
Scheduling Jobs to Minimize a Convex Function of
Resource Usage

Evelin Szögi
0009-0008-5818-374X

ELKH SZTAKI
Kende str. 13-17, Budapest, 1111, Hungary

and
Department of Operations Research

Loránd Eötvös University
Email: szogi.evelin@sztaki.hu

Tamás Kis
0000-0002-2759-1264

ELKH SZTAKI
Kende str. 13-17, Budapest, 1111, Hungary

Email: kis.tamas@sztaki.hu

Abstract—In this paper we describe polynomial time algo-
rithms for minimizing a separable convex function of the resource
usage over time of a set of jobs with individual release dates and
deadlines, and admitting a common processing time.

I. INTRODUCTION

I
N THIS paper we study variants of the following schedul-
ing problem. There are n jobs J = {J1, J2, . . . , Jn},

and a common resource required by a subset of the jobs.
Each job Ji has a release date ri, a deadline di, and requires
µi ∈ {0, 1} unit of the common resource. All jobs have the
same processing time p. A schedule S specifies a starting time
Si for each job Ji, and it is feasible, if ri ≤ Si ≤ di−p holds
for each job Ji.

The goal is to find a feasible schedule S , which minimizes
a convex function f : R≥0 → R of the load of the resource
throughout the scheduling horizon, i.e.,

min
S

∫ dmax

rmin

f(ℓS(t))dt,

where rmin = mini ri is the earliest release date and dmax =
maxi di is the last deadline, and ℓS(t) is the load of the
resource at time point t in schedule S , i.e., ℓS(t) = |{i | Si ≤
t ≤ Si + p, µi = 1}|.

A variant of this problem, where p = 1, µi = 1 for all
Ji ∈ J , and for each job Ji a subset of time slots Di ⊂ Z+ is
given, rather than an interval [ri, di], is known as the load

balancing problem and it has been extensively studied by
several authors, see e.g., [9], [10], [6]. As it is established in all
these papers, this special case has some very nice properties:
(i) there always exists a universally optimal solution U , which
is optimal for any convex function f of the load ℓU , and (ii)
if a schedule S is not optimal, then there exists a pair of time
slots t0, t1 ∈ Z, such that ℓS(t0) ≥ ℓS(t1) + 2 along with a
subset of jobs, which can be rescheduled such that the load of
t0 decreases by one, while the load t1 increases by one, and

This research has been supported by the TKP2021-NKTA-01 NRDIO grant
on "Research on cooperative production and logistics systems to support a
competitive and sustainable economy".

the load of all other time slots do not change. The convexity of
f ensures that the objective function value of the new schedule
is smaller than that of S . Yet another variant is when the jobs
have arbitrary integer processing times, but the preemption is
allowed, i.e., the processing of any job can be interrupted and
resumed later. This variant is studied in [8]. The authors have
shown that the above two properties of optimal solutions are
preserved. Drótos and Kis [7] study the following resource
leveling problem. There is a set of m machines, a set of
renewable resources, and a set of n jobs associated with release
times, deadlines and resource requirements, each pre-assigned
to one of the machines. The jobs have to be sequenced on the
machines, while minimizing the sum of the convex functions
of the loads of the resources over time. They show that if the
starting times of all tasks on all but one machines are fixed,
the problem is NP-hard. However, if the ordering of tasks on
the remaining machine is also given, then a polynomial time
algorithm exists. They also give a heuristic as well as exact
branch-and-bound algorithm for solving the problem.

