
Developing Field Theory in Mizar

Christoph Schwarzweller

Institute of Informatics, Faculty of Mathematics, Physics and Informatics,

University of Gdańsk,
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Abstract—As part of our ongoing project to prove Artin’s
solution of Hilbert’s 17th problem in Mizar we are formalizing
a great deal of basic field and Galois theory. In this paper we
report on our formalization so far: we present basic mathematical
structures and our Mizar definitions enriched with some main
results. We also discuss some of our design decisions as well as
subtleties – in particular connected with Mizar types.

I. INTRODUCTION

I
NTERACTIVE theorem proving aims at developing sys-

tems to be used to formalize, that is both formulate and

prove, mathematical theorems and theories in an accurate and

comfortable way. The ultimate dream is a system containing

all mathematical knowledge in which also mathematicians

develop and prove new theorems. To come at least a little

closer to this goal much effort has been spent building large

repositories of computer-verified theorems such as the Coq

library [7], the Isabelle2017 library [16], and the Mizar Math-

ematical Library [18]. A number of important mathematical

theorems has been proven to illustrate the capability of inter-

active theorem proving, the most prominent examples being

the proof of Kepler’s conjecture in HOL Light [14], the Feit-

Thompson theorem in Coq, and the Jordan curve theorem in

Mizar.

Mizar [2], [12] is one of the pioneering systems for formal-

izing mathematics, after 50 years Mizar’s proof checker still

is actively developed and its library maintained and extended.

One of the latest achievements in Mizar is the proof of the

MRDP theorem solving Hilbert’s 10th problem in the negative

[20]. Another challenging problem is Hilbert’s 17th problem:

Given a multivariate polynomial that takes only non-negative

values over the reals, can it be represented as a sum of

squares of rational functions? Artin’s positive solution [1] is a

highlight in abstract algebra, introduced what today is known

as formally real fields and initiated the development of real

algebra.

Soon after starting the formalization of formally real fields

it became clear that much more field theory is necessary than

expected: not only field extensions and algebraically closed

fields, but also basic Galois theory. Therefore we decided to

formalize what usually appears in a one-semester graduate

course on higher algebra [21], [9]. The main results of our

formalization so far are

1) existence and uniqueness of splitting fields

2) existence and uniqueness of algebraic closures

3) simple extensions: characterization by intermediate

fields, finite field extensions of characteristic 0 are

simple

4) normal extensions: characterization by minimal poly-

nomials, splitting fields, and fixing monomorphisms,

counter example Q( 3
√
2)

5) separable extensions: finite field extensions of charac-

teristic 0 are separable, counter example Xp−a for

characteristic p, finite fields are perfect

6) formally and maximal formally real fields: formally real

fields are exactly the ordered fields, sums of squares are

exactly the total positive elements, real closed fields are

maximal formally real

The complete formalization with entire proofs can be found

in the Mizar Mathematical Library in the article series

FIELD_xx and REALALG_xx.

To prove that maximal formally real fields are real

closed we will formalize the fundamental theorem of Galois

theory stating that for a (finite) Galois extension E of F
the intermediate fields of E and F are in a one-to-one

correspondence with the subgroups of E’s Galois group.

Note that a finite field extension E over F is Galois if and

only if E is both separable and normal over F , so that for F
with characteristic 0 a finite Galois extension E is also simple.

Related Work Formalizations of both field and Galois

theory have been performed in different proof assistants: In

Coq Galois theory has been developed to prove the Abel-

Ruffini theorem [4] and also real closed fields can be found in

[6]. Lean provides the theory up to the fundamental theorem

of Galois theory [5]. General field theory also has been

formalized in Isabelle - in particular the existence of algebraic

closures of fields has been proved [8].

II. THE MIZAR SYSTEM

Mizar is the name for both the proof checker and the formal

language in which definitions and proofs are written. Mizar

has often been described in the literature, for example in [19],

[13], [10], [12] and [3]. We therefore here give only a very

rough description of Mizar.

