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Abstract—Clinical notes that describe details about diseases,
symptoms, treatments, and observed reactions of patients to
them, are valuable resources to generate insights about the
effectiveness of treatments. Their role in designing better clinical
decision making systems is being increasingly acknowledged.
However, the availability of clinical notes is still an issue due
to privacy violation concerns. Hence most of the work done are
on small datasets and neither the power of machine learning is
fully utilized, nor is it possible to validate the models properly.
With the availability of the Medical Information Mart for
Intensive Care (MIMIC-III v1.4) dataset for researchers though,
the problem has been somewhat eased. In this paper we have
presented an overview of our earlier work on designing deep
neural models for prediction of outcomes and hospital stay
for patients using MIMIC data. We have also presented new
work on patient stratification and explanation generation for
patient cohorts. This is early work targeted towards studying
trajectories for treatment for different cohorts of patients, which
can ultimately lead to discovery of low-risk models for individual
patients to ensure better outcomes.

Index Terms—Clinical Notes, BioNER, Clustering, Anomaly
Detection, Autoencoder, Shapley Value

I. INTRODUCTION – CLINICAL NARRATIVES AND THEIR

USES

C
OMMUNICATION within healthcare systems is dom-

inated by textual narratives. This includes a diverse

array of documents generated by different sources for various

purposes. These texts can be broadly classified as follows:

(a). Clinical notes, especially nursing notes attached to

Electronic Health Records (EHR) of patients admitted to the

hospital for treatment, contain valuable information about the

patients, symptoms, diagnoses, treatments, chronic and past

ailments, drug prescriptions, and adverse drug effects, if any,

for the patient. Collections of such texts can be effectively

mined to gather insights to improve healthcare for other

patients [1]. If not explicitly, these texts also provide insights

about a physician’s possible reasons for following a path of

treatment. Nursing notes are time-stamped and therefore can

provide a view into the trajectories of recovery. Clinical notes

are also highly sensitive in nature since they contain personal

identification details. Hence, though large volumes of clinical

data are generated across the world, restricted access to the

data due to security and privacy concerns is a major bottleneck

for researchers. The publicly available Medical Information

Mart for Intensive Care (MIMIC) database [2] has eased out

this problem to some extent. This data has been anonymized

and specially made available for research purposes only. This

database contains daily records of over 40, 000 patients with

details about their illness, symptoms, medical history, results

of diagnostic tests, treatments, nursing observations, discharge

summaries along with some patient demographic details like

age, gender etc. along with the number of days spent in ICU

and other wards for each admission.

(b). Pathological and radiology reports - These are semi-

structured narratives resulting from various targeted examina-

tions like findings from radiology images, blood tests, etc.

Researchers in the area of computer vision have been long

engaged in developing predictive systems from the images

for automated detection of diseased cells, tissues, or organs.

Recent developments in the area of multi-modal analytics have

spurred interest in using textual descriptions along with images

for better predictive models.

(c). Bio-medical literature or technical publications that

report scientific advances in the area of life sciences and

healthcare, include documents like journal articles, case stud-

ies, systematic reviews, and clinical guidelines published by

regulatory bodies. These documents are important sources

of information for those who work in the areas of drug

discovery, designing new treatment protocols, etc. Text mining

of bio-medical scientific literature is an old established area.

The aim is to come up with systems that can help in the

easy assimilation of knowledge from this vast incremental

repository using sophisticated information extraction and rea-

soning methodologies. A comprehensive review of text mining

techniques for extraction information from bio-medical texts

is presented in [3].

(d). Social Media texts - Patient-generated text like tweets

or blog posts play a critical role in gathering insights about

individual and collective experiences about a drug, treatment,

clinical trials, or care facility. Social media text analysis has

played a critical role in detecting and assimilating adverse

drug effects, especially in obtaining new knowledge about

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 11–24

DOI: 10.15439/2023F3385

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 11 Invited contribution



preconditions or co-occurring conditions that cause adverse

effects of a drug. With the increasing popularity of patient

support groups like PatientsLikeMe, social media content

analysis is gaining new heights. There are dedicated groups

for different diseases offering hitherto undiscovered insights

about rare diseases to the entire community [4].

The repository of clinical texts is huge, analysis of which

can yield deep insights for clinical decision-making, drug

discovery, and healthcare management systems. While text

mining from reports, literature, and social media has been

actively pursued for some time now, the mining of clinical

notes from EHRs is a fairly new area, primarily due to the non-

availability of such texts earlier. Even to this day, the volume

of clinical records of patients available for study purposes is

fairly low. This is a severe impediment to the development

of machine learning systems, as these are known to require

large volumes of data. Nevertheless, with increasing focus

on personalized and optimized healthcare management, the

analysis of clinical texts is gaining importance. Analytical

applications of clinical documents can be broadly classified

as -

• Descriptive analytics: which is targeted at knowledge

discovery from the scientific literature. This is a fairly

mature area of research actively pursued by researchers

working in the areas of natural language processing and

text mining. They often aim to discover information

about new entities and relations reported in the literature.

Dalianis provides a detailed review of clinical text mining

and its applications along with the challenges of analyz-

ing such data in the book [1]. This book also presents

a comprehensive study of clinical text mining in non-

English languages.

• Diagnostic analytics: this area digs deeper into clinical

texts to unearth causal explanations about events.

• Predictive analytics: this area seeks to employ predictive

models to predict possibilities of repeat occurrence of

known events. One of the major consumers of predic-

tive models designed using past patient data are hos-

pital management authorities. Hospital admission notes

have turned out to be very useful for the purpose, as

these can be used to predict ICU length of stays [5],

hospital readmissions, procedure requirements, etc. ICU

stay prediction is an important problem for hospitals,

since ICU facilities are expensive to set up, and their

optimal use and availability are imperative to ensure

better outcomes through proper resource planning [6]–

[8]. Obtaining advance information about the possible

length of ICU stay or duration of hospitalization are also

useful for patients and their families, as it helps in better

expectation management and planning from their side

also. Predicting individual patient outcomes is gaining

importance as clinical decision making is increasingly

focusing on individualized care. Given the wide vari-

ability among individuals however, a step forward in

this direction is to move towards understanding patient

cohorts - that is group of patients who are more similar

to each other, than to rest of the patients suffering from

the same disease. This is known as patient stratification.