The above scheduling problem can be extended to parallel
machine problems, where the jobs have to be assigned to
machines, and the jobs assigned to the same machine have to
be sequenced. The latter problem was introduced by Blazewicz
[4], where all jobs have processing time p = 1, and require 0
or 1 unit of a common resource of capacity c. In a feasible
solution the jobs are scheduled between their release dates
and deadlines, and at most m jobs are processed concurrently,
where m is the number of the parallel machines. Moreover, at
most c jobs of resource requirement 1 are processed in parallel
at any time. Blazewicz described a proprietary polynomial
time algorithm for deciding whether a feasible schedule exists.
This problem can be reformulated as a scheduling problem
with a separable convex cost function. We define a piecewise-
linear convex function f as follows: f(x) = 0 for x ≤ c and
f(x) = x−c for x ≥ c. It is easy to see that there is a feasible
schedule in which at most c jobs with resource requirement 1
are scheduled concurrently if and only if there exists a feasible
schedule of cost 0 w.r.t function f .

In this paper, we deal with two variants of the scheduling

Proceedings of the 18th Conference on Computer
Science and Intelligence Systems pp. 791–799

DOI: 10.15439/2023F4164
ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 791 Thematic track: Computational Optimization

problem with non-preemptive jobs, all of processing time p:
Problem P1. All jobs require one unit of the common
resource, i.e., µi = 1 for each job Ji, and the common
processing time p is arbitrary positive integer.

We will show by way of an example that in unlike the load
balancing problem with p = 1, for general p, there is no uni-
versally optimal solution (Section III). Furthermore, improving
a non-optimal schedule may be far more complicated than in
the case with unit length jobs. We will reduce the problem to a
minimum cost circulation problem with convex cost functions
on the arcs in an appropriately defined network, which permits
the application of efficient combinatorial methods for finding
optimal solutions (Section IV).
Problem P2. Only a subset of the jobs require one unit of
the common resource, and p = 1. In addition, there are m
machines (resources of unit capacity), and each job has to be
assigned to one of the machines. The jobs assigned to the same
machine must be processed in non-overlapping time slots.

We describe a network-flow based method with convex cost
functions on the arcs in Section V. As a by-product, our
method can also answer the decision problem of [4].

II. RELATED WORK

We have already summarized the most relevant results on
load balancing, resource leveling, and deadline scheduling of
jobs on parallel machines using a bounded capacity resource in
the introduction. In the following we focus on parallel machine
scheduling problems with equal job processing times.

Brucker and Kravchenko [5] investigate the problem where
equal-length jobs have to be scheduled on m identical parallel
machines. For each job, a release time and a deadline is given.
They present a polynomial time algorithm that finds a feasible
schedule and minimizes the weighted sum of the completion
times. Their method is based on an integer programming
formulation of the problem, solving the linear relaxation and
rounding the solution appropriately. A similar problem is
considered by Kravchenko and Werner [12], but the time
interval between the earliest release date and the latest deadline
is divided into several smaller intervals, and for each of them,
the number of available machines is given. They present a
linear programming approach to find a feasible schedule that
minimizes the maximum number of machines used by the jobs.
Further results can be found in [2], [3], and for a survey,
see [13].

III. PROPERTIES OF OPTIMAL SOLUTIONS

In the introduction we emphasized that the load balancing
problem with common job processing time p = 1 admits a
universally optimal solution, i.e., one which is optimal for any
convex cost function. The following example shows that for
p > 1 this is not the case by providing two different convex
functions with two different unique optimal solutions.

Example III.1. There are 9 jobs, where J1 and J2 have

release dates r1 = r2 = 0 and deadlines d1 = d2 = 5,

and J3 through J8, have release dates r3 = · · · = r8 = 5
and deadlines d3 = · · · = d8 = 10. Furthermore, job J9 has

release date r9 = 0 and deadline d9 = 14. The processing time

of all the jobs is p = 5. Notice that in a feasible schedule,

the place of jobs J1, . . . , J8 is fixed: J1 and J2 are processed

from 0 to 5, and J3, . . . , J8 are processed from 5 to 10. The

feasible schedules differ only in the starting time of J9. Firstly,

we want to minimize the function f1(x) = x2 of the load. It

is not difficult to check that in the optimal solution, J9 is

processed in the interval [9, 14]. Let S1 denote this solution,

and the cost of S1 is 5 · 22+4 · 62+72+4 · 12 = 217. We get

a feasible, but not optimal solution by processing J9 in [0, 5].
Let S2 denote the solution we get in this way. The cost of S2

with respect to f1 is 5·32+5·62 = 225 > 217, and indeed, S2

is not an optimal solution w.r.t. f1. Now consider the convex

function f2(x) = 0 for x ≤ 6, and f2(x) = x−6 for x ≥ 6. It

is easy to show that S2 is the only optimal solution w.r.t. f2.