Mizar’s logical basis is classical first-order logic, extended

with so-called schemes. Schemes introduce free second-order

variables enabling the definition of induction schemes among
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others. In addition, Mizar objects are typed, the types form-

ing a hierarchy with the fundamental type set. The user

can introduce new (sub)types describing mathematical objects

such as groups, fields, vector spaces, or polynomials over

rings or fields. The development of the Mizar Mathematical

Library relies on Tarski-Grothendieck set theory – a variant

of Zermelo-Fraenkel set theory using Tarski’s axiom about

arbitrarily large, strongly inaccessible cardinals which can be

used to prove the axiom of choice. Mizar proofs are written in

natural deduction style. The rules of the calculus are connected

with corresponding (English) natural language phrases so that

the Mizar language is close to the one used in mathematical

textbooks, see [11] for an introduction to the Mizar language.

To define (algebraic) domains Mizar provides so-called

structure modes fixing the domain’s sets of elements and

operations. So, for example1

definition

struct (addLoopStr,multLoopStr_0) doubleLoopStr

(# carrier -> set,

addF, multF -> BinOp of the carrier,

OneF, ZeroF -> Element of the carrier #);

end;

defines the necessary backbone of rings and fields. Note

that doubleLoopStr inherits from both addLoopStr and

multLoopStr_0, that is it joins the operations of additive

and multiplicative groups. Properties such as commutativity

or the existence of inverse elements are described by attribute

definitions for appropriate structures such as

definition

let L be addLoopStr;

attr L is right_zeroed means

for a being Element of L holds a + 0.L = a;

end;

Here for elements a and b of (the carrier) of R a+b is a

shortcut for (the addF of R).(a,b). The type Field

then is defined as a doubleLoopStr with the appropriate

collection of attributes:

definition

mode Field is

Abelian add-associative right_zeroed

right_complementable associative commutative

well-unital almost_left_invertible

distributive non empty doubleLoopStr;

end;

As a consequence a Mizar object of type Field obtains all

properties described by the defining attributes. We note here,

that Mizar types have to be non-empty, so that each mode

definition requires an existence proof.

Concrete algebraic domains are built by instantiation of

structures. The field of rational numbers Q, for example, is

given by the set RAT of rational numbers and binary operations

addrat and multrat defining addition and multiplication

for elements of RAT. These are then glued together by the

following

1Throughout the paper Mizar code is written in verbatim style

definition

func F_Rat -> Field equals

doubleLoopStr(#RAT,addrat,multrat,1,0#);

end;

Note, that using the set RAT in defining the field F_Rat

gives a particular representation of the rational numbers Q to

be used when arguing about the rational numbers using the

field F_Rat. Of course there are other fields, that is fields

with a different set of elements, isomorphic to Q. In fact any

field of characteristic 0 contains a subfield isomorphic to Q,

so that every field of characteristic 0 can be considered as a

field extension of Q.

III. FIELD EXTENSIONS AND FIELD ADJUNCTIONS

If F is a subfield of E then E is called a (field) extension

of F . Note that this definition in particular means that the

elements of F are a subset of the elements of E. Subfields

(and subrings) already have been defined in Mizar, so we get

definition

let R,S be Ring;

attr S is R-extending means

R is Subring of S;

end;

definition

let F be Field;

mode FieldExtension of F is F-extending Field;

end;

Note that in the definition instead of postulating that F is

a subfield of E we demand that a ring R is a subring of

another ring S. In this way our definition gets more flexible.

For example, this allows to show that Q extends Z. For fields,

however, our definition is equivalent to the one from the lit-

erature given above, as stated by the following

theorem

for F,E being Field

holds E is FieldExtension of F iff

F is Subfield of E;

There is an alternative equivalent definition stating that F
embeds into E. In human mathematics it’s obvious to switch

between these two – ignoring usually the embedding. We

decided to use the first option as it makes it easier to consider

polynomials of F as polynomials of E (and also makes it more

straightforward to define F -fixing morphisms needed later):

In Mizar a polynomial of E must have coefficients of type

E. Thus the second option would require to take care of the

embedding ϕ: not p, but ϕ(p) then is a polynomial of E.

However, even though an element a ∈ F can naturally be

considered as an element of E, this has to be made explicit in a

typed system like Mizar: for a being an element of F and b an

element of E the term a+b is not defined as a and b must have

the same type. This type can be element of E or element of F ,

if b turns out to be in F . In Mizar type casts are realized with

the help of the reconsider-statement for changing types of

objects, or one defines a functor for changing types, usually

denoted by @. In both cases the result is independent of the

field, that is for a, b ∈ F we get
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a + b = @(a,E) + @(b,E);

reconsider a1 = a, b1 = b as Element of E;

a + b = a1 + b1;

Both versions now allow to shift from one field to another.

Note that this also works in towers of fields.

For T ⊆ E the adjunction of F with T is the smallest

extension of F containing T . Thus both F (T ) is an extension

of F and E is an extension of F (T ). To "attach" both types

to F (T ) we defined the type of FAdj(F,T) as subfield of

E:

definition

let F be Field, E be FieldExtension of F;

let T be Subset of E;

func FAdj(F,T) -> Subfield of E means ...;

end;

Then the type of the field E can be easily changed into

FieldExtension of FAdj(F,T), if necessary. Because

Mizar’s typing mechanism allows to enrich types with further

attributes the type of FAdj(F,T) can be "extended" with

F-extending, hence then is FieldExtension of F.

Note that this typing is necessary to prove F (T1 ∪ T2) =
F (T1)(T2) for T1, T2 ⊆ E, because then E must have type

FieldExtension of F(T1) on the right-hand side – in

contrast to FieldExtension of F on the left-hand-side.

IV. SPLITTING FIELDS

A splitting field of a polynomial p ∈ F [X] is an extension

E in which p splits into linear factors and is generated by p’s

roots, e.g. E = F (α1, . . . αn) where the αi are the roots of p
– or equivalently a smallest field extension of F in which p
splits:

definition

let F be Field;

let p be non constant Polynomial of F;

mode SplittingField of p

-> FieldExtension of F means

p splits_in it &

for E being FieldExtension of F

st p splits_in E & E is Subfield of it

holds E == it;

end;

Note again that in Mizar a mode definition requires an

existence (but no uniqueness) proof, because the introduced

type – here Splittingfield of p – is not allowed to

be empty. Our proof follows [21] and does not use algebraic

closures: Iterating Kronecker’s construction [23] ensures that

there exists an extension of F in which p splits, so one easily

shows that there is a smallest one – of course this then is the

extension of F generated by p’s roots. Consequently, that a

splitting field of p is generated by the roots of p now follows

as a theorem.

theorem

for F being Field

for p being non constant Polynomial of F

for E being SplittingField of p

holds E == FAdj(F,Roots(E,p));

To prove uniqueness of splitting fields we introduced the

notion of being isomorphic over a field F , e.g. there is an

isomorphism that fixes the elements of F . Note that such an

isomorphism also fixes polynomials p ∈ F [X]. We then lifted

isomorphisms from F1 −→ F2 to F1({a}) −→ F2({b}) where

a and b are algebraic elements of F1 and F2 respectively.

Because splitting fields are generated by roots of a polynomial,

hence by algebraic elements, then follows

theorem

for F being Field

for p being non constant Polynomial of F

for E1,E2 being SplittingField of p

holds E1,E2 are_isomorphic_over F;

so a splitting field of a non-constant polynomial is unique

up to isomorphism.

V. ALGEBRAIC CLOSURES

An algebraic closure A of F is an extension of F which

is both algebraic closed and algebraic over F , that is every

non-constant polynomial of A has a root and every element

a ∈ A is the root of a non-zero polynomial of F .

Our proof follows Artin’s classical one as presented by

Lang in [17]: Kronecker’s construction is applied to each

polynomial p ∈ F [X]\F simultaneously to get an extension

E of F in which every non-constant polynomial p ∈ F [X]
has a root in E. For that we need the polynomial ring

F [X1, X2, ...] with infinitely many variables, one for each

polynomial p ∈ F [X]\F . The sought-after field extension E
then is (isomorphic to) F [X1, X2, ...]/I , where I is a maximal

ideal generated by all non-constant polynomials p ∈ F [X].
Note that to show that I exists Zorn’s lemma is necessary.

Iterating this construction gives an infinite sequence of

fields, whose union defines an extension A of F , in which

every non-constant polynomial p ∈ A[X] has a root. The field

of algebraic elements of A then is an algebraic closure of F .