Patient stratification is gaining interest from medical as

well as machine learning researchers, as it holds the

promise to deliver better outcomes to the exceptions.

These are early days in this area, and most studies have

been conducted on very focused dataset.

• Prescriptive analytics: this is an extension of predictive

analytics, where the intent is to prescribe the best possible

actions from among a set of possible actions, to achieve a

desired outcome under a given state. Prescriptive analyt-

ics can be viewed as a natural follow-up of patient stratifi-

cation. It ideally requires simulation of future possibilities

to arrive at the best possible decision for an individual, by

studying the current state, possible interventions and their

effects using a simulation and then arriving at a feasible

conclusion.

In this paper, we shall be primarily presenting our work

done in the areas of predictive analytics and patient strat-

ification using clinical text like hospital admission notes,

with an end goal of providing decision intelligence for better

care management and increased visibility into patient cohorts

respectively. The rest of the paper is organized as follows.

Section II provides an overview of the MIMIC dataset. Sec-

tion III presents related work done in the area of predictive

analytics, along with our earlier work in the area. It presents

an overview of different types of predictions done with clinical

data including text by different groups, and also an overview of

our earlier work done for predicting ICU length of stay and

procedure requirements for patients based on the first day’s

admission notes. Section III-A provides a comparative study of

the performance of all the methods. This is followed by patient

stratification work. Section IV presents an overview of related

work in the area of patient stratification by other researchers.

From section V onwards we present our work done in the area

of patient stratification using clinical texts, which to the best

of our knowledge has not been attempted before. We have

presented deep learning based methods to generate explain-

able clusters from clinical notes of patients admitted with a

specific disease. The explanations generated for the clusters

provide more insights into the co-morbidities of each cohort

present within the group. The cohort-treatment associations

are also obtained. We present results of experiments done

with pneumonia patients of the MIMIC dataset in section VII.

Detailed insights into the cohorts obtained are presented in

the form of cluster-wise patient statistics in terms of age

and hospital stay, along with cluster-specific association of

symptoms, treatments, and final recovery information obtained

from the discharge summaries. We believe the insights can

pave the way for analyzing the effectiveness of the treatment

trajectories and thereby customizing them in future, to improve

treatment effectiveness and reduce mortality, if possible. We

conclude with a lot of future possibilities in section VIII.
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II. THE DATASET

As our primary data source, we have used the MIMIC-

III v1.4 database [2], which contains the details of over

forty thousand patients who stayed in critical care units of

the Beth Israel Deaconess Medical Center (BIDMC) between

2001 and 2012. This database has pre-existing Institutional

Review Board (IRB) approval, and researchers can access the

data after successfully completing the training course “Data

or Specimens Only Research” provided by the Collaborative

Institutional Training Initiative (CITI).

The MIMIC-III database contains details of 46,520 distinct

patients with 58,976 hospital admissions. This database in-

cludes both structured and unstructured clinical events docu-

mented for patients during hospital admissions. Importantly,

the database adheres to stringent anonymization protocols,

meticulously safeguarding patient privacy. Moreover, to en-

sure heightened privacy protection, precise dates and times

of events have been intentionally obscured. Instructions for

accessing this dataset are available in the website https://

mimic.mit.edu/docs/gettingstarted/.

III. BUILDING PREDICTIVE MODELS FOR PATIENT CARE

WITH CLINICAL NOTES

In this section, we present an overview of work done in the

area of predictive analytics with electronic health records.

In [9], a neural network based model is used to predict

the length of remaining hospital stay for a patient at the

time of exit from the ICU unit. In this study, authors used

several medical attributes like patients’ demography, CPT

events, services, procedures, diagnosis, etc. of 31,018 patients

from the MIMIC database. In another study [13], Harutyunyan

et al. proposed a channel-wise LSTM model using multitask

training for predicting mortality along with a forecast of the

remaining time to be spent in ICU made at each hour of

stay. Predictions were generated from 17 clinical variables like

Capillary refill rate, blood pressure, fraction inspired oxygen,

Glasgow coma scale, glucose level, heart rate, etc. of patients

from the mimic database. Afterward, in 2020 [12], a deep

learning architecture based on the combination of temporal

convolution and pointwise convolution was proposed to predict

the length of ICU stay. This work used the eICU critical

care dataset [18], which contained records of 118,534 unique

patients, and predictions were based on structured features

like patients’ gender, age, hour of admission, height, weight,

ethnicity, Unit Stay, Physician Speciality, etc. In [10], a study

was presented on the prediction of length of stay in ICU and

mortality, using several machine learning algorithms on a set

of patients from the MIMIC database based on their vital signs

like heart rate, blood pressure, temperature, respiratory rate,

and patient’s demography like age, gender, height, weight,

etc. In 2021 [11], Su et al. developed several machine learning

models for predicting mortality, severity, and length of stay for

a set of 2224 Sepsis patients who were admitted to the ICU

of Peking Union Medical College Hospital. In their predictive

models, authors used patients’ clinical parameters such as age,

P(v-a)CO2 /C(a-v)O2, SO2, oxygenation index, white blood

cell count, oxygen concentration, temperature, etc. from the

first 6h in the ICU.

It is worth mentioning here that none of the above-

mentioned works used textual data for prediction. Most of

them have used only structured clinical parameters for predict-

ing various clinical events. The richness of clinical notes has

not been fully exploited for prediction. In particular, nursing

notes play a crucial role in capturing essential patient informa-

tion that extends beyond the physiological metrics recorded by

laboratory tests or radiology reports. These notes encompass

a wide range of details, including symptoms, overall health

condition, administered medications, performed procedures,

and devised treatment strategies. Moreover, they occasionally

encompass insights into a patient’s response to care and

treatment, often described through behavioral observations

meticulously documented by the caregiving professional.

Figure 1 shows a sample nursing note with different portions

of text color-coded, to highlight the different categories of

information that a note may contain. Use of linguistic ex-

pressions like ”severe multilobar pnx”, ”worsening multifocal

pnx”, ”No abdominal pain, no further bleeding” provide

an added dimension of human assessment, that cannot be

captured through numbers only, but can be important while

distinguishing between two similar patients who are possibly

responding differently to the treatment. The notes are very

comprehensive in nature. With the database containing almost

as many notes for each patient as the number of days of

admission, this offers quite a rich collection to work with.

Additionally, within the EHR system, a discharge summary

is also a crucial component of the patient’s medical records

that provides a concise overview of a patient’s hospital stay,

their medical condition, treatments received, and instructions

for follow-up care upon their discharge from the hospital.

Often the information is repeated across these sources. The

redundancy helps in data verification, especially since the data

can be quite noisy. Other fields which are more structured

in nature like age, gender, admission diagnosis, medications,

mortality, etc. are also used for predictive modeling.

Recently, in 2021 Aken et al. [15], have introduced a model,

called CORe, on top of BioBERT for predicting multiple

clinical outcomes along with the duration of ICU stay. The

authors devised a distinct note extracted from the discharge

summary, leveraging it within their predictive framework.

In 2022 [16], we proposed a model which utilized nursing

notes of the first day of ICU along with clinical parameters

from laboratory tests, to predict whether a patient would need

an ICU stay of short or long duration, where the partition

of short or long stays was decided by median length of stay

recorded in data. Further in [17], this work was extended to

additionally predict the need for critical procedures such as

bypass surgery, stenting, tracheotomy, and cholecystectomy

- which were the most commonly occurring ones in the

dataset, along with an ICU stay. The objective was to predict

these procedures based on the first day’s nursing notes in

which these were not explicitly mentioned. We also proposed

using a framework called “Local Interpretable Model-agnostic
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TABLE I
PERFORMANCE ANALYSIS OF DIFFERENT MODELS FOR ICU LENGTH OF STAY PREDICTION.

Earlier
Works

Dataset Features used ICU stay classes Methods Best Result

[9] 31,018 patients from
MIMIC database

patients’ demography,
CPT events, services,
procedures, diagnosis,
etc.

ICU stay≤5 days,
class 0; ICU stay>5
days, class 1

neural network based
model

80% accuracy

[10] 44,000 ICU stays
from MIMIC database

patient’s vital signs -
heart rate, BP, temp,
resp rate, age, gender,
height, weight, etc.

ICU stay≤2.64
days, class 0; ICU
stay>2.64 days, class
1

Machine learning al-
gorithms

65% accuracy using
random forest algo-
rithm

[11] 2224 Sepsis patients
from Peking Union
Medical College Hos-
pital Intensive Care
Medical Information
System and Database
(PICMISD)

patient’s age, P(v-
a)CO2 /C(a-v)O2,
SO2, oxygenation
index, WBC count,
oxygen concentration,
bpm, temp, etc.

ICU stay (LOS) (>6
days, ≤ 6 days)

logistic regression,
random forest, and
XGBoost model

sensitivity = 0.79,
specificity = 0.66, F1
score = 0.69, AUC =
0.76 using Random
forest

[12] eICU critical care
dataset

patient’s gender, age,
hour of admission,
height, weight,
ethnicity, unit stay,
Physician Speciality,
etc.

classifying in 10
classes - one for ICU
stays shorter than a
day, seven day-long
buckets for each day
of the first week, one
for stays over one
week but less than
two, and one for stays
over two weeks

combination of tem-
poral convolution and
pointwise convolution

Kappa score = 0.58

[13] MIMIC database
42276 ICU stays

17 structured clini-
cal variables - capil-
lary refill rate, blood
pressure, fraction in-
spired oxygen, Glas-
gow coma scale, glu-
cose, heart rate, etc
from first 24 hours of
admission

classifying in 10
classes - one for ICU
stays shorter than a
day, seven day-long
buckets for each day
of the first week, one
for stays over one
week but less than
two, and one for stays
over two weeks

LSTM-based neural
network models

AUC-ROC = 0.84

[14] 22,353 patients from
MIMIC database

Clinical Notes Remaining ICU stay
time is discretized into
10 classes {0-1, 1-2,
2-3, 3-4, 4-5, 5-6, 6-
7, 7-8, 8-14, 14+}

multi-model neural
network

Kappa score = 0.453

[15] 38,013 admissions
from MIMIC database

created notes from
discharge summaries

four categories - Un-
der 3 days, 3 to 7
days, 1 week to 2
weeks and more than
2 weeks

pre-trained CORe
model on top of
BioBERT

AUC-ROC = 72.53%

[16] 22,789 admissions
from MIMIC
database

nursing notes from
first 24h along with
20 vital signs and lab

measurements avail-
able in first 24h of

ICU stay

“Short” if ICU
LOS<4days and
“Long” if ICU

LOS≥4days

trans-former based
deep neural network
model

Accuracy = 79.20%,
AUC-ROC = 87.33%
Kappa score = 0.594

[17] 28,659 admissions

from MIMIC

database

nursing notes from

first 24h along with

20 vital signs and lab

measurements avail-

able in first 24h of
ICU stay

“Short” if ICU

LOS<3days and

“Long” if ICU

LOS≥3days

multimodal multiob-

jective transformer

network

Accuracy = 84%

Explanations” (LIME) to obtain explanations about the predic-

tion outcome. LIME creates several subsets from the original

data containing only a part of the original attributes. It then

computes the influence of the attributes on the classification,

based on the presence or absence of certain features in the

selected text. To capture the details and the various nuances of

a nursing note, we proposed using transformer-based models

for representing them. Embeddings for the nursing notes were

generated using BlueBERT [19] and Clinical BioBERT [20].