The example above suggests that the approaches for p = 1
may not be straightforwardly generalized for p > 1.

IV. A COMBINATORIAL APPROACH FOR PROBLEM P1

We first give a linear programming formulation of problem
P1 in Section IV-A. Then, we show that the problem can be
equivalently described as a minimum-cost circulation problem
in a network with piecewise-linear convex cost functions on
the arcs (Sections IV-B), and how to determine an optimal so-
lution for our scheduling problem from an optimal circulation
in Section IV-C. Finally, based on these results, we propose a
new combinatorial algorithm for a parallel machine scheduling
problem (Section IV-D).

A. Initial problem formulation and solution method

Firstly, we introduce additional notation. Let I =
{I1, I2, . . . , IL} be the set of all different time slots of length
p in
n
⋃

i=1

({[ri + kp, ri + kp+ p] | k ∈ Z, rmin ≤ ri + kp ≤ dmax − p}

∪ {[di + kp, di + kp+ p] | k ∈ Z, rmin ≤ di + kp ≤ dmax − p}) .

The following lemma states an important property about the
structure of an optimal schedule, and it generalizes Lemma 3
of [2].

Lemma 1. There is an optimal schedule, where each job is

processed in one of the intervals in I.

Proof. Suppose the statement of the lemma does not hold for
a problem instance with jobs J and processing time p. Let S∗

be an optimal schedule such that the number of jobs which
are not scheduled in some time slot in I is minimal. Let H
be the subset of all those jobs that are not scheduled in some
time slot in I by S∗.

Let δ ∈ R
n+1 be a vector representing the load of the

resource in S∗, that is, for ℓ ∈ {0, . . . , n}, δℓ equals the total
size of time intervals in which the load of the resource is ℓ.
Clearly,

∑n

ℓ=0 ℓ ·δℓ = n ·p, and the cost of S∗ is
∑n

ℓ=0 f(ℓ)δℓ.
Let ϵ > 0 be the smallest value such that starting all the

jobs in H by ϵ time earlier, or later, at least one of the jobs in

792 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

H is scheduled in a time slot I ∈ I. Let S1 be the resulting
schedule. Such a shift induces a vector µ ∈ R

n+1 such that
δ + µ represents the load of the resource in schedule S1.

The cost of the schedules S∗ and S1 are related by

cost(S1) = cost(S∗) + ∆,

where ∆ =
∑n

ℓ=0 f(ℓ)µℓ.
Since

∑n

ℓ=0 ℓ · µℓ = 0 must hold, δ− µ also represents the
resource usage of some feasible schedule S2, namely, the one
obtained by shifting all jobs in H in the opposite direction by
ϵ. The cost of S∗ and S2 are related by

cost(S2) = cost(S∗)−∆.

Unless ∆ = 0, this implies that S∗ is not optimal. Hence,
∆ = 0, and S1 is an optimal schedule in which some job
in H is scheduled in a time slot in I, which contradicts the
choice of S∗.

Let C = {c0, c1, . . . , cH} be the ordered set of all different
left and right endpoints of I1, I2, . . . , IL such that c0 = rmin

and cH = dmax. Let Kh denote the interval [ch−1, ch] for
h = 1, . . . , H .

For any subset X of the jobs, let N(X) consist of all those
time slots Ik ∈ I, which are feasible for at least one of the jobs
in X , that is, N(X) = {Ik |Ik ⊆ [ri, di] for some Ji ∈ X}.
We say that N(X) is connected if the time slots in N(X)
are consecutive. Let X denote those subsets X of J such that
N(X) is connected.

In our formulation we have the following three types of
variables:

• xk: the number of jobs processed in time slot Ik;
• bX : the number of jobs scheduled in the time slots N(X);
• th: the number of jobs that require the resource in Kh,

that is, th =
∑

Ik⊃Kh
xk.

Consider the following mathematical program:

minimize
H
∑

h=1

|Kh|f(th)

s.t.
∑

Ik∈N(X)

xk − bX = 0, for all X ∈ X (1)

bX ≥ |X|, for all X ∈ X (2)

(IP) : bJ = n (3)
∑

k:Ik⊇Kh

xk − th = 0, for each interval Kh

(4)

xk ≥ 0, for all k = 1, . . . , L (5)

xk ∈ Z, for all k = 1, . . . , L. (6)

Note that |Kh| = ch−ch−1, while |X| denotes the cardinality
of X . In order to show that (IP) is a proper formulation for
problem P1, we define the bipartite graph G(x,b,t) = (VI ∪
VJ , E) for a feasible solution (x, b, t) of (IP). For each job
J ∈ J , VJ contains a unique node vJ , and for each time slot
Ik ∈ I, VI contains xk nodes v

(1)
k , . . . , v

(xk)
k corresponding

to Ik. For each job Ji and Ik ⊂ [ri, di], E contains the edge
(vJi

, v
(l)
k) for l = 1, . . . , xk. For any X ⊆ J , let VX denote

the set of nodes {vJ | J ∈ X}, and N(VX) the set of time slot
nodes adjacent to any node in VX in G(x,b,t). Then, constraints
in (1) and (2) ensure that for any subset of jobs X ∈ X ,
N(VX) ≥ |VX |. The following result shows that this condition
holds for all nonempty subsets of the nodes, not only for those
in X .

Lemma 2. Let (x, b, t) be a feasible solution to (IP). Then,

for every nonempty subset X of the jobs J , |N(VX)| ≥ |VX |.

Proof. Let X ⊆ J be arbitrary subset of the jobs and
let VX denote the corresponding subset of nodes in VJ .
Let N(VX) ⊆ VI denote the nodes that are adjacent to
at least one node in VX . Then N(VX) can be partitioned
into N(VX1

), N(VX2
), . . . , N(VXr

) such that X = X1 ∪
X2 · · · ∪ Xr, the Xl are disjoint and N(Xl) is connected
for each l = 1, . . . , r. Since (x, b, t) is a feasible solution
to (IP), |N(VXi

)| ≥ |VXi
| holds for all i = 1, 2, . . . r and

|N(VX)| ≥ |VX | follows.

Constraint (3) ensures |VJ | = n, therefore, we have:

Lemma 3. Let (x, b, t) be a feasible solution to (IP). Then

G(x,b,t) admits a perfect matching.

Proof. It follows from Lemma 2 and from the well-known
theorem of Hall (see e.g. [1]).

The following result shows how to map feasible solutions
of (IP) to feasible schedules of the same cost and vice versa.

Lemma 4. For any feasible solution (x, b, t) of (IP), there

is a feasible schedule, where xk jobs are processed in time

slot Ik and the load of the interval Kh is th. Conversely, from

every feasible schedule, where the jobs are scheduled in the

time slots of I, one can obtain a solution (x, b, t) of the same

cost satisfying (1) - (6).

Proof. To prove the first part of the lemma, suppose (x, b, t)
satisfies (1) - (6). Then by Lemma 3, G(x,b,t) admits a perfect
matching M . If (vJ , vI) ∈ M , schedule job J in time slot I .
Then for any Ik ∈ I, the number of jobs processed in Ik is
the number of nodes in VI representing Ik which is exactly
xk. th represent the load of interval Kh in the solution by
eq. (4), therefore, the load of Kh is th in the schedule.

To show the second part, let S denote a feasible schedule.
For all time slots Ik ∈ I, let xk denote the number of jobs
processed in Ik, and for each interval Kh, h = 1, . . . , H , let
th denote the number of jobs that are executed during Kh. For
an arbitrary X ∈ X , let bX denote the total number of jobs
that are processed in the time slots of N(X). Then (x, b, t)
satisfies (1) - (6) and it has the same cost as S .

The following statement shows how to map optimal solu-
tions (x, b, t) to perfect matchings in G(x,b,t), and vice versa.

Proposition 1. If (x, b, t) is an optimal solution to (IP), then

any perfect matching in G(x,b,t) corresponds to an optimal

EVELIN SZÖGI, TAMAS KIS: SCHEDULING JOBS TO MINIMIZE A CONVEX FUNCTION OF RESOURCE USAGE 793

Algorithm 1 Calculation of optimal schedule

Require: n ≥ 0, p ≥ 1, {ri, di} for i = 1, . . . , n, function f
Ensure: Optimal schedule S;

1: Solve (IP), and let (x, b, t) be an optimal solution;
2: Define the graph G(x,b,t), and find a perfect matching M

in it;
3: Construct schedule S by assigning the jobs to the time

slots as specified by M ;

schedule. Conversely, any optimal schedule S induces an

optimal solution (x, b, t) to (IP).

Proof. Follows easily from Lemma 3 and Lemma 4.

By Proposition 1, we can solve the scheduling problem by
Algorithm 1: Since finding a perfect matching in a bipartite
graph can be done in polynomial time [1], it remains to
solve (IP) efficiently. In the remainder of this section, we
sketch our approach for solving (IP) in polynomial time by
a combinatorial method based on network flows.

Firstly, we observe that the size of (IP) can be polinomially
bounded in the size of the input.

Lemma 5. The size of the linear system (1)-(6) is polynomial

in the size of the input.

Proof. To prove that the size of system (1)-(6) is polynomial
in the size of the input, it is enough to show that the number
of constraints in (2) and (4) is polynomial in the input size.
Observe that L = |I| is O(n2). All X ∈ X can be obtained the
following way. One can construct O(L2) possible connected
N(X) sets of time slots by determining the earliest and latest
time slot. Then it remains to check whether there is an X ⊆ X
such that N(X) is exactly the set of time slots feasible for at
least one jobs in X . Therefore |X | is polynomial in L. There
are H intervals Kh and the endpoints of each of them coincide
with endpoints of time slots in I, therefore H = O(L) and
the number of constraints in (4) is polynomial in the input
size.

Since we are only interested in the values of f at integer
loads only, we can replace f with a piecewise linear convex
function f̃ with integer break points, where f̃(z) = f(z) for
all z ∈ Z≥0. Furthermore, one can assume that the first break
point of f̃ is at 0 and the last one is at most n, since there are
n jobs. It is not difficult to see that for such an f̃ , the optimal
value of (IP) coincides with the optimal value of

(IPWL) : minimize
∑

h

|Kh|f̃(th)

s.t. (1)− (6).

In fact, the matrix of (1) - (6) is totally unimodular, see
Lemma 6, which permits to get rid of the integrality condition
(6) by a result of Meyer. Meyer [14] has shown that an
optimization problem with a separable piecewise linear convex

cost function with integer break points, and a totally uni-
modular constraint matrix always admits and integer optimal
solution. This means that in (IPWL) we can drop constraint
(6), while preserving integer optimal solutions:

(PWL) : minimize
∑

h

|Kh|f̃(th)

s.t. (1)− (5).

Karzanov and McCormick [11] describe efficient polynomial
time algorithms for minimizing a separable convex cost func-
tion over the linear space Mx = 0, provided M is a totally
unimodular matrix. More specifically, for every coordinate xe

of x, there is a convex function we : R → R. If E is the
set of coordinates of x, the problem is to find x such that
Mx = 0, while

∑

e∈E we(xe) is minimized. It is assumed that
{x : Mx = 0} contains a non-zero point and the minimization
problem has a finite optimal solution. The authors have shown
how to solve the problem efficiently for different classes of
convex functions, assuming there is an oracle that solves the
following problems:

1) given a point r ∈ R, return c⊢e (r) and c⊣e (r), where c⊢e (r)
and c⊣e (r) are the right and left derivatives of we at r.
The convexity of we implies the existence of the right
and left derivatives;

2) given a slope s ∈ R, return a point r with c⊣e (r) ≤ s ≤
c⊢e (r).

In the case of piecewise linear convex functions, such an oracle
is easy to implement.

Karzanov and McCormick proposed two different algo-
rithms for solving such problems: the Minimum Mean Can-
celing Method (MMCM) and the Cancel and Tighten algo-
rithm. Both methods are iterative, and in general case, these
algorithms involve solving linear programs in each iteration.
Although the number of iterations is polynomial in the size
of the input, the running time is not as impressive due to
solving linear programs. However, when {x : Mx = 0} is
the space of circulations in a graph G (that is, M is the
node-edge incidence matrix of G), then there is no need to
solve linear programs, and each iteration of the Cancel and
Tighten algorithm takes O(|E(G)| log |V (G)|) time, and the
total number of iterations is O(|V (G)| log(|V (G)|C)), where
C denotes the absolutely largest finite slope. The impressive
running time motivates the question whether our problem can
be reformulated as a minimum cost circulation problem in a
network with piecewise-linear convex cost functions on the
arcs.

B. Reformulation as a circulation problem in a network

First of all, observe that in the objective function of (PWL),
we have convex functions only for variables th, and the system
has lower or upper bound constraints for variables xk and bX .
The function corresponding to th is |Kh|f̃(·). The breakpoints
of f̃(·) are 0, 1, . . . , n, and the slopes between these break-
points are sl = |Kh|(f̃(l)− f̃(l− 1)) for l = 1, . . . , n, noting
that s1 ≤ s2 ≤ · · · ≤ sn, since f̃ is convex (if sl = sl+1 then

794 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

bl is not a real breakpoint, but it is not a problem). Then we
have

wh(z) =



















|Kh|f̃(0) + s1z if 0 ≤ z ≤ 1

|Kh|f̃(1) + s2(z − 1) if 1 ≤ z ≤ 2

. . .

|Kh|f̃(n− 1) + sn(z − n+ 1) if n− 1 ≤ z.

It is not difficult to show that we get an equivalent problem
by introducing convex cost functions wk and wX for the
variables xk and bX and moving the lower and upper bound
constraints to wk and wX the following way. Let K be a
sufficiently large positive number. Since we want a variable
xk to be non-negative, wk has a breakpoint at 0 and the slope
before 0 is −K and the slope after 0 is 0, that is

wk(z) =

{

−Kz if z ≤ 0

0 if z ≥ 0.

Similarly, if X ̸= J , wX has a breakpoint at |X| and the
slope before |X| is −K and after |X| is 0, i.e.,

wX(z) =

{

−K(z − |X|) if z ≤ |X|

0 if z ≥ |X|.

If X = J , wX has a breakpoint at n and the slope before n
is −K and after n it is K, that is

wJ (z) =

{

−K(z − n) if z ≤ n

K(z − n) if z ≥ n.

Therefore, (PWL) can be reformulated as

minimize
L
∑

k=1

wk(xk) +
∑

X∈X

wX(bX) +

H
∑

h=1

wh(th)

s.t.

(PWL2) :
∑

Ik∈N(X)

xk − bX = 0 for all X ∈ X ;

∑

k:Ik⊇Kh

xk − th = 0 for all intervals Kh.

The following lemma plays a crucial role in our method.

Lemma 6. Let M denote the matrix of the following system:
∑

Ik∈N(X)

xk − bX = 0 for all X ∈ X ;

∑

k:Ik⊇Kh

xk − th = 0 for all intervals Kh.

Then MT is a network matrix.

Proof. Observe that M can be written as M = (A,−I),
where A ∈ R

a×L is an interval matrix and −I ∈ R
a×a is

a negative identity matrix, where a = |X |+H is the number
of constraints in (1) and (4). Therefore if y is a column of
MT , then y has some 1 entries in consecutive positions in
the first L coordinates, and in the remaining a coordinates, y
has a unique -1 entry. All other coordinates of y are 0. We

v0

v1

v2

vh1−1

vX1−1

vX2

vh2

vL

vbXvth vbJ

...

...

...

...

...

Fig. 1: Network D. Thin arcs correspond to non-tree edges,
thick arcs are the edges of T .

construct a network D with a spanning tree T and show that
each non-tree edge corresponds to a column of M .

Let P = v0 → v1 → · · · → vL denote a directed path of
length L, where the kth edge vk−1 → vk represents the kth
p-length time slot Ik, and we say it corresponds to variable
xk. At the beginning, D = P and T = P . Then we add
new nodes and edges to D and T the following way: we
take all constraints from (1) and (4) one by one, and for each
of them, we connect nodes representing the first and the last
time slot in the constraint with a new path of length 2. More
precisely, consider constraints in (1) and suppose equation
∑

Ik∈N(X) xk − bX = 0 is one of them. We add a new node
denoted by vbX . Let X1 denote the index of the first time
slot and X2 the index of the last time slot in N(X). We add
edges vX1−1 → vbX and vbX → vX2

. We extend T with
the first new edge vX1−1 → vbX , and we say the tree edge
vX1−1 → vbX corresponds to variable bX . The other new edge
vbX → vX2

becomes a non-tree edge. We proceed similarly
with equations in (4) of the form

∑

k:Ik⊇Kh
xk − th = 0: we

connect the first and the last time slot in Ik : Ik ⊇ Kh with
a 2-length path containing two new edges and extend T with
the first new edge in the same way as before. Fig. 1 illustrates
the network constructed this way. It is not difficult to check
that a column in MT corresponding to a constraint from (1)
or (4) is represented by a non-tree edge in the network.

EVELIN SZÖGI, TAMAS KIS: SCHEDULING JOBS TO MINIMIZE A CONVEX FUNCTION OF RESOURCE USAGE 795

0 2 5 7

− 1
2

0

1
3

1
2

1

• •

•

•

(a) A piecewise linear convex function with breakpoints
at 0, 2, 5, 7 and slopes −

1

2
, 0, 1

3
, 1

2
and 1.

− 1
2

0 1
3

1
2

1

0
2
5

7

• •

•

•

•

(b) The dual piecewise linear convex function. The
breakpoints are the slopes and the slopes are the break-
points of the function in Fig. 2a.

Fig. 2: A piecewise linear convex function and its dual.

For simplicity, tree edges in D corresponding to variables
xk, bX and th are denoted by exk

, ebX and eth . In the next part,
we dualize the problem and solve the dual problem instead
of the original primal formulation. To this end, we need dual
variables for non-tree edges represented by the rows of M . For
a non-tree edge, let zX denote the corresponding dual variable
if the edge derives from a constraint in (1), and let zh be the
dual variable if it derives from a constraint in (4). For a non-
tree edge e, let Ce denote the tree edges in e’s fundamental
cycle.

In order to obtain the dual of (PWL2), we have to deter-
mine the duals of the functions wk, wX and wh, respectively.
It is known (see e.g. [11]) that the dual f̃∗(·) of a piecewise-
linear convex function f̃(·) is obtained by exchanging the
slopes and breakpoints of f̃ , that is, the slopes of f̃ will be the
breakpoints of f̃∗ and the breakpoints of f̃ will be the slopes
f̃∗, see Fