no coloristic

knowledge or experiences are available. Therefore, the practi-

cality of the proposed approach is somewhat boosted.

TABLE I
COEFFICIENTS [kR, kG, kb] OF 32 ADOPTED rgb2gray MODELS.

[0.04, 0.77, 0.19] [0.05, 0.18, 0.77]
[0.05, 0.05, 0.90] [0.25, 0.13, 0.62]
[0.83, 0.05, 0.12] [0.59, 0.11, 0.30]
[0.12, 0.71, 0.17] [0.75, 0.21, 0.04]
[0.50, 0.20, 0.30] [0.25, 0.70, 0.05]
[0.42, 0.44, 0.14] [0.04, 0.91, 0.05]
[0.14, 0.39, 0.47] [0.58, 0.38, 0.04]
[0.40, 0.33, 0.27] [0.70, 0.04, 0.26]
[0.14, 0.55, 0.31] [0.04, 0.37, 0.59]
[0.52, 0.04, 0.44] [0.71, 0.15, 0.14]
[0.34, 0.04, 0.62] [0.41, 0.55, 0.04]
[0.26, 0.44, 0.30] [0.13, 0.24, 0.63]
[0.28, 0.27, 0.45] [0.04, 0.58, 0.38]
[0.40, 0.14, 0.46] [0.12, 0.83, 0.05]
[0.57, 0.28, 0.15] [0.26, 0.58, 0.16]
[0.16, 0.06, 0.78] [0.91, 0.06, 0.03]

V. CONCLUDING REMARKS

A. Limiting the number of alternative solutions

The main practical obstacle in prospective applications of

the proposed approach is (as highlighted in Subsection II-B

and Section IV) the large number of available rgb2gray

models. Human observers are unable to assess all possible

colorization outputs, so limiting the number of models to a

limited (but sufficiently diversified in terms of the produced

results) is an important issue. This is the outline of the

proposed remedy.

As an alternative to the representations given in Figs 4 and 5,

the colors assigned to the selected intensity I can be visualized

as the polygonal intersection of the kRR + kGG+ kBB = I

plane with the RGB color space cube. An example is provided

in Fig. 15 (note locations of the centers of gravity of the

depicted polygons).

Thus, the 256 × 3 matrix of gravity center coordinates of

such polygons for I = 0, ..., 255 can be considered a compact

representation of the adopted rgb2gray model. The matrix can

be nicely visualized by a (discrete) curve winding from black

to white in the RGB cube (see examples in Fig. 16). Those

curves will be referred to as mean-color curves.

Then, the rgb2gray models can be clustered by clustering

their mean-color curves (i.e. 256-dimensional arrays of 3D
coordinates). Eventually, medoids of the obtained clusters are

identified, and only the models corresponding to those medoids

are used for colorization.

Therefore, we adopt a limited number of models (for

example, only 32 clusters are built regardless the total number

of models) which are as diversified as possible in terms of

their statistical coloristic properties.

For the total number of 4851 rgb2gray models (i.e., 0.01
stepsize), the list of adopted model is given in Table I. It can be

noted that one of the models, namely [0.26, 0.58, 0.16], is quite

similar to the standard YUV model with [0.299, 0.587, 0.114]
coefficients.

B. Summary

In this paper, we propose a method for addressing the

ill-posed problem of colorizing monochrome movies without
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Fig. 9. Monochrome frames of an IR movie (two top rows), frames colorized individually (two middle rows), and frames colorized with the color regularization
(two bottom rows).

Fig. 10. The original color frames of a movie (two top rows), their decolorized variants (two middle rows), and one of the achieved re-colorization options
(two bottom rows).
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Fig. 11. The original color frames of an underwater movie (two top rows), their decolorized variants (two middle rows), and one of the achieved re-colorization
options (two bottom rows).

Fig. 12. The original color frames (two top rows), and their exemplary re-colorization options (pairs of lower rows).
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Fig. 13. An exemplary sequence of monochrome frames from an IR movie (top two rows) and its arbitrarily selected colorization (bottom two rows).

Fig. 14. Sequences of monochrome frames from (top to bottom) Figs 9, 10 , 11 and 13 colorized by an AI-based SOTA algorithm.
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Fig. 15. Distribution of colors assigned to three exemplary intensities 30,
80 and 208 under the I = 0.299R + 0.587G + 0.114B rgb2gray model.
Red dots indicate the centers of gravity of the intersection polygons.

(a) (b)

(c)

Fig. 16. Mean-color curves representing locations of polygon centers
for intensity levels ranging from 0 to 255 for three rgb2gray models: (a)
[0.299, 0.587, 0.114], (b) [0.69, 0.12, 0.19] and (c) [0.13, 0.175, 0.695].

any direct or indirect human assistance. Our method builds

upon our recent results in colorization of monochrome im-

ages, where we assume the use of arbitrary decolorization

(rgb2gray) models.

The movie colorization process involves two operations: im-

age colorization and temporal stabilization of rendered colors.

First, individual frames are colored using simple probabilistic

heuristics and a randomized flood-fill technique, starting from

the initial queue of darkest/brightest pixels with deterministic

color choices. In the second operation, we utilize the SSIM

similarity index to determine whether and to what extent color

continuity should be maintained between adjacent frames.

While a large number of rgb2gray models can hypotheti-

cally be used, we can pre-select a limited number of suffi-

ciently diverse variants. Users can then choose their preferred

colorization from these options, typically based on personal

preference.

The method is primarily designed for colorizing

monochrome movies in domains where no actual color data

exists, such as IR, UV, MRI, etc. In other words, our goal is

to transform the monochrome data into convincingly realistic

color versions of these gray worlds. This may be necessary

for various reasons, including aesthetic considerations.

In future work, our intention is to focus on the following

problems that have not yet been adequately addressed:

• Analysis of the mathematical properties of the method,

which includes exploring alternative probability distribu-

tions used in the adopted heuristics, investigating the local

(individual frames) and global (movies) convergence of

colorization results, etc.

• Developing metrics for the objective evaluation of col-

orization results, including the selection of appropriate

assessment criteria.

• Optimizing the code, including parallelization techniques,

optimizing data structures, and other strategies. The ul-

timate objective may involve achieving real-time perfor-

mance.

• Integrating the method with selected AI techniques to

enhance its capabilities and explore potential synergies.
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