
List Of Pareto Optimal Solutions of a Biobjective

Shortest Path Problem

Lasko M. Laskov

0000-0003-1833-818

Informatics Department

New Bulgarian University

21 Montevideo Str., 1618 Sofia, Bulgaria

Email: llaskov@nbu.bg

Marin L. Marinov

0009-0003-9544-819X

Informatics Department

New Bulgarian University

21 Montevideo Str., 1618 Sofia, Bulgaria

Email: mlmarinov@nbu.bg

Abstract—Many applications in practice involve the search
for a shortest path in a network by optimizing two conflicting
objective functions. Such problems often are referred to as
biobjective optimization problems. Their goal is to find special
optimal paths that are nondominated and are also known in the
specialized literature as to as Pareto optimal. While most of the
existing methods aim to find the minimum complete set of Pareto
optimal paths, we propose an approach that is able to generate
a list of all Pareto optimal solutions in a given network.

The described method solves the biobjective optimization
problem in the case in which the first objective function is a
linear (MINSUM), while the second objective function is from the
“bottleneck” type (MAXMIN). The presented approach is based
on two modifications of the Dijkstra’s shortest path algorithm
that solve the MINSUM and the MAXMIN problems respectively.

We prove the correctness and the computational complexity
of the presented algorithms. Also, we provide detailed numerical
examples that illustrate their execution.

I. INTRODUCTION

P
ARETO optimal solutions of biobjective (bicriterion) op-

timization problems are a subject of extensive research in

combinatorial optimization and operation research disciplines,

and in particular the biobjective shortest path problems [1].

These special type of shortest path problems can arise in

numerous applications in practice including transportation

problems, computer networking, robot motion, and many

others.

The search of biobjective Pareto optimal solutions in a

shortest path problem is an optimization problem that is a

subject of two objective functions, lets say f and g. The Pareto

optimal paths (also called nondominated) are a set of paths,

such that for any path α in it, it is impossible to improve either

f or g criterion, without getting worse the other [2].

By determining the objective functions f and g, different

types of bicriterion path problems can be defined. The first

notable work that examines these types of problems is [3] in

which Hansen defines ten types of bicriterion path problems,

and also introduces their abbreviations. In particular, the

MINSUM-MAXMIN problem is solved with an algorithm

with a polynomial complexity O(m2 log n), where n is the

number of vertices of the network, and m is the number of

directed edges. In the MINSUM-MAXMIN problem the first

objective function is a liner one, while the second objective

function is from the bottleneck type.

In the literature actually there are quite few works that focus

on the solution of the MINSUM-MAXMIN problem. One

of them is [4] which proposes an extension of the Martin’s

algorithm [5] for a multiobjective shortest path problem with

a MAXMIN objective function. Most of the methods that

can be found in the literature focus on the combination of

two linear functions, for example [2], [6], [7], [8] solve

the MINSUM-MINSUM bicriteria path problem. Other works

focus on MINMAX-MINSUM problem (see [9] and [10]),

however in their case the authors do not consider the Pareto

optimality, rather they aim to define a singe objective function

by combining the MINMAX and MINSUM criteria.

Another subject that is rarely considered in the literature is

the calculation of all Pareto optimal paths from a source vertex

v0 and a destination (target, terminal) vertex vt. Most of the

existing algorithms aim to find the minimal complete set of

Pareto optimal paths, which means that from each equivalent

set of Pareto optimal paths a single path is discovered (see [3]).

In [11] the authors look for a set of alternative Pareto optimal

paths in a method that solves a concrete practical problem

for routing of Hazardous materials and propose shortest path

algorithm on a network with two criteria: one that corresponds

to road length, and the other that corresponds to a risk measure.

The work [2] is one of the few in the literature that pays

special attention to the calculation of all Pareto optimal paths.

The authors propose two algorithms depending whether the

paths may contain or may not contain loops, both of them

based on k shortest paths algorithms in graphs. However, as

mentioned above, in this work the two objective functions are

linear, and the algorithms do not cover the case in which one

of the functions is a bottleneck function.

The exact methods that are present in the literature, are

generally classified into labeling and ranking paths algorithms

[12]. Labeling algorithms can be split into two categories:

label setting [3], [5], [8]; and label correcting [6], [7], [11]. In

the category ranking paths we can classify methods that are

based on the k shortest paths algorithms, for example [2].

The other major branch of methods are based on heuristics

approaches. For example, in [13] the authors propose a so-

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 603–613

DOI: 10.15439/2023F3718

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 603 Thematic track: Computational Optimization



lution to the biobjective shortest path problem that is based

on a genetic algorithm for which the authors report to find

the Pareto optimal set in 77% of the instances. Also, the

probabilistic technique ant colony optimization (ACO) and its

modifications are adopted in the solution of various complex

combinatorial problems (see for example [14]). Heuristic

methods often are adopted in various practical problems, like

electric vehicle shortest path problem [15].

In this paper we propose an exact method for calculation of

all Pareto optimal paths for the MINSUM-MAXMIN problem

in a network. We define two helper problems, MINSUM list

and MAXMIN list, and we provide two algorithms that solve

them, which are based on generalization of the Dijkstra’s algo-

rithm [16]. We use the solutions of the two helper problems

to formulate the method for general problem solution. The

correctness of all algorithms is proved, and their computational

complexity is shown. Also, we illustrate the algorithms with

detailed examples that show their execution.

The paper is organized as follows. In Sec. II we introduce

the notations and problems formulation. In Sec. III we describe

the two algorithms that solve the two helper problems. In

Sec. IV we show how the Pareto optimal solutions list is

constructed based on the solution of the two helper problems.

Finally, Sec. V contains conclusions and discussions.

II. PROBLEM FORMULATION

A. Notations

Let G = (V,E) is a directed graph (digraph) with n =
|V | number of vertices and m = |E| number of directed

edges. Without loss of generality we will assume that V =
{1, 2, . . . , n} and E ⊆ V 2.

We define the following two functions on the set of edges

of the digraph, f : E → R+ and g : E → R+. The function

f assigns to each edge (i, j) ∈ E the positive number f(i, j),
which we call the length of the edge e = (i, j). The function

g assigns to each edge (i, j) ∈ E:

g(i, j) =

{
+∞, if (i, j) ∈ E has no restriction

gij > 0, if (i, j) ∈ E has a restriction

For convenience, we will call the value g(i, j) the capacity of

the edge e = (i, j).
The digraph G together with the functions f and g defines

the network G = (V,E, f, g) (see [17]). The network is

represented by the adjacency list of the outgoing neighbors

[18] that is augmented with the length and capacity of the

edges in the following way:

Adj = {Adj(1), . . . , Adj(i), . . . , Adj(n)}, (1)

where Adj(i) = {(j, f(i, j), g(i, j)) : (i, j) ∈ E}, ∀i ∈ V .

In this way, if q = Adj(i, k) for some i ∈ V , and a positive

integer k, q(1) will denote the k-th outgoing neighbor of the

vertex i, q(2) will denote the length of the edge (i, q(1)),
and q(3) will denote the capacity of the edge. To denote the

adjacency list of outgoing neighbors of a given network G,

we will use the notation G.Adj.

Path in the network G is the finite sequence of the type

v0, e1, v1, e2, . . . , v(t−1), et, vt, (2)

where vj ∈ V, ∀j ∈ {0, 1, . . . , t} are distinct vertices, and ei
is an edge with starting vertex v(i−1) and ending vertex vi,
that belongs to E for all i ∈ {1, 2, . . . , t}. The path consists

of (t+ 1) vertices and t edges, the vertex v0 is the source of

the path, and the vertex vt is the destination of the path.

The path (2) with a source v0 and a destination vt connects

v0 with vt and is called a (v1, vt)-path, which we will denote

with an ordered sequence α of vertices:

α = (v0, v1, . . . , vt). (3)

For each path α = (v0, v1, . . . , vt) we define two functions:

x(α) =
t∑

j=1

f(vj−1, vj) (4)

y(α) = min
j∈{1,...,t}

{g(vj−1, vj)} (5)

We will call the number x(α) the length of the path, and the

number y(α) the capacity of the path α. Both functions x(α)
and y(α) define the objective functions of the problems that

we will discuss.

We denote all (1, j)-paths with the shorter Wj . Then, we

will call the number

rj = min
α∈Wj

{x(α)} (6)

a distance between the vertex 1 and the vertex j. Also, we

will call the number

cj = max
α∈Wj

{y(α)} (7)

the capacity of the vertex j.

For each Wj the term Pareto optimal path is defined as

follows.

Definition 1. We call the path α ∈ Wj Pareto optimal when

there does not exist another path β ∈ Wj , for which any of

the following two conditions is fulfilled:

• x(β) < x(α) and y(β) ≥ y(α);
• x(β) ≤ x(α) and y(β) > y(α).

We say that α and β are equivalent (α ∼ β), when x(α) =
x(β) and y(α) = y(β).

The path β is dominated by the path α, when x(α) < x(β)
and y(α) ≥ y(β) or x(α) ≤ x(β) and y(α) > y(β).

Besides that, we will denote the distance from vertex 1 to

any vertex v with r(v).

B. Problems formulation

Based on the above definitions, we formulate the main

problem considered in this paper:

Problem 1 (List of Pareto optimal solutions). Compute a list

of all Pareto optimal solutions for Wn.

604 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



To solve the List of Pareto optimal solutions problem, we

will use the solutions of the following two helper problems.

The solution of the first helper problem requires the defi-

nition of a function minsum(G.Adj) that computes a list of

all shortest paths in the network.

Problem 2 (MINSUM list). Compute a list of all (1, n)-paths

with minimal length, given by:

Sx = {α ∈Wn : x(α) ≤ x(β), ∀β ∈Wn}. (8)

The solution of the second helper problem requires the

definition of a function maxmin(G.Adj), and it is a version

of the first helper problem that computes a list of all maximum

capacity paths in the network.

Problem 3 (MAXMIN list). Compute a list of all (1, n)-paths

with maximal capacity, given by:

Sy = {α ∈Wn : y(α) ≥ y(β), ∀β ∈Wn}. (9)

III. SOLUTION OF THE TWO HELPER PROBLEMS

To solve the two helper problems we propose two modifi-

cations of the Dijkstra’s algorithm [16], in which the results

hold as well in the case in which the source vertex is selected

i0 ̸= 1. In both modifications we assume that the network

G = (V,E, f, g) is defined using the adjacency list of the

outgoing neighbors.

In the computer program implementation of the modified

versions of Dijkstra’s algorithm we apply the Fibonacci heap

data structure [19] for all priority queue operations. Even

though the relative complexity of its implementation, this

advanced data structure introduces a significant speedup of

the algorithm to O(n log n + m), which is proved based on

amortized analysis [18].

A. List of all shortest paths

We will solve the problem of computing of a list of

all (1, n)- shortest paths by finding the subnetwork Ĝ =
(V, Ê, f, g) of the shortest paths.

Definition 2. We will say that Ĝ = (V, Ê, f, g) is a subnet-

work of the shortest paths in the network G = (V,E, f, g),
if the following two properties hold:

1) Every (1, n)- shortest path in G is also a (1, n)-path in

Ĝ.

2) Every (1, n)-path in Ĝ is a (1, n)- shortest path in G.

The solution of the MINSUM list helper problem is given by

the definition of a function minsum(G.Adj) (Alg. 2), which

for a given network G calculates the adjacency list of the

outgoing neighbors of the shortest paths subnetwork Ĝ. The

implementation of the minsum(G.Adj) function is based on

a modification of the Dijkstra’s algorithm [16], as follows.

The algorithm splits the set of network vertices in into

subsets. The first subset V0 denotes the vertices that are not

yet traversed by the algorithm. The second subset U = V \V0

Algorithm 1 Function relaxS(u, v, d, pr)

Input: vertices u, v, and vectors d, pr
Output: vectors d, pr

q ∈ G.Adj(u), such that q(1) = v
2: r ← d(u) + q(2)

if d(v) > r then

4: d(v)← r
pr(v)← {u}

6: else if d(v) = r then

pushback(pr(v), u)
8: end if

return {d, pr}

stores the traversed vertices. The procedure that traverses the

network guarantees that

r(v) ≥ r(u), (10)

for each vertex v ∈ V0 and each vertex u ∈ U . Initially,

V0 = V and U = ∅. In each of n consecutive iterations of

execution the function minsum(G.Adj) a selected vertex is

transferred from V0 into U .

The algorithm uses two vectors d and pr, both of them with

n components. Initially, d(1) = 0, and all other components

of d are ∞. The initial values of pr are equal to the empty

set ∅. After the completion of the algorithm, d will store the

distances from the source vertex to each of the other vertices

in the network, in other words d(j) = r(j), ∀j ∈ V , and pr
will store the adjacency list of the ingoing neighbors of the

digraph (V, Ê). The last step of the minsum(G.Adj) function

composes the adjacency list of the outgoing neighbors of the

shortest paths subnetwork Ĝ.

In the proposed variant of the Dijkstra’s algorithm that

solves Prob. 2, the function that implements the relaxation pro-

cedure is modified. We define the function relaxS(u, v, d, pr)
that performs relaxation of the edge (u, v) by changing the

current state of d and pr, as it is given in Alg. 1.

We use two more helper functions in our modified Di-

jkstra’s implementation of the minsum(G.Adj) procedure:

extract(V0) and outadj(pr,G.Adj).
The input of extract(V0) is the subset V0 ⊂ V , and the

output is {v1, V1}, where v1 ∈ V0, V1 = V0\{v1} and d(v1) =
min
v∈V0

{d(v)}.

The purpose of the outadj(pr,G.Adj) function is to build

the adjacency list of the outgoing neighbors of the network

Ĝ out of the digraph presented by the adjacency list of

the ingoing neighbors pr. The function composes each edge

e = (i, j) from the digraph given by pr, and takes the

corresponding edge length f(i, j) and capacity g(i, j) from the

outgoing adjacency list of the original input network G.Adj.

Proposition 1. The function minsum(G.Adj) is correctly

defined.

Proof: The proof of the correctness of the function

minsum(G.Adj) is analogous to the proof of the Dijkstra’s

LASKO LASKOV, MARIN MARINOV: LIST OF PARETO OPTIMAL SOLUTIONS OF A BIOBJECTIVE SHORTEST PATH PROBLEM 605



Algorithm 2 Function minsum(G.Adj)

Input: G.Adj
Output: distance d0 to vertex n, and Ĝ.Adj

V0 ← {1, 2, . . . , n}
2: d← (0,∞, . . . ,∞)

while V0 ̸= ∅ do

4: {u, V0} ← extract(V0)
for each q ∈ G.Adj(u) do

6: {d, pr} ← relaxS(u, q(1), d, pr)
end for

8: end while

Ĝ.Adj ← outadj(pr,G.Adj)
10: return {d(n), Ĝ.Adj}

algorithm (see [18]). We will only note that after the each

iteration of the while loop the following properties hold for

each vertex v ∈ V0:

1) d(v) ≥ r(v);
2) pr(v) is the set of all vertices u ∈ U for which

there exists a path α = (i0, i1, . . . , ik, u, v) with length

x(α) = d(v).

Besides that, when v1 ∈ V0 and d(v1) = min
v∈V0

{d(v)}, then

following the proof of the Dijkstra’s algorithm, we find out that

d(v1) = r(v1). Then in the set V0 does not exist a vertex that is

the one before the last one in a (i0, v1)-path with length d(v1).
In fact, if we assume that for the path α = (i0, i1, . . . , ik, v1)
holds ik ∈ V0 and x(α) = d(v1), we reach contradiction

because

r(v1) = d(v1) =
k∑

s=1

f(is−1, is)+f(ik, v1) ≥ r(ik)+f(ik, v)

and using the inequality (10), we get r(v1) ≥ r(v1)+f(ik, v).

The while loop of the algorithm stops when V0 = ∅, and

then d(j) = r(j), ∀j ∈ V .

We define the network Ĝ = (V, Ê, f, g), where Ê =
{(i, j) ∈ E : i ∈ pr(j)}. In this way, Ĝ is the shortest paths

subnetwork of the network G, and pr is the adjacency list of

the ingoing neighbors of the digraph (V, Ê), which is verified

directly, by using the fact that pr(v) is the set of those vertices

u ∈ V for which there exists a path α = (i0, i1, . . . , u, v) such

that x(α) = r(v).

It is clear that using the adjacency list Ĝ.Adj, it is easy to

compose the list of all (1, n)- shortest paths. The following

example illustrates this observation.

Example 1. Let G1 is the network given on the Figure 1. We

will find all (1, 5)- shortest paths in G1.

Solution: The outgoing adjacency list of G1 is given by:

G1.Adj = {{(2, 2, 4), (3, 5, 3)},

{(3, 3, 5), (4, 6, 4), (5, 5, 3)},

{(4, 3, 6), (5, 1, 1)}, {(5, 1, 7)}, {}}.

(11)

(5, 3)

)

(3,
1

3

2

5

Fig. 1. Example network G1 composed by five vertices with length and
capacity of each edge given next to it

The function minsum(G1.Adj) produces the following

result:

{d0, Ĝ1.Adj} ← minsum(G1.Adj), (12)

where Ĝ1.Adj = {{(2, 2, 4), (3, 5, 3)}, {(3, 3, 5), (4, 6, 4)},
{(4, 3, 6), (5, 1, 1)}, {}, {}} and d0 = 6.

The network with outgoing adjacency list Ĝ1.Adj has

exactly two (1, 5)-paths

α = (1, 3, 5) and β = (1, 2, 3, 5).

Obviously, x(α) = x(β) = 6 = d0.

Proposition 2. The function minsum(G.Adj) has computa-

tional complexity O(n log n+m).

The proof follows directly from the computational com-

plexity of the Dijkstra’s algorithm, in the case in which the

Fibonacci heap data structure is used for the implementation

of the priority queue operations (refer to [18]).

B. List of all maximum capacity paths

We denote the capacity of each vertex of the network v ∈ V
with c(v).

Definition 3. We say that G̃ = (V, Ẽ) is a maximal capacity

digraph of the network G = (V,E, f, g), if the following two

properties hold:

1) Every (1, n)- maximal capacity path in G is also a

(1, n)-path in G̃.

2) Every (1, n)-path in G̃ is also a (1, n)- maximal capacity

path in G.

In this section we will define the function maxmin(G.Adj)
which calculates the adjacency list of the outgoing neigh-

bors G̃.Adj of the maximal capacity graph G̃ = (V, Ẽ).
For its implementation, first we will formulate the function

capacity(G.Adj) (Alg. 3) which calculates the capacity of

a vertex n in the network G, again following the Dijkstra’s

algorithm.

We denote with d a vector of n components that initially has

all its elements equal to −∞, except the first element d(1) =
∞. During the calculations of the function capacity(G.Adj)
the components of d are growing, and when the function

606 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Algorithm 3 Function capacity(G.Adj)

Input: G.Adj
Output: the capacity cn of the vertex n

V0 ← {1, 2, . . . , n}
2: d← (∞,−∞, . . . ,−∞)

while V0 ̸= 0 do

4: {u, V0} ← extract(V0, d)
for each q ∈ G.Adj(u) do

6: relax(u, q(1), G.Adj, d)
end for

8: end while

return d(n)

completes, the j-th component of d stores the capacity of the

vertex j, or in other words d(j) = c(j). Note that by definition

c(1) =∞.

We will use the following helper functions in the imple-

mentation of capacity(G.Adj).
The function extract(V0, d) for an arbitrary subset V0 =

{j1, j2, . . . , jk} ⊆ V and using the vector d, calculates the

pair {js, V1}, where

js ∈ V0, d(js) = max
jp∈V0

{d(jp)} and V1 = V0 \ {js}. (13)

The function relax(i, j, G.Adj, d) for each two vertices i
and j, and based on G.Adj and d, performs the following

calculations:

1) Defines r = min{d(i), g(i, j)}.
2) If d(j) < r, it sets d(j) = r.

Proposition 3. The function capacity(G.Adj) is correctly

defined.

Proof: Let 1 ≤ k < n. We assume that after k iterations

of the while loop (see Alg. 3), from the initial set V0 = V =
{1, 2, . . . , n} are excluded k number of vertices us, and for the

resulting set V0 = V \ {u1, . . . , uk} the following properties

hold:

1) For each u ∈ U = {u1, . . . , uk} it holds that d(u) =
c(u).

2) For each u ∈ U and each v ∈ V0 it hods that d(u) ≥
d(v).

3) Let vk ∈ V0 and d(vk) ≥ d(v) for each v ∈ V0. Then

d(vk) = c(vk).

The above three properties are true for k = 1.

After the (k + 1)-st iteration of the while loop, the vertex

vk is excluded from v0 and we get V ′
0 = V0 \ {vk}. We will

prove that the three properties hold for the set V ′
0 .

From the definition of vk and the fact that the three

properties hold for V0, it follows directly that properties 1)

and 2) are fulfilled for V ′
0 .

Now, let vk+1 ∈ V ′
0 and d(vk+1) ≥ d(v) for each v ∈ V ′

0 .

We denote U ′ = U∪{vk} = V \V ′
0 . Also, let α be an arbitrary

(1, vk+1)-path and

α = (1, u1, . . . , us, vj1 , . . . , vjr , vk+1),

Algorithm 4 Function maxmin(G.Adj)

Input: G.Adj
Output: the capacity c of the vertex n and G̃.Adj

c← capacity(G.Adj)
2: for i← 1 to n do

for each q ∈ Adj(i) do

4: if q(3) ≥ c then

pushback(G̃.Adj, q(1))
6: end if

end for

8: end for

return {c, G̃.Adj}

where ui ∈ U ′, ∀i ∈ {1, . . . , s} and vj1 ∈ V ′
0 .

From the definition of d(vj1) it follows that for the capacity

y(β) of the path β = (1, u1, . . . , us, vj1) it is fulfilled that

y(β) ≤ d(j1). Then, for that capacity y(α) of the path α we

have that

y(α) ≤ y(β) ≤ d(vj1) ≤ d(vk+1),

which proves that d(vk+1) = c(vk+1).
Having the function capacity(G.Adj), we can define the

function maxmin(G.Adj), given in Alg. 4.

Proposition 4. The function maxmin(G.Adj) is correctly

defined.

Proof: Since the function capcity(G.Adj) that is trig-

gered on the first line of the Alg. 4 is correct, it follows that c
is the capacity of the vertex n. The outer for loop on the line

2 defines that adjacency list G̃.Adj of the graph G̃ = (V, Ẽ),
where Ẽ = {(i, j) ∈ E : g(i, j) ≥ c}. Now we will prove that

the graph G̃ = (V, Ẽ) is the maximum capacity graph.

If α is a (1, n)-path in the network G with capacity y(α) =
c, then for each edge (i, j) of α it holds that g(i, j) ≥ c, and

hence, (i, j) ∈ Ẽ. This shows that α is a (1, n)-path of G̃.

Now, let β is a (1, n)-path in G̃. This means that β is a

(1, n)-path in the network G, and for each its edge (i, j) it is

fulfilled that g(i, j) ≥ c. From here it follows that y(β) ≥ c.
However, since c is the capacity of the vertex n, then y(β) = c.

Proposition 5. The computational complexity of the function

maxmin(G.Adj) is O(n log n+m).

The proof follows directly from the complexity of the

Dijkstra’s algorithm implemented with Fibonacci heap, since

the function capacity(G.Adj) repeats exactly it steps.

We will introduce the function list(m, G̃.Adj) that will help

us to clarify the following examples. The argument of the

function m is a natural number or∞. The function maps a list

S of (1, n)-paths in G̃ that satisfies the following properties:

1) If m =∞, the list S contains all (1, n)-paths of G̃.

2) If m is a natural number, S contains all (1, n)-paths of

G̃ if their number is not greater than m. Otherwise, S
contains m number of all (1, n)-paths of G̃.

LASKO LASKOV, MARIN MARINOV: LIST OF PARETO OPTIMAL SOLUTIONS OF A BIOBJECTIVE SHORTEST PATH PROBLEM 607



Example 2. For the network G1 (see Fig. 1) we will compose

the list Sy (9) of all (1, 5)-paths with maximal capacity.

Solution: The solution is composed by the following two

steps:

1) {c, G̃1.Adj} ← maxmin(G1.Adj).
2) Sy ← list(∞, G̃1.Adj).

On the first step, using the function maxmin(G1.Adj), we

calculate that:

c = 4 and G̃1.Adj = {{2}, {3, 4}, {4}, {5}, {}}.

On the second step, the function list(∞, G̃1.Adj) calculates

the list

Sy = {(1, 2, 4, 5), (1, 2, 3, 4, 5)}.

Then, it is directly verified that

y((1, 2, 4, 5)) = y((1, 2, 3, 4, 5)) = 4 = c.

IV. PARETO OPTIMAL SOLUTIONS SET

We denote with P the set of Pareto optimal paths in the

network G = (V, V, f, g). It is clear that

P =

k0⋃

i=1

Pi, (14)

where Pi are the classes of Pareto equivalent paths.

We will find the set P by composing a list Q of all classes of

Pareto equivalent paths Pi. We will compose the list Q using

the following procedure, which we will call Pareto Optimal

Paths (POP):

1) Set W = Wn.

2) Calculate d = min
β∈W
{x(β)} and define X = {α ∈ W :

x(α) = d}.
3) Calculate c = max

β∈X
{y(β)} and define P0 = {α ∈ X :

y(α) = c}. Store P0 into the list Q.

4) Define Y = {β ∈W : y(β) > c}.
5) Define Z = W \ (Y ∪ P0).
6) If Y = ∅, then end. Otherwise, set W = Y and go back

to step 2.

Lemma 1. The POP procedure correctly composes the list Q.

Proof: We will prove the correctness of the POP proce-

dure by induction.

Base case. The first iteration of POP defines:

d1 = min
β∈Wn

{x(β)}, X1 = {α ∈Wn : x(α) = d1},

c1 = max
β∈X1

{y(β)}, P1 = {α ∈ X1 : y(α) = c1}, Q = {P1},

Y1 = {β ∈Wn : y(β) > c1}, Z1 = Wn \ (Y1 ∪ P1).

The following properties hold:

1) From the definitions of the sets P1, Y1 and Z1 it follows:

Wn = Z1 ∪ P1 ∪ Y1, Z1 ∩ P1 = ∅,

Z1 ∩ Y1 = ∅, Y1 ∩ P1 = ∅.

2) If α ∈ P1, then by the definition of P1 the equalities

x(α) = d1 and y(α) = c1 hold. Hence, the paths that

belong to P1 are equivalent.

3) If Z1 ̸= ∅ and β ∈ Z1, then from step 5 it follows that

one of the following two statements is fulfilled:

a) y(β) < c1 and x(β) ≥ d1, or

b) y(β) = c1 and x(β) > d1.

Hence, β is dominated by each α ∈ P1.

If Y1 = ∅, then Wn = P1 ∪Z1 and P1 is the set of Pareto

optimal paths. This means that in (14) the constant k0 = 1,

and the calculations of the POP procedure will stop.

If Y1 ̸= ∅, then the constant k0 > 1. In this case, for each

β ∈ Y1 the inequalities are fulfilled:

c1 < y(β) and d1 < x(β). (15)

As a result, also in this case P1 is a set of equivalent Pareto

optimal paths α, and it is correctly included in the list Q.

Here, we set W = Y1, and we go back to step 2 of the second

iteration of the procedure.

The second iteration of the POP procedure defines:

d2 = min
β∈Y1

{x(β)}, X2 = {α ∈ Y1 : x(α) = d2},

c2 = max
β∈X2

{y(β)}, P2 = {α ∈ X2 : y(α) = c2},

Q = {P1, P2}, Y2 = {β ∈ Y1 : y(β) > c2},

Z2 = Y1 \ (Y2 ∪ P2).

In analogy with the first iteration of POP, the following

properties are proved.

1) From the definitions of the sets P2, Y2 and Z2 it follows:

Y1 = Z2 ∪ P2 ∪ Y2, Z2 ∩ P2 = ∅,

Z2 ∩ Y2 = ∅, Y2 ∩ P2 = ∅
(16)

2) If α ∈ P2, then by the definition of P2 the equalities

x(α) = d2 and y(α) = c2 hold, and hence the paths

that belong to P2 are equivalent. Besides that, from (15)

follows that d1 < d2 and c1 < c2.

If Z2 ̸= ∅, then for each path β ∈ Z2 holds that x(β) ≥ d2
because β ∈ Y1. Besides that, y(β) ≤ c2, because β /∈ Y2.

Then, for β one of the following statements hold:

• y(β) < c2 and x(β) ≥ d2, or

• y(β) = c2 and x(β) > d2, because β /∈ P2.

Therefore, each path β ∈ Z2 is dominated by any path from

P2.

Let α ∈ P2, and β is such a (1, n)-path, so that β /∈ Y1.

Then y(β) ≤ c1 < y(α). The following two cases are possible:

• x(β) ≥ d2 = x(α). In this case α dominates β.

• x(β) < d2 = x(α). In this case α and β cannot be

compared.

That proves that if Y2 = ∅, then the elements of P2 are

Pareto optimal and the equation (14) has the form P = P1 ∪
P2, in other words, k0 = 2. From here it follows that P2 is

correctly included in the list Q, and the termination of the

computation of POP procedure is correct.

608 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



If Y2 ̸= ∅, then k0 > 2. In this case, for each β ∈ Y2 the

following inequalities are fulfilled.

c2 < y(β) and d2 < x(β) (17)

The first inequality follows from the definition of Y2, and the

second one – from the definition of d2 and c2.

Therefore, also in the case in which Y2 ̸= ∅, the set P2 is

a set of Pareto optimal paths, and it is correctly included in

the list Q. In this case, we set W = Y2 and we go back to

step 2 in the procedure to start its third iteration.

It is clear that in the third iteration of the procedure Wn =
Z1 ∪ P1 ∪ Z2 ∪ P2 ∪ Y2.

Inductive step. We assume that after k ≥ 2 iterations of the

POP procedure, the following components are defined.

• The sets Pi, Zi, Yk, i ∈ {1, 2, . . . , k}, that have no

common elements.

• The numbers di and ci i ∈ {1, 2, . . . , k}, for which the

following five properties are fulfilled.

1) Wn =
k⋃

i=1

(Zi ∪ Pi)
⋃

Yk.

2) P1, P2, . . . , Pk are sets of equivalent Pareto optimal

paths, for which

a) di = x(α) and ci = y(α), ∀α ∈ Pi and ∀i ∈
{1, 2, . . . , k};

b) di < di+1 and ci < ci+1, ∀i ∈ {1, 2, . . . , (k −
1)}.

3) Every path β ∈ Zi is dominated by every path α ∈
Pi.

4) For every β ∈ Yk the inequalities hold:

ck < y(β) and dk < x(β). (18)

5) Q = {P1, P2, . . . , Pk}.

These five properties follow directly from the proof of

the second iteration of the procedure.

It is clear that if Yk = ∅, then Wn =
k⋃

i=1

(Zi ∪ Pi) and the

list Q is correctly composed.

If Yk ̸= ∅, we implement the (k + 1)-st iteration of the

POP procedure. Using steps from 2 to 5, we define:

dk+1 = min
β∈Yk

{x(β)}, Xk+1 = {α ∈ Yk : x(α) = dk+1},

ck+1 = max
β∈Xk+1

{y(β)},

Pk+1 = {α ∈ Xk+1 : y(α) = ck+1},

Q = {P1, P2, . . . , Pk+1}, Yk+1 = {β ∈ Yk : y(β) > c2},

Zk+1 = Yk \ (Yk+1 ∪ Pk+1).

Repeating the proof of the second iteration, we find out that

for

• sets Pi, Zi, Yk+1, i ∈ {1, 2, . . . , k, (k + 1)}, and

• numbers di and ci i ∈ {1, 2, . . . , k, (k + 1)}

the five properties are fulfilled.

Since Wn has finite number of elements and Pi ̸= ∅, ∀i,
then after a finite number of k0 iterations the procedure POP

stops, and we prove that:

1) Wn =
k0⋃
i=1

(Zi ∪ Pi);

2) P1, P2, . . . , Pk0
are sets of equivalent Pareto optimal

paths for which

a) di = x(α) and ci = y(α), ∀α ∈ Pi and ∀i ∈
{1, 2, . . . , k0};

b) di < di+1 and ci < ci+1, ∀i ∈ {1, 2, . . . , (k0−1)}.

3) Every path β ∈ Zi is dominated by every path α ∈ Pi.

4) Q = {P1, P2, . . . , Pk0
}.

Corollary 1. For the classes Pi of Pareto optimal paths the

following holds

Pi = {α ∈Wn : x(α) = di and y(α) = ci},

for each i ∈ {1, 2, . . . , k0}.

Corollary 2. For Pk0
the following equality hods:

Pk0
= {α ∈ X ′

1 : x(α) = d′1},

where X ′
1 = {α ∈ Wn : y(α) = max

β∈Wn

{y(β)} and d′1 =

min
β∈X′

1

{x(β)}.

Remark 1. The list Q can be composed by: first apply the

Corollary 2 to separate the set Pk0
; after that, consecutively

separate the sets Pk0−1, Pk0−2, and so on, until P1 is

separated.

Every subset Pi turns out to be a set of all (1, n)-paths

in a special digraph Gi. The algorithm that finds a List of

Pareto Optimal Paths which we will call LPOP (given in Alg.

5), composes a list S of the adjacency lists Gi.Adj for each

i ∈ {1, 2, . . . , k0} by implementing the POP procedure.

We will note that once we have the list S, we can easily

obtain a list P ′ of Pareto optimal solutions by taking prede-

fined number of elements for each class Pi, as well we can

obtain a list P of all optimal solutions.

Besides the previously defined functions minsum(G.Adj),
maxmin(G.Adj) and capacity(G.Adj), in the formulation

of the LPOP algorithm (Alg. 5), we will use the function

restrict(G.Adj, c), that is defined as follows.

The function restrict(G.Adj, c) takes as an input the out-

going adjacency list G.Adj and the number c. It calculates

the adjacency list of those edges (i, j) from G.Adj, for which

g(i, j) > c.

Theorem 1. The LPOP algorithm (Alg. 5) is correct.

Proof: The correctness of the Alg. 5 follows from the cor-

rectness of the functions capacity(G.Adj), minsum(G.Adj),
maxmin(G.Adj), and from Lemma 1. It is easily verified

by proving that the while loop of the lpop(G.Adj) function

implements the POP procedure using these functions.

We will examine the first iteration of the while loop. The

function minsum(G.Adj) calculates d0 = min
β∈Wn

{x(β)} and

defines the adjacency list Ĝ.Adj of the shortest paths subnet-

work Ĝ. From the correctness of the function minsum(Adj)

LASKO LASKOV, MARIN MARINOV: LIST OF PARETO OPTIMAL SOLUTIONS OF A BIOBJECTIVE SHORTEST PATH PROBLEM 609



Algorithm 5 Function lpop(G.Adj)

Input: G.Adj
Output: the list S with k0 number of elements

RAdj ← G.Adj
2: c0 ← capacity(G.Adj)

more← true

4: while more = true do

{d0, G.Adj} ← minsum(G.Adj)
6: if d0 =∞ then

more← false

8: else

{c1, G̃.Adj} ← maxmin(G.Adj)
10: pushback(S, G̃.Adj)

if c1 = c0 then

12: more← false

else

14: RAdj ← restrict(RAdj, c1)
end if

16: G.Adj ← RAdj
end if

18: end while

return S

we know that α is a (1, n)-path in Ĝ, exactly when α is a

(1, n)-path in the network G and x(α) = d0. Hence, the set

X from the POP procedure is the set of all (1, n)-paths of the

subnetwork, defined by the adjacency list G.Adj.

By using the definition of the function maxmin(G.Adj),
we will prove that its function call implements step 3 of the

POP procedure.

Indeed, when applied on the adjacency list of the subnet-

work Ĝ, the function maxmin(Adj) calculates the maximal

capacity c1 of a (1, n)-path in Ĝ, and defines the adjacency list

Ĝ.Adj of the maximal capacity digraph G̃ of the subnetwork

Ĝ. This means that α is a (1, n)-path in the digraph G̃,

if and only if it is a (1, n)-path in the network Ĝ and

y(β) = c1. In the notations of the POP procedure, this means

that c1 = max
β∈X
{y(β)} and α is a (1, n)-path in the digraph

G̃ if and only if α ∈ P0. For that reason the adjacency list

G̃.Adj is included in the list S (line 10 of Alg. 5).

The step 6 from the POP procedure is implemented in the

alternative branch of the if statement which verifies whether

the set Y , defined by the step 4 of the procedure, is the

empty set. If c0 = c1, then Y = ∅, and the algorithm is

terminated. Otherwise, we define the adjacency list RAdj of

the subnetwork for which β is a (1, n)-path if and only if it

is a (1, n)-path in G, and y(β) > c1.

We will illustrate the above proof with the following exam-

ple.

Example 3. For the input network G1, given on Fig. 1, we

will trace how the algorithm LPOP (Alg. 5) implements the

POP procedure.

Solution: Initially, the algorithm stores a copy of the ad-

jacency list in the variable RAdj, which will be modified in

the body of the while loop. On line 2, the capacity(G.Adj)
function calculates that the capacity of the vertex 5 is c0 = 4.

First iteration. The minsum(G.Adj) function calculates the

distance d0 = 6 to the vertex 5, and the adjacency list of the

subnetwork Ĝ:

Ĝ.Adj = {{(2, 2, 4), (3, 5, 3)}, {(3, 3, 5), (4, 6, 4)},

{(4, 3, 6), (5, 1, 1)}, {}, {}}.

It is apparent that the above defined subnetwork Ĝ has

exactly two (1, 5)-paths: α1 = (1, 3, 5) and β1 = (1, 2, 3, 5).
Besides that, x(α1) = x(β1) = 6. Since the set of all

(1, 5)-paths in G1 is W = {(1, 2, 5), (1, 3, 5), (1, 2, 3, 5),
(1, 2, 4, 5), (1, 3, 4, 5), (1, 2, 3, 4, 5)}, it is directly verified that

α1 and β1 are the only (1, 5)-paths with length d0 = 6 in

the network G1. The latter follows from the correctness of

the function minsum(G.Adj). In the procedure POP the set

{α1, β1} is denoted by X .

Since d0 = 6 ̸=∞ the algorithm enters the body of the else

statement on line 8. The function maxmin(G.Adj) calculates

that in the subnetwork Ĝ the capacity of the vertex 5 is c1 = 1,

and:

G̃.Adj = {{2, 3}, {3, 4}, {4, 5}, {}, {}}.

The outgoing adjacency list G̃.Adj defines the maximal capac-

ity digraph G̃ of the subnetwork Ĝ. It is apparent that G̃ has

exactly two (1, 5)-paths. In this case these are α1 = (1, 3, 5)
and β1 = (1, 2, 3, 5). Also, y(α1) = y(β1) = 1. In the

procedure POP we denote the set {α1, β1} by P0. From

Lemma 1 it follows that P0 = {α1, β1} is the first class

of equivalent Pareto optimal solutions. For that reason the

algorithm includes G̃.Adj in the list S.

Since c1 = 1 ̸= c0 = 4, the function restrict(RAdj, c1)
modifies the adjacency list RAdj by removing all edges with

capacity not greater than c1. The new adjacency list is:

RAdj = {{(2, 2, 4), (3, 5, 3)}, {(3, 3, 5), (4, 6, 4), (5, 5, 3)},

{(4, 3, 6)}, {(5, 1, 7)}, {}}.

It is directly verified that the set Y1 of all (1, 5)-paths in

the network defined by RAdj is the set of all (1, 5)-paths in

the network G1 with capacity bigger than c1 = 1, which is

verified by Theorem 1. In the procedure POP Y1 is denoted

by Y and is defined in the step 4 of the procedure.

Setting G.Adj = RAdj the LPOP algorithm moves to the

next iteration. In the procedure POP, it corresponds to the

assignment W = Y , and the start of the new iteration by

transition to the step 2.

Second iteration. The minsum(G.Adj) function calculates

d0 = 7 and

ĜAdj = {{(2, 2, 4), (3, 5, 3)}, {(3, 3, 5), (4, 6, 4), (5, 5, 3)},

{(4, 3, 6)}, {}, {}}.

The resulting subnetwork Ĝ has a single (1, 5)-path α2 =
{1, 2, 5}. The length of the path α2 is x(α2) = 7. In this case

X = {α2}.

610 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



The result of the function maxmin(G.Adj) is:

• the capacity of the vertex 5 in the network Ĝ is c1 = 3,

and

• the digraph G̃ of the maximal capacity has adjacency list

G̃.Adj = {{2, 3}, {3, 4, 5}, {4}, {}, {}}.

The above verifies the fact that in this case P0 = {α2} is the

second class of equivalent Pareto optimal solutions. For that

reason G̃.Adj is included as second element in the list S.

Since the condition for the loop stop is not fulfilled,

RAdj = {{(2, 2, 4)}, {(3, 3, 5), (4, 6, 4)}, {(4, 3, 6)},

{(5, 1, 7)}, {}}.

It is immediately apparent that the set Y2 of all (1, 5)-paths in

the network defined by RAdj is the set of (1, 5)-paths of G1,

that have capacities grater than c1 = 3.

Third iteration. The minsum(G.Adj) function calculates

that this time the distance to the vertex 5 is d0 = 9, and

the new minimal paths subnetwork has adjacency list:

ĜAdj = {{(2, 2, 4)}, {(3, 3, 5), (4, 6, 4)}, {(4, 3, 6)},

{(5, 1, 7)}, {}}.

In this case the set of all (1, 5)-paths in Ĝ is X =
{(1, 2, 4, 5), (1, 2, 3, 4, 5)}, and these are all (1, 5)-paths of Y2

with length d0 = 9.

Using the maxmin(G.Adj) function, we find out that in the

network Ĝ the vertex 5 has capacity c1 = 4, and the maximal

capacity digraph G̃ of the subnetwork Ĝ has adjacency list

G̃.Adj = {{2}, {3, 4}, {4}, {5}, {}}.
Apparently, the digraph G̃ has exactly two (1, 5)-paths α3 =

(1, 2, 4, 5) and β3 = (1, 2, 3, 4, 5). According to Lemma 1,

the set P0 = {α3, β3} is the third class of equivalent Pareto

optimal paths. In this case x(α3) = x(β3) = 9 and y(α3) =
y(β3) = 4. G̃.Adj is included as third element in the list S.

The condition of the if statement on line 11 c0 = c1 will be

evaluated to true. This means that there does not exist a (1, 5)-
path with a capacity greater than the current c1. As a result,

the while loop is terminated. In the procedure POP this means

that Y3 = {β ∈W : y(β) > 4} = ∅, and the procedure stops.

After the end of the calculations

S = {{{2, 3}, {3, 4}, {4, 5}, {}, {}},

{{2, 3}, {3, 4, 5}, {4}, {}, {}},

{{2}, {3, 4}, {4}, {5}, {}}},

where each element of S determines one class of Pareto

optimal paths:

• S(1) = {{2, 3}, {3, 4}, {4, 5}, {}, {}} defines the class

P1 = {(1, 3, 5), (1, 2, 3, 5)};
• S(2) = {{2, 3}, {3, 4, 5}, {4}, {}, {}} defines the class

P2 = {{1, 2, 5}}; and

• S(3) = {{{2}, {3, 4}, {4}, {5}, {}}} defines the class

P3 = {(1, 2, 4, 5), (1, 2, 3, 4, 5)}.

The network G1 has the set of Pareto optimal paths P =
P1 ∪ P2 ∪ P3.

Theorem 2. The LPOP algorithm (Alg. 5) has computational

complexity k0O(n log n + m), where k0 is the number of

classes of Pareto equivalent paths.

The proof follows from Prop. 2 and Prop. 5. It is enough

to note that on line 2 of Alg. 5 the call to the function

capacity(G.Adj) has complexity O(n log n + m), and the

while loop has k0 number of iterations, where k0 is the number

of classes of Pareto equivalent classes (14). Each iteration

involves a single call to the functions minsum(G.Adj) and

maxmin(G.Adj), where both have complexity O(n log n +
m). Besides that, the function restrict(R.Adj, c1) has com-

putational complexity that is lower than O(n log n+m).

Example 4. Let the network G2 be defined with the adjacency

list

G2.Adj = {{(2, 1, 17), (3, 1, 20), (4, 1, 19)},

{(5, 1, 7), (6, 15, 15), (7, 1, 12)},

{(6, 1, 9), (7, 1, 18), (8, 1, 19), (4, 1, 15)},

{(5, 14, 15), (6, 1, 12), (7, 1, 12), (8, 1, 9),

(10, 1, 2)}, {(9, 10, 22), (10, 1, 2), (6, 1, 2)},

{(11, 1, 4), (9, 14, 20), (10, 1, 6), (7, 1, 3)},

{(8, 1, 11), (10, 2, 7), (5, 8, 15)},

{(10, 7, 10), (11, 10, 11)},

{(11, 8, 19), (10, 1, 20)}, {(11, 3, 21)}, {}}.

(19)

We will find the list of all Pareto optimal solutions using the

LPOP algorithm.

Solution: Using the LPOP algorithm, we calculate the list

S = {{{2, 3, 4}, {5, 7}, {6, 7, 8}, {6, 7, 8}, {9},

{11}, {}, {}, {}, {}, {}},

{{2, 3, 4}, {5, 7}, {6, 7, 8}, {6, 7, 8}, {9}, {10},

{}, {}, {}, {11}, {}},

{{2, 3, 4}, {5, 7}, {6, 7, 8}, {6, 7, 8}, {9}, {},

{10}, {}, {}, {11}, {}},

{{2, 3, 4}, {7}, {7, 8}, {6, 7}, {}, {9}, {5},

{11}, {}, {11}, {}},

{{2, 3, 4}, {7}, {7, 8}, {6, 7}, {}, {9}, {5},

{}, {10}, {11}, {}},

{{2, 3, 4}, {6}, {7, 8}, {}, {9}, {}, {5}, {},

{10}, {11}, {}}}.

(20)

Every element of S defines a class of equivalent Pareto optimal

paths. Using the function list(m, G̃.Adj) we get the Pareto

optimal paths as a sequence of vertices. For example, the first

element of S defines the class P1, that contains two equivalent

Pareto optimal paths α1 = (1, 3, 6, 11) and β1 = (1, 4, 6, 11).
To each (1, 11)-path in α we will map a point

Aα(x(α), y(α)) (21)

The points defined in this way are plotted on Fig. 2. For

example, to α1 and β1 we map a single point A1(3, 4), because

LASKO LASKOV, MARIN MARINOV: LIST OF PARETO OPTIMAL SOLUTIONS OF A BIOBJECTIVE SHORTEST PATH PROBLEM 611



TABLE I
THE ELEMENTS OF THE LIST S WITH THE CORRESPONDING PARETO

OPTIMAL CLASSES Pj AND THEIR POINT REPRESENTATIONS Aj

Sj Pk Aj

S1 P1 = {(1, 3, 6, 11), (1, 4, 6, 11)} A1(3, 4)
S2 P2 = {(1, 3, 6, 10, 11), (1, 4, 6, 10, 11)} A2(6, 6)
S3 P3 = {(1, 2, 7, 10, 11), (1, 3, 7, 10, 11),

(1, 4, 7, 10, 11)}
A3(7, 7)

S4 P4 = {(1, 3, 8, 11)} A4(12, 11)
S5 P5 = {(1, 4, 6, 9, 10, 11)} A5(20, 12)
S6 P6 = {(1, 3, 7, 5, 9, 10, 11)} A6(24, 15)

x(α1) = x(β1) = 3 and y(α1) = y(β1) = 4. Following this

scheme, by using consecutively the elements Sj of the list S,

we calculate the remaining classes Pj and we map the point

Aj defined by (21), for each j ∈ {2, 3, 4, 5, 6}. The results are

given in Tab. I.

Therefore, in example (20) the set of all Pareto optimal

paths is

P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6.

The network G2 has 10 Pareto optimal paths, distributed in 6
classes of equivalent paths. To illustrate graphically the result

in Fig. 2, we define the set P of all (1, 11) paths in digraph

G2. In the example (20) there are 118 such paths. In this case

we obtain 71 points. If the point Aα illustrates the path α
that is not a Pareto optimal, we plot it in black. The points

given in Tab. I are plotted in white, and they represent the

Pareto optimal paths. Each point Aj is a vertex of an angle

γj with rays given in dashed lines. Let αj be a (1, 11)-path

that is represented by the point Aj . Inside the angle γj lie all

points that illustrate paths that are dominated by αj . The vert.

opp. angle of γj is plotted in gray color, and inside it might

lie points that illustrate paths that dominate αj . As we may

expect, such points does not exist.

3 6 7 12 20 24 38
x

y

4
6
7

11
12

15

A1

A2
3

A4
A5

A6

O

Fig. 2. Plot of the points Aj that illustrate the Pareto optimal classes Pj on
the Cartesian plane defined by the values of the functions x and y

V. CONCLUSION

In [3] Hansen solves the MAXSUM-MAXMIN shortest

path problem by presenting an algorithm that discovers a

special subset of the Pareto optimal solutions, called “minimal

complete set of efficient paths (MCS)”. The list S that is com-

posed by the LPOP algorithm presented in this paper, gives a

more complete information for the Pareto optimal solutions. It

is enough to select just one (1, n)-path from each element of

S to obtain a MCS. For example, using the list S that we get

for (11) that defines the network G1, we get the following

MCS: P (1) = {(1, 3, 5), (1, 2, 5), (1, 2, 4, 5)}. Besides that,

apparently for the network G1 three more different MCS can

be composed.

Hansen proves that the number of Pareto optimal solutions

grows exponentially with the increasing of the number of

vertices in the network. However, it has been shown that

in various real practical applications this number can be

much smaller [20]. In the latter work authors discover key

characteristics in the input data that lead to a number of Pareto

optimal solutions on each vertex that is restricted by a small

constant. In our case, this leads to the restriction of the constant

k0 in Theorem 2.

In Sec. III-A we solve the MINSUM list problem. We prove

the correctness of minsum(G.Adj) function (Alg. 2) that

helps us to describe all shortest paths by calculation of the

shortest paths subnetwork. We prove that its computational

complexity is O(n log n+m).

In Sec. III-B we solve the MAXMIN list problem with Alg.

3 that allows us to calculate the capacity of a vertex with

computational complexity O(n log n + m). Based on it, we

define the function maxmin(G.Adj) (Alg. 4) that describes

all maximum capacity paths by defining the maximum capac-

ity digraph of the network G. The complexity of the algorithm

is again shown to be O(n log n+m).

Besides the solution of the corresponding MINSUM list and

MAXMIN list problems, the two functions minsum(G.Adj)
and maxmin(G.Adj) using Alg. 5 allow the solution of Prob.

1. The resulting description of all Pareto optimal solutions

separates the classes of Pareto equivalent paths, and allows

to visualize a predefined number of elements from each class

of Pareto equivalent paths. The correctness of the algorithm

is proved (Th. 1), and also its computational complexity is

proved to be k0O(n log n+m) (Th. 2).

REFERENCES

[1] R. Beier, H. Röglin, C. Rösner, and B. Vöcking, “The smoothed
number of pareto-optimal solutions in bicriteria integer optimization,”
Mathematical Programming, vol. 200, pp. 319–355, September 2022.
doi: 10.1007/s10107-022-01885-6

[2] J. C. Namorado Climaco and E. Queirós Vieira Martins, “A bicriterion
shortest path algorithm,” European Journal of Operational Research,
vol. 11, no. 4, pp. 399–404, 1982. doi: 10.1016/0377-2217(82)90205-3

[3] P. Hansen, “Bicriterion path problems,” Multiple Criteria Decision Mak-

ing Theory and Application, pp. 109–127, 1980. doi: 10.1016/S1097-
2765(03)00225-9

[4] X. Gandibleux, F. Beugnies, and S. Randriamasy, “Martins’ algorithm
revisited for multi-objective shortest path problems with a maxmin cost
function,” 4OR, vol. 4, no. 1, pp. 47–59, 2006. doi: 10.1007/s10288-
005-0074-x

[5] E. Q. V. Martins, “On a multicriteria shortest path problem,” European

Journal of Operational Research, vol. 16, no. 2, pp. 236–245, 1984. doi:
10.1016/0377-2217(84)90077-8

[6] J. Brumbaugh-Smith and D. Shier, “An empirical investigation of some
bicriterion shortest path algorithms,” European Journal of Operational

Research, vol. 43, no. 2, pp. 216–224, 1989. doi: 10.1016/0377-
2217(89)90215-4

[7] A. Skriver and K. Andersen, “A label correcting approach for solving
bicriterion shortest-path problems,” Computers & Operations Research,
vol. 27, no. 6, pp. 507–524, 2000. doi: 10.1016/S0305-0548(99)00037-4

[8] A. Sedeño-noda and M. Colebrook, “A biobjective dijkstra algorithm,”
European Journal of Operational Research, vol. 276, no. 1, pp. 106–118,
2019. doi: 10.1016/j.ejor.2019.01.007

612 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



[9] M. Minoux, “Solving combinatorial problems with combined min-
max-min-sum objective and applications,” Mathematical Programming,
vol. 45, no. 1-3, pp. 361–372, 1989. doi: 10.1007/bf01589111

[10] A. P. Punnen, “On combined minmax-minsum optimization,” Comput-

ers & Operations Research, vol. 21, no. 6, pp. 707–716, 1994. doi:
10.1016/0305-0548(94)90084-1

[11] P. Dell’Olmo, M. Gentili, and A. Scozzari, “On finding dissimilar pareto-
optimal paths,” European Journal of Operational Research, vol. 162,
no. 1, pp. 70–82, 2005. doi: 10.1016/j.ejor.2003.10.033

[12] F. Guerriero and R. Musmanno, “Label correcting methods to solve
multicriteria shortest path problems,” Journal of Optimization The-

ory and Applications, vol. 111, no. 3, pp. 589–613, 2001. doi:
10.1023/A:1012602011914

[13] C. Mohamed, J. Bassem, and L. Taicir, “A genetic algorithms to solve the
bicriteria shortest path problem,” Electronic Notes in Discrete Mathemat-

ics, vol. 4, no. 1, pp. 851–858, 2010. doi: 10.1016/j.endm.2010.05.108
[14] S. Fidanova, M. Ganzha, and O. Roeva, “Intercriteria analyzis of hybrid

ant colony optimization algorithm for multiple knapsack problem,” in
2021 16th Conference on Computer Science and Intelligence Systems

(FedCSIS), 2021. doi: 10.15439/2021F22 pp. 173–180.

[15] A. Cassia, O. Jabali, F. Malucelli, and M. Pascoal, “The electric vehicle
shortest path problem with time windows and prize collection,” in
2022 17th Conference on Computer Science and Intelligence Systems

(FedCSIS), 2022. doi: 10.15439/2022F186 pp. 313–322.
[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. doi:
10.1007/bf01386390

[17] R. Diestel, Graph Theory, 5th ed. Berlin: Springer Publishing Company,
Incorporated, 2017. ISBN 3662536218. doi: 10.1007/978-3-662-53622-
3

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, 3rd ed. Cambridge, Massachusetts: The MIT Press,
2009. doi: 10.5555/1614191

[19] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 596–615, July 1987. doi: 10.1145/28869.28874

[20] M. Müller-Hannemann and K. Weihe, “Pareto shortest paths is often
feasible in practice,” Algorithm Engineering, pp. 185–197, 2001. doi:
10.1007/3-540-44688-5_15

LASKO LASKOV, MARIN MARINOV: LIST OF PARETO OPTIMAL SOLUTIONS OF A BIOBJECTIVE SHORTEST PATH PROBLEM 613