With this existence proof we can define

definition

let F be Field;

mode AlgebraicClosure of F

-> FieldExtension of F means

it is F-algebraic &

it is algebraic-closed;

end;

To prove uniqueness of algebraic closures again the tech-

nique of lifting morphisms is applied: a monomorphism F −→
A, where A is an algebraic closure of F can be extended to a

monomorphism E −→ A, where E is any algebraic extension

of F . In case that E is algebraically closed this monomorphism

is an isomorphism.

theorem

for F being Field

for A1,A2 being AlgebraicClosure of F

holds A1,A2 are_isomorphic_over F;

Note that the existence of the lifted monomorphism again

relies on Zorn’s lemma.
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VI. SIMPLE EXTENSIONS

An extension E of a field F is simple, if E is generated

over F by a single element a ∈ E, e.g. E = F ({a}). The

element a then is a primitive element.

definition

let F be Field, E be FieldExtension of F;

attr E is F-simple means

ex a being Element of E st E == FAdj(F,{a});

end;

For infinite fields F we proved that a finite extension E of

F is simple if and only if the number of intermediate fields

between E und F is finite. In Mizar the intermediate fields of

given fields E and F can be defined as a functor giving the

appropriate set: because the elements of such a field must be

a subset of the elements of E, one can pick up the subsets

of the elements of E which constitute a field using Mizar’s

replacement-scheme.

theorem

for F being infinite Field

for E being F-finite FieldExtension of F

holds E is F-simple iff

IntermediateFields(E,F) is finite;

The theorem holds for finite fields also. The proof, however,

follows easily from group theory, in particular every finite

extension of a finite field is simple.

For fields with characteristic zero we also proved that a

linear combination of a and b generates F (a, b) – in fact in

doing so we already showed that in fields with characteristic

0 irreducible polynomials are separable.

theorem

for F being 0-characteristic Field

for E being FieldExtension of F

for a,b being F-algebraic Element of E

ex x being Element of F

st FAdj(F,{a,b}) = FAdj(F,{a+@(x,E)*b});

Note that to take the element x from F we again have to

shift x into E using the functor @.

VII. NORMAL EXTENSIONS

An extension E of F is normal, if every polynomial over

F that has a root in E – or equivalently every minimal poly-

nomial – already splits in E. There is a number of equivalent

characterizations of (finite) normal extensions (usually shown

in a ring proof), for example, that normal extensions are given

by splitting fields of polynomial p ∈ F [X]:

theorem

for F being Field,

E being F-finite FieldExtension of F

holds E is F-normal iff

ex p being non constant Polynomial of F

st E is SplittingField of p;

Note that one direction of this theorem can be be auto-

mated by enriching the type SplittingField of p with

the attribute F-normal. This is done using Mizar’s cluster

mechanism:

registration

let F be Field;

let p be non constant Polynomial of F;

cluster -> F-normal for SplittingField of p;

end;

Then the type SplittingField of p is extended

to F-normal FieldExtension of F instead of only

FieldExtension of F, so all theorems about normal

extensions can be automatically applied.

Another important characterization deals with fixing mor-

phisms. It states that for (finite) normal extensions E an F -

fixing monomorphism h : E −→ K into a larger field K
actually maps to E only, and therefore is an isomorphism.

Note here, that an extension E of F is finite if and only

if there exist (algebraic) elements a1, . . . an ∈ E such that

E = F ({a1, . . . an}).
theorem

for F being Field

for E being F-finite FieldExtension of F

holds E is F-normal iff

for K being FieldExtension of E

for h being F-fixing Monomorphism of E,K

holds h is Automorphism of E;

The proof turned out to be technical because one needs to

show h(E) = h(F ({a1, . . . , an})) ⊆ F ({h(a1), . . . , h(an)}).
In human mathematics this is almost obvious just because

every element a ∈ F ({a1, . . . , an}) is given by p(a1, . . . , an)
for some polynomial p ∈ F [X1, . . . Xn]. The formal proof in

Mizar is by induction on the degree of multivariate polyno-

mials and hence needs to reduce the degree of a multivariate

polynomial in order to apply the induction hypothesis.

VIII. SEPARABLE EXTENSIONS

A polynomial p ∈ F [X] is separable, if p has no multiple

roots in the (any) splitting field of p. This is equivalent

to p being coprime with its formal derivative. An algebraic

extension E of F is separable, if for all a ∈ E the minimal

polynomial µa is separable.

definition

let F be Field

let p be non constant

Element of the carrier of Polynom-Ring F;

attr p is separable means

for a being

Element of the SplittingField of p

st a is_a_root_of p,(the SplittingField of p)

holds multiplicity(p,a) = 1;

end;

Note the use of the the-operator in the following definition

which nicely puts into mind the fact that a splitting field

is unique up to isomorphism. This, unfortunately, is not

expressed by the definition as the just takes an arbitrary

element of the non-empty type SplittingField of p.

All the obvious properties about polynomials over isomorphic

fields nevertheless have to be proved. In particular the fact

that separability indeed is independent of the splitting field is

established not before the following
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theorem

for F being Field,

p being non constant Polynomial of F

holds p is separable iff

ex E being FieldExtension of F

st p splits_in E &

for a being Element of E

holds multiplicity(p,a) <= 1;

In fields with characteristic 0 every irreducible polynomial

p is separable (such fields are called perfect), because p must

be square-free to be relatively prime with its formal derivation.

In fields with prime characteristic p, however, the polynomial

Xp − a is reducible only if a has a p-th root and then equals

(X−a)p. In the other case Xp−a is irreducible and because
p
√
a is a p-fold root of Xp−a = (X−a)p in its splitting field

we get

theorem

for p being Prime

for F being p-characteristic Field

for a being Element of F

st not a in F|^p

holds X^(p,a) is irreducible inseparable;

where F|^p denotes the subfield F p of all p-th roots in

F . Indeed, F p = F if and only all irreducible polynomials of

F are separable, which we applied to finally prove that every

finite field is perfect. On the other hand the field Fp(X) of

rational functions over a field Fp with characteristic p 6= 0 is

not perfect.

IX. FORMALLY REAL FIELDS

Finally we return to our original motivation of formalizing

formally real fields and Artin’s solution of Hilbert’s 17th

problem. A field F is formally real, if −1 is no sum of

squares. In this – and only this – case F can be ordered.

Here, orders are usually defined as positive cones, the set

of positive elements [22]. Note that formally real fields have

characteristic 0. A first main result from [1] we proved states,

that the elements of F that can be described as sums of squares

are exactly the total positive ones:

theorem

for F being formally_real Field

for a being Element of F

holds a in Sums_of_squares_of F iff

for P being Ordering of F holds a in P;

So, to solve Hilbert’s 17th problem it’s crucial to identify the

total positive elements of the real numbers. In general fields

allow for different orderings. Maximal formally real fields F
– in the sense that there is no proper extension of F which

again is formally real – however, have only one ordering, the

set of squares SQ F:

definition

let F be Field;

attr F is maximal_formally_real means

F is formally_real &

for E being F-algebraic FieldExtension of F

st E is formally_real holds E == F;

end;

theorem

for F being maximal_formally_real Field holds

SQ F is Ordering of F &

for P being Ordering of F holds P = SQ F;

We also proved that in maximal formally real fields every

polynomial of odd degree has a root and that the field of

real numbers is maximal formally real. Maximal formally real

fields F then are characterized as real closed fields: a field F
is real closed if the splitting field of the polynomial X2+1 ∈
F [X] – e.g. the field F (i) – is an algebraic closure of F .

definition

let F be Field;

attr F is real_closed means

not -1.F in SQ F &

the SplittingField of X^2+(1.F)

is algebraic-closed;

end;

Note that this definition does not make use of orderings. So

far we proved that real closed fields are maximal formally real.

Maximality easily follows from the fact that −1 is a square

in F (i), hence the main part here is to show that real closed

fields F are formally real, e.g. that the squares of F form an

ordering. This requires to show that for a, b ∈ F we have that

a2 + b2 again is a square. This is shown by considering the

polynomial p = (X2 − a)2 + b2 in F [X]. p has no roots in

F , but is reducible, because F (i) is algebraic closed. So we

get p = p1 · p2 for irreducible quadratic polynomials p1, p2.

Note that p splits in F (i) by assumption, so the roots of p are

±
√
a± b · i giving

theorem

for F being real_closed Field

for a,b being non zero Element of F

for p being Polynomial of F

st p = Subst(X^2+b^2,X^2-a)

for i being a_Root of X^2+(1.F)

for ai,bi,w1,w2 being Element of

the SplittingField of X^2+(1.F)

st ai = a & bi = b &

w1^2 = ai + i * bi & w2^2 = ai - i * bi

holds Roots(the SplittingField of X^2+(1.F),p)

= { w1, -w1, w2, -w2 };

Of course also p1 splits in F (i), so p1 = (X−α)·(X−β) ∈
F (i)[X] must take two of these roots. But then α ·β =: v ∈ F
and also α · β =

√
a2 + b2, so a2 + b2 = (α · β)2 = v2.

The other direction – that maximal formally real fields are

real closed – will be proved by showing that for fields F ,

in which both the set of squares is an ordering and every

polynomial of odd degree has a root, the extension F (i) is

algebraic closed. This is done by starting with a splitting

field E of an arbitrary non-constant polynomial p. Then E
is a Galois extension of F , because it’s finite, normal and

separable. Applying the fundamental theorem of Galois theory

(and Sylow’s theorems about finite groups) one can show that

in fact E = F (i), so p splits in F (i) [22]. To formalize this

we first need to further develop Galois theory in Mizar.
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X. CONCLUSION AND FURTHER WORK

We have presented the beginnings of formalizing field and

Galois theory in Mizar. Three main lessons of our Mizar

formalization so far we consider worth mentioning: Mathe-

matical types such as rings, fields, vector spaces, topological

spaces, and so forth are usually considered helpful in proof

assistants as they automate applying theorems. However when

it comes to field extensions where objects such as elements,

subsets, and polynomials are shifted between different fields,

it’s often necessary to explicitly cast types in order to apply

definitions or theorems. So, for example, that for a polynomial

p ∈ F [X] the degree of p is the same when considering p
as a polynomial in an extension E of F is not obvious for

Mizar: the type Polynomial of F has to be changed into

Polynomial of E, which is expressed by the following

theorem

for F being Field, E being FieldExtension of F

for p being Polynomial of F,

q being Polynomial of E

st p = q holds deg p = deg q;

Secondly, dealing with polynomials tends to cause much

more work than expected: many properties considered obvious

by human mathematics require a formalization resulting in a

number of technical lemmas. For example, for p1, p2 ∈ F [X]
and a ∈ F because of (p1+p2)(a) = p1(a)+p2(a) obviously

follows
n∑

i=1

pi(a) = (
n∑

i=1

pi)(a)

by a straightforward induction. To prove this in Mizar the n
polynomials have to be put together in a finite sequence f, so

that p =
∑n

i=1
pi = Sum f. The second finite sequence g

contains pi(a) for i = 1, . . . n, hence Sum g =
∑n

i=1
pi(a)

in the following

theorem

for F being Field

for f being FinSequence of Polynom-Ring F

for p being Polynomial of F st p = Sum f

for a being Element of F,

g being FinSequence of F

st len g = len f &

for i being Element of dom f,

q being Polynomial of F

st q = f.i holds g.i = eval(q,a)

holds eval(p,a) = Sum g;

Thirdly, the omnipresent "uniqueness up to isomorphism"

also increases the formalization’s length: each property car-

rying over to isomorphic fields has to be explicitly stated

and proved. Of course, for example, because two splitting

fields E1 and E2 of a polynomial p∈F [X] are isomorphic

the multiplicity of a root of p in E1 and E2 is the same.

This, however, has to be stated and proved as a theorem.

Another example concerns ordered fields: it’s obvious that a

field isomorphic to an ordered field is also ordered, but again

this has to be explicitly proved.

The next step of our formalization will be the combination

of normal and separable extensions to establish Galois exten-

sions and their corresponding Galois groups. Group theory in

Mizar is well developed, in particular Sylow’s theorems can be

found in the Mizar Mathematical Library. Galois theory will

enable to further extend the formalization of real algebra. In

particular the fundamental theorem of Galois theory will allow

to conclude the proof that maximal formally real fields are real

closed as a main step towards Artin’s solution of Hilbert’s 17th

problem.
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