Along with this, for each admission, we computed four types

of Severity of Illness (SOI) scores: APACHE II, SAPS II,

SOFA, and OASIS based on data collected within 24 hours

of ICU admission. This way, the proposed model made use of

both structured as well as unstructured data. The novelty of the
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Fig. 1. A Sample nursing note collected from MIMIC-III. Colored components are the extracted events and entities.

proposed model was its design as a multi-objective prediction

model, where critical procedures also were predicted along

with the duration of ICU stay. Different kinds of networks

were experimented with, namely the Convolutional Neural

Network (CNN) [21] and Long Short Term Memory (LSTM)

[22] for prediction. Additionally, it was observed that the use

of a Term Frequency - Inverted Document Frequency (TF-IDF)

vector, impacts the performance of the model significantly. It

might be due to the fact that the TF-IDF vector can capture

the common and distinct features across the classes very

effectively. Figure 2 presents the prediction architecture that

performed the best along with the proposed representation

scheme.

The input representation for a patient is the vector generated

by concatenating the outputs of the BiLSTM layer as a result

of embedding the corresponding first admission note, the TF-

IDF feature vector for clinical entities extracted from the note,

and the SOI scores of the patient. The concatenated vector

embedding is simultaneously fed into two task-specific fully

connected layers, one for predicting ICU length-of-stay and

another for predicting the possibilities of each of the four

surgical interventions – bypass surgery, stenting, tracheotomy,

and cholecystectomy. For the length-of-stay classification, we

have used the softmax activation function with binary cross-

entropy loss LLOS . For the intervention prediction tasks, since

these are not mutually exclusive outcomes, we have trained

the prediction layer using the sigmoid activation function with

binary cross-entropy loss functions Lintervention. Finally, we

have defined a joint loss function using a linear combination

of the loss functions for the two tasks as:

LJoint = λ ∗ Lloss + (1− λ) ∗ Lintervension (1)

, where λ controls the contribution of losses of the individual

tasks in the overall joint loss.

A. Evaluation of Predictive Models for ICU LOS prediction

As discussed earlier, one major aspect that distinguishes the

models from each other is the set of predictor variables used.

The choice of prediction method is often guided by the choice

of the predictor features. The evaluation metrics used by the

studies are also not always the same. This makes comparison

of methods a little tricky. However, we have presented a

compilation of the models, the metrics, and the reported per-

formances of these models in Table I. The last two rows of the

table I present the performance of our proposed models over

a set of ICU patients from the MIMIC database. The predic-

tion accuracies for bypass surgery, stenting, tracheotomy, and

cholecystectomy were found to be 89%, 83%, 55%and54%
respectively. The performance of the last two categories were

not so good due to lack of enough data in the set. Interestingly

however, while only 3% of the total tracheotomy procedures

done later were mentioned in first day’s notes, our model

could predict 70% of them in the first day. However, the

false positive rates were high for the proposed model. This

can be reduced with more data. Overall, the significant gains

for acquiring valuable insights into procedure requirements on

the first day itself are quite significant. Consequently, such an

approach offers prospects for enhanced planning and decision-

making. It was observed that a total of 15691 unique diseases

are recorded in the MIMIC database as key reasons for which

patients were admitted to ICU. It was found that in the dataset

we used, the topmost category, which constituted about 4% of

the entire set were patients of Pneumonia, followed by around

2% each of Sepsis, Coronary Artery Disease, Congestive Heart

Failure, and Gastrointestinal bleeding. This somewhat explains

the observation of the cardiac procedures as most frequent

followed by tracheotomy and cholecystectomy.

As seen in Table I, the performances of predictive systems

are improving over time. While these systems are good

for hospital management, particularly in efficiently manag-

ing resources for heterogeneous sets of patients, when it

comes to providing better patient experience, the trajectory of

clinical decision-making is moving towards providing more

personalized care management. While these are early days

of designing personalized care management systems, existing

literature strongly suggests that rather than working with very

large groups, the stratification of patients into homogeneous

subgroups or clusters is likely to play a major role in enabling

personalized treatments. In the next section, after describing

novel techniques for patient clustering, we will demonstrate

the effectiveness of the methods utilizing patient data afflicted

with Pneumonia, which was the predominant disease present

in the dataset.

IV. PATIENT STRATIFICATION - A REVIEW OF RELATED

WORKS

Most of the predictive models that have been proposed ear-

lier in literature, have worked on large heterogeneous patient

LIPIKA DEY ET AL.: DECIPHERING CLINICAL NARRATIVES - AUGMENTED INTELLIGENCE FOR DECISION MAKING 15



Fig. 2. Overview of proposed multimodal multitask framework for predicting the ICU length of stay and necessity of the interventions. Process the nursing
notes in chunks by the BlueBERT model and add a BiLSTM-attention layer on the top. We also extract 2500 medical entities from these notes and make
a TF-IDF representation. Then the note representations from the BlueBERT-BiLSTM -Attention network, TF-IDF representation, and four severity of illness
scores are concatenated and two task-specific fully connected layers are applied to obtain the final predictions.

populations, which were not able to discover obtain much

insights into risk factors for individual patients and hence

not very suitable for personalized decision making. Patient

stratification techniques that can identify homogeneous groups

and thereafter group-specific risk factors, is therefore proposed

as a better way to gain insights about outcome differences.

In recent years, several data clustering approaches have

been proposed for patient stratification and subsequent analysis

of the clusters using different cluster validity indices [23],

[24]. In 2021, Alexander et al. [25] investigated the clinical

heterogeneity of Alzheimer’s disease patients using electronic

health records (EHR). In 2022, Angelini et al. [26] proposed

an explainable clustering method to identify dominant os-

teoarthritis endotypes using different biochemical markers, to

design tailored treatments and drive drug development. In a

recent paper [27], Bhavani et al. have applied hierarchical

clustering (DTW-HC) and partitioning around medoids (DTW-

PAM) from the first 8 hours of hospitalization records, to

identify sub-phenotypes of infected patients. Chen et al. In [28]

have presented a model for prediction and risk stratification

of kidney outcomes in IgA Nephropath, which is a common

disease worldwide. The intent is to predict long-term outcomes

and stratifying risk for clinical decision-making. They have

also stated that these kinds of work can be useful for designing

future clinical trials. The model used was gradient tree boost-

ing implemented in the eXtreme Gradient Boosting (XGBoost)

system. The dataset itself was quite small. Kanwal et al.

in [29] present stratification of patients suffering from Non-

Fatty Liver Disease (NAFLD), which is largely asymptomatic,

and success of treatment depends on optimal timing and

accurate assessment of fibrosis risk. The work describes the

NAFLD Clinical Care Pathway that was developed to assist

clinicians in diagnosing and managing NAFLD with clinically

significant fibrosis (stage F2–F4) based on the best available

evidence using a statistical approach. In [30] Seinen et al. have

presented a detailed review of prognostic prediction models

that use unstructured clinical text.

V. PATIENT STRATIFICATION USING NURSING NOTES -

OBTAINING INSIGHTS ABOUT PATIENT COHORTS AND

EXCEPTIONS

We now present methods for generating explainable patient

cohorts based on their condition at admission, by clustering

first day’s nursing notes of patients. Rather than using the en-

tire dataset of all patients, our focus will now be on individual

diseases. We propose the use of auto-encoders to represent

patient health conditions, which is a different approach from

using the transformer-based representations presented earlier.

Further, we propose the use of SHAP values for explaining

the clusters. We also show that the use of autoencoders within

a disease category improves the accuracy of prediction of the

duration of hospitalization.

While analyzing the prediction results using the LIME

framework described in section III, we found that clinical
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notes, one factor that could affect the performance of pre-

diction could be highly variable in style and content. While

some caregivers record only the symptoms that are present on

a given day, some others meticulously note down the absence

of common symptoms, adverse reactions, psychological state

of patients, appetite, etc. The use of non-standard terminology

and abbreviations are known to be quite common. Using

widely variable terms to describe the same condition is very

common in clinical texts. For example - icterus and jaundice

refer to the same disease. Similarly, the terms brain abscess,

intracerebral abscess, cerebral abscess all refer to the same

state. Over the years, bio-medical dictionaries like UMLS [31]

have been prepared to document these. Though the BlueBERT

embeddings that we used earlier, could capture linguistic

nuances like difference between severe pain and mild pain,

these could not always capture the similarities or differences

between two notes based on the medical terms used. Therefore,

before getting into the stratification work, where the similarity

would play a significant role, we implemented an additional

processing layer, wherein every clinical note underwent initial

processing through the Biomedical dictionaries for standard-

ization of terms. Using this step it was now possible to

also distinguish different types of entities like symptoms,

diseases, drugs, etc. which could help in grouping patients

better. For example, people suffering from the same disease

and undergoing the same treatment, but who showed different

reactions to it, could now be put into different groups. This led

to the idea of using a different embedding altogether which

we shall now explain.

The details of the processing pipeline using the biomedical

dictionaries are presented below.

Entity extraction: We have used Scispacy [32] and MetaMap

[33] for extracting health conditions from patients’ clinical

notes.

Scispacy: ScispaCy is one of the most robust model for

processing biomedical, scientific, and clinical texts on several

NLP tasks such as part-of-speech tagging, dependency parsing,

named entity recognition, etc. In our work, we have used

the pre-trained scispaCy model en ner bc5cdr md, which was

trained on the BC5CDR corpus for recognizing disease names

mentioned in a clinical note.

MetaMap: Nowadays, another entity extraction tool MetaMap

is widely used for identifying medical entities. This was

developed by the National Library of Medicine (NLM) to map

biomedical text to concepts in the Unified Medical Language

System (UMLS) [31]. We have processed clinical notes using

MetaMap and extracted eight medical entities such as “Sign

or Symptom”, “Disease or Syndrome”, “Acquired Abnormal-

ity”, “Anatomical Abnormality”, “Congenital Abnormality”,

“Injury or Poisoning”, “Mental Process”, and “Mental or

Behavioral Dysfunction”.

Detecting Negations: The Negex algorithm [34] which detects

the presence of negative modifiers like “no”, “not”, etc. is

then applied to detect negative mentions of entities in a text.

The original list was enhanced to accommodate commonly

appearing negation concepts such as “deny”, “refuse”, “ab-

sent”, “decline” etc. that occur frequently in clinical notes.

For example, given a sentence “The patient has shortness of

breath but denies any chest pain”, two symptoms identified

should be shortness of breath, neg chest pain. These negative

symptoms have a significant contribution to describing indi-

vidual patients.

Entity Standardization: All the extracted entities are then

standardized using the UMLS Metathesaurus [31], [35]. This is

important since a single medical condition like “Hypertension”

may be referred to as “High blood pressure”, “Arterial hyper-

tension” or “Hypertensive disorder” by different professionals.

UMLS contains an exhaustive list of such situations and

assigns a “Concept Unique Identifier (CUI)” to each. However,

we have observed that several entities still did not have an

exact match with any UMLS concept. These entities were

mapped using an approximate string-matching algorithm [36],

that found the closest UMLS concept based on Levenshtein

distance measure [37]. For entities that could not be mapped to

any UMLS concept, unique identifiers were created to ensure

that no health condition was ignored. Examples of such entities

from the MIMIC dataset include terms like “airway swelling”,

“overdistention of lung” etc. To avoid confusion, we refer to

these also as CUIs.

Each clinical note can now be represented in terms of the

CUIs present in it, either to indicate the presence or absence

of a symptom. Consequently, a patient’s status at a particular

point in time can also be expressed in terms of these CUIs.

Let the collective list of CUIs describing the diseases and

symptoms for a particular study be denoted by health status

(H). Given a patient p, the health condition at time t is denoted

by a vector of hi ∈ H , where the value of hi is set to 1 if

hi mentioned in the corresponding clinical notes, -1 if it is

mentioned negatively, and 0 if hi is not mentioned. It may be

noted that the CUIs associated with a patient are expected to

change over time as treatment progresses. Consequently, the

patient may be represented by different vectors over the same

space as t changes.

Patient Medication Information: Besides health conditions,

each patient also has medications that are prescribed based on

these conditions. Considering a unified set of medicines M , at

a given time t, each patient p is also associated with a binary

vector < mi >, i = 1..|M |, where mi = 1, if medicine mi is

ongoing for p at time t, otherwise 0. This binary vector also

changes over time.

A. Creating Dense Representation of Patients in Terms of

Health Conditions using Autoencoders

While the number of unique diseases and symptoms ob-

tained from any patient database is very high since all people

do not exhibit all symptoms or diseases, the above vec-

tors are high-dimensional and sparse. An autoencoder-based

transformation is applied to obtain a dense representation

in a lower-dimensional space [38], [39]. In an autoencoder

(AE) model, the ”encoder” network creates a compressed

representation of the input data by capturing the essential

characteristics and underlying patterns, while the ”decoder”
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network learns to reconstruct the original input data from

the compressed representation while minimizing the loss of

information [40]. We next show how dense representations

are used for prediction as well as clustering purposes.

B. Autoencoder-based Prediction of Duration of Hospitaliza-

tion

Before getting into the details of clustering, we validated

the representation using it in a predictive framework similar

to the ones described earlier first. Figure 3 presents a CNN-

based architecture that is used for the prediction of hospital

/ ICU stay duration using the autoencoded representation of

the first day’s clinical notes. The network performance was

tested with a dataset of 2106 “Pneumonia” patients who had

undergone one admission for the disease. The set comprises

individuals both with and without ICU admission. Since the

number of total patients in this category is still quite small

for a deep neural architecture, we have used all the data for

predicting long or short hospital stay, rather than ICU stay.

The median stay for this set of patients was 9 days. We

conducted two experiments to check the performance. For the

first experiment, the cut-off between short and long stays was

assumed to be 7 days, while for the second experiment, it

was assumed to be 9 days. While the accuracy is found to be

83% for 7 days, it is 86% for 9 days, which is the median.

Thus median appears to be a good estimator for deciding long

or short stays. It was found that the system performed more

errors for patients with short stays, which were erroneously

classified as long. Some of these patients, had deceased after

a short stay. Though not exactly comparable, the prediction

performance is found to be much higher than all reported

works presented earlier, which may be due to the focused

dataset or the representation, or both. Whether this kind of

performance can be observed for all other diseases also, needs

to be further explored, but this would also need more data for

each of the corresponding categories.

VI. PATIENT STRATIFICATION USING AUTOENCODERS -

GENERATING EXPLAINABLE PATIENT CLUSTERS

The autoencoded vector representations are clustered using

the k-means clustering algorithm [41], with Euclidean distance

as the distance metric to identify similarity among patients.

For a given value of k, a set of k cluster centers are chosen

randomly, and then each data point is assigned to the cluster

that is found by iteratively minimizing the within-cluster

distance among the points. In order to determine the right

value of k, we have made use of silhoutte coefficient [42]. The

silhouette coefficient of each point measures how similar it is

to other points within the same cluster in comparison to points

in other clusters. The average silhouette coefficient computed

from all the points provides a measure of the cohesiveness

of each cluster along with their separation or distinctiveness

from each other. Starting with 2, the value of k is iteratively

increased as long as the silhouette score also increases with it.

The ideal value of k is the one that yields the highest average

silhouette score, beyond which the score starts to decrease

steadily.

In order to generate human-interpretable explanations for

the clusters, we used Shapley values [43], which can measure

the contribution of each feature of each individual towards the

final outcome, while preserving the sum of contributions of

all. We wanted the explanations to be in terms of diseases and

symptoms, including the dominant symptoms in a cluster, as

well as the distinguishing aspects between the clusters. The

CUI-based representation was used for the purpose. Treating

the cluster labels as the target outcomes, a Random Forest

classifier [44] was trained to predict the target labels, using the

CUI vector-based representation of the patients. The trained

model was then analyzed using SHAP TreeExplainer [43],

[45], [46], to gain insights into the decision-making process.

This method provides not only the contribution of each symp-

tom to a particular label but also the SHAP values for each

patient, thereby helping with the interpretation of why a patient

has been assigned to a particular cluster. They also help in the

interpretation of misclassifications by the model, if any.

A similar approach was followed to derive Shapley values

for patients and clusters in terms of medicines. In this case,

the Random Forest classifier was trained to predict the target

cluster labels using the medicine vectors and then analyzed

with the SHAP TreeExplainer. It helps in identifying the most

significant medicines for each cluster, thereby providing in-

sights about the common and distinct medicines administered

to patients belonging to different clusters.

A. Identifying Anomalies within Clusters

The obtained SHAP values for patients’ health conditions

are now used to compute the anomaly score for each individ-

ual. Anomalous individuals - within a cluster who may demon-

strate distinctive characteristics in terms of certain symptoms

or response patterns, different from other members, should

have higher scores. For a cluster C, the health condition

anomaly score of a patient p is denoted by αC(p) and

computed as follows:

αC(p) =
∑

h∈H

|ωh(p, C) ∗ (mh(C)− vh(p))|,

where H denotes the set of all CUIs, vh(p) is either 1, 0, or

-1 based on whether the symptom h is present for p or not, as

described earlier, mh(C) is the median value of the symptom

h in C and ωh(p, C) denotes the SHAP value for symptom h
for patient p with respect to C. αC(p) is normalized for each

cluster to keep the scores within 0 to 1. The higher anomaly

score indicates that the patient is more distinctive from his/her

neighbors.

Since the duration of sickness also varies largely among

patients, a normalized anomaly score is also computed in terms

of duration. For a patient p with duration of sickness d, the

18 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 3. Overview of the proposed framework for processing clinical notes, generating representations with an autoencoder, and subsequently applying CNN
to predict hospitalization duration.

duration anomaly score denoted by γC(p) with respect to other

members of C is computed as follows :

γC(p) = |d−mC |/max
i∈C

γC(i),

where mC is the mode value of duration of disease for

cluster C.

Absolute anomaly score χ(p) is computed using the follow-

ing formula:

χC(p) = 0.5 ∗
√

αC(p)2 + γC(p)2,

This distributes the scores within the first quadrant of a unit

circle, centered at the origin. The anomaly score is high for

the set of points that are far away from the origin, the higher

with the x and the y axes values providing insights about the

symptom anomalies and duration anomaly respectively.

B. Assessing Causal effects of Significant Medications within

Clusters

We further propose the use of causal analysis of clusters to

analyze the effect of medications on patients. Causal analysis

attempts to identify the effect of different treatments on

groups of patients, based on observed outcomes. For patient

stratification, the duration of sickness may be considered as

an observed outcome, while medications or procedures are the

treatment variables.

Causal analysis was done using the DoWhy package [47].

Given the diseases and symptoms as common cause variables,

the duration of sickness as the outcome, and the medications

as treatments administered, DoWhy generates an initial causal

graph then estimands are identified using the graph. The final

causal estimates are obtained using Propensity Score Weight-

ing [48] as the estimator, and refutation as the validation tech-

nique. The causal estimates are validated using two different

methods namely “adding random common cause” and “data

subset validation” [49]. While the first method estimates the

effect of a treatment by adding random independent variables,

the second one does the same taking subsets of data. Either

way, causal estimates are assumed to be good if the results

don’t show high perturbations, indicated by the p value.

VII. RESULTS OF PATIENT STRATIFICATION FOR

PNEUMONIA PATIENTS IN MIMIC DATASET

In this section, we present results for analyzing data of

2106 patients from the MIMIC-III v1.4 database [2], who were

all admitted to the hospital and diagnosed as suffering from

“Pneumonia”, using the above methods. The intent was to:

(a) Obtain explainable clusters of patients based on their

health conditions recorded in the first set of clinical notes on

admission.

(b) Identify anomalies within each cluster and also generate

explanations for the anomalous behaviors.

(c) Identify the significant medicines for each cluster using the

SHAP values.
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Fig. 4. Average silhouette scores for k = 2 to 20 for Experiment 1 (red) and
Experiment 2 (blue).

(d) Study the causal effect of significant medicines on the

duration of disease for the clusters.

As mentioned earlier, each of these patients had multiple

clinical notes attached to them, approximately one per day of

admission. The notes varied quite a bit in content. While some

contained only incremental information, some were detailed

and overlapped with earlier ones. A total of 23, 737 notes

were obtained. After pre-processing all the notes as described

in section V, a comprehensive list of 4800 unique health

conditions was identified. Initially, the entire set of 23, 737
records was used to generate 500-dimensional autoencoded

representations for the patients. However, the clustering results

were not satisfactory. Hence, after some experimentation, this

was changed to use only the first day’s notes. The number of

unique health status reduced to 2803. The 500 dimensional

auto-encoders were then generated using the vectors for the

first-day notes only. Figure 4 presents the average silhouette

scores for k values ranging from 2 to 20 for both experiments.

The best score was achieved for k equal to 12, using the

second method. Figure 5 presents the distribution of these 12

clusters plotted using tSNE [50]. It shows that the clusters

are fairly distinct and well-separated. Analysis of the SHAP

summaries also revealed that the clusters were distinct and

well-segregated from each other.

Since the trade names of drugs varied a lot, though their

compositions were same, therefore the drugs corresponding to

the notes were obtained from the database and mapped to their

drug classes using the pre-trained gpt-3.5-turbo model [51].

However, the drug summaries generated by SHAP were not

found to be very distinct from each other. This can be because

the same drug might be prescribed for two different health

conditions, or two different drugs might have been adminis-

tered for the same health condition by different physicians.

This needs to be analyzed in depth further, which remains a

future task.

Figure 6 presents the SHAP summaries in terms of major

health conditions present and absent, and the drugs identified

for a few clusters. It shows that cluster 0 predominantly

consists of patients suffering from Endometriosis and Diabetes

along with pneumonia, and do not exhibit Paroxysmal familial

ventricular fibrillation. Similarly, patients belonging to cluster

4 are found to suffer from Lung consolidation and do not have

Paroxysmal familial ventricular fibrillation. Cluster 6 predom-

inantly comprises patients with Atrial Premature Complexes

and does not exhibit Lung Consolidation or Paroxysmal famil-

ial ventricular fibrillation. It may be observed that the most

common co-morbidity was some or the other form of cardiac

disease. The SHAP summary for drugs for clusters 0, 4, and 6,

show that the most significant medicine administered to cluster

0 patients is antidiabetic hormones, which is obviously to

handle diabetes, for patients of cluster is proton pump inhibitor

and hypoglycemic agent, and the most prevalent medication for

patients of cluster 6 is found to be Vasopressor which is for

regulating blood pressure.

Anomaly scores revealed that the most anomalous patient

in cluster 0 is a 67-year-old patient with a hospital stay of

62 days, deviating significantly from the cluster’s mode value

of 7 days. This anomaly can be attributed to the coexistence

of Endometriosis, Paroxysmal familial ventricular fibrillation,

and Acquired abnormality of atrium, a combination not ob-

served in other members of this group. For cluster 4, while

most patients were aged between 60 to 80, the most anomalous

patient was a 33-year-old person who spent 81 days in the

hospital, against the cluster mode value of 6 days. This person

had all significant common symptoms of the cluster along with

Paroxysmal familial ventricular fibrillation. The top two most

anomalous persons of cluster 6 are aged 72 and 52 years, with

58 and 46 days of stays against cluster mode of 8 days. The

anomalous symptom for the first person is renal cyst, while

for the second patient, they are lung consolidation and liver

failure. While most patients in this cluster are aged between

60 to 80, a third anomalous patient is aged 33 and suffered

from multiple comorbidities but was admitted for only 3 days.

Thus, it can be seen that the anomaly score is able to identify

patients who are demographically outliers, even though age

was not taken into account for computing the score.

Consequently, causal analysis was done for the drugs that

were found to be significant for these clusters. For cluster 0,

the effect of antidiabetic hormone is −0.459. The negative val-

ues indicate that these medicines contributed towards reduced

duration of stay. Also, we have observed that this medicine

is given 83% of short-stayed patients. On the other hand, the

effect of proton pump inhibitor is 2.746 and this medicine

is given to 89% of long-stayed patients. For cluster 4, the

causal effect values of medicine beta-blocker was −2.7, for

Analgesic anti-platelet it was −2.02, and for Bronchodilator it

was −1.51, contributed towards in decreasing in the duration

of hospital stay. Opioid analgesic had the highest positive

value, indicating that this did not play a role in reducing

the duration. For cluster 6, in which 84% of patients suffer

from arterial premature complexes, medicines Corticosteroid

(-3.17), Anticonvulsant/ neuropathic pain agent (-3.02), Opioid
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Fig. 5. t-SNE visualization of 12 clusters.

analgesic (-2.4), Vasopressor (-1.02) are found to causally

reduce the duration of stay. Further analysis for cluster 6

reveals that 58% of patients with less than 6 days of hospital

stay, 52% of those with 6 - 10 days, and 50% of those with

higher than 10 days, were administered with Corticosteroid

on the first day. The manual inspection also reveals that

Corticsteroid was not administered to the top three anomalous

patients, whose details were presented earlier, on the first day.

Likewise, we conducted similar analyses for the remaining

clusters. Though the exact implications of the results are best

analyzed by healthcare experts, our analysis reveals that the

results obtained from anomaly detection, their explanations,

and causal analysis are all consistent with each other.

We also extracted the final recovery status of the patients

from the discharge summaries. Based on the descriptions, we

identified three major states at the time of discharge - (a).

deceased patients, (b). patients whose vital signs were stable,

could ambulate independently, and were coherent, (c). patients

who were lethargic but mentally alert and ambulated with

assistance. Figure 7 shows the distribution of the different

clusters of patients identified earlier (based on their initial

states) across these three categories. The top three categories of

deceased patients are from clusters 7, 0 and 11, who suffered

from comorbidities like ventricular hypertrophy, endometriosis

or showed severe signs of edema. The results indicate that

there is a need to look deeper into these cohorts, especially into

the symptoms presented by the deceased patients. Comparative

analysis of lengths of hospital admission for all patient clusters

and deceased patients of each cluster are shown in Figure 8.

It can be seen that the medians of the deceased patients

for each cluster are almost same as those of other patients,

which is around 10. While majority of the patients survived,

a small percentage could not, and future work would be to

delve deeper into the reasons for these differing outcomes.

Superficial analysis at this point reveals that these patients

had higher number of co-morbidities at admission time, some

uncommon ones like Septic embolus, Kidney Failure, AIDS-

Associated Nephropathy, sepsis etc. Data and the trajectory of

treatment of these patients can be analyzed further to see what

could have been done to ensure a positive outcome.

Figure 9 presents cluster-wise classification accuracy of

predicting LOS for test patients, obtained by the classifier

mentioned in section V-B. It is observed that there were

no classification error for patients of cluster 6, which also

incidentally had the least variation in terms of length of stay

for patients as shown in 8. In future we would like to work on

prediction of outcomes for patients within individual clusters.

We are also exploring the role of SHAP values in explaining

the prediction outcomes since though the LIME framework

used earlier provides measure of associations between words

and classes, it does not provide any explanation about why

a particular class was assigned to an individual based on a

collection of features.

VIII. CONCLUSION

Clinical notes are the backbone of healthcare systems. Well-

written documents can provide valuable insights about dis-

eases, patients and treatment effectiveness. They can provide

a wealth of information about the similarities and diversity

of situations across different situations. Deciphering the notes

themselves however is a difficult problem due to the inherent

variations in terms of style and content, which result from

individual and organizational preferences. Obtaining these

notes for analytical tasks is also a difficult problem. Though

their utility is well-acknowledged, still these are not available

in volumes that can help in designing machine-learning models

for analyzing them. The key concerns are those of security
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(a) cluster 0 (b) cluster 4 (c) cluster 6

(d) cluster 0 (e) cluster 4 (f) cluster 6

Fig. 6. SHAP values for Cluster 0, 4, and 6 of health conditions (top) and drugs (bottom). Red indicates high significance and blue low. Right side indicates
presence and left side indicates absence of a feature.

Fig. 7. Distribution of patients of twelve clusters derived from initial stages across recovery classes.

and privacy violations. Various groups however have started

reporting their work on proprietary data. While this does

establish the legitimacy of the problem, it is often not easy

to reproduce the results in another setting or conduct a com-

parative analysis of the results obtained. The MIMIC dataset

available for researchers alleviates some of the problems. It is

a fairly large dataset with substantial number of clinical notes

associated with details about diseases, treatment and outcomes.
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Fig. 8. (a) Clusterwise distribution of length of stay for all patients (b) Clusterwise distribution of length of stay for deceased patients.

Fig. 9. Clusterwise accuracy of length of stay classification.

The use of clinical notes in predicting length of hospital

admission, readmission possibilities, treatments as well as

expected clinical outcomes has been prevalent for quite some

time. Presently, the use of unstructured clinical notes is on

the rise for development of prognostic prediction models. The

focus is on developing explainable models. It is expected

that robust and trustworthy prediction models will change the

course of clinical practice as treatment procedures will move

from majority focused designs to more customized designs.

In this paper, we have presented some initial work that

we have started for explainable patient stratification. We have

shown that deep learning based representations can effectively

capture the richness of clinical notes and thereby be used

to provide valuable insights about patient cohorts as well as

exceptions within them. In future, we intend to extend our

work in generating complete trajectories using the proposed

representations. These trajectories in conjunction with the

outcomes can help in risk assessment for patients, and thereby

help in steering towards low-risk trajectories, especially for

patients who are outliers.
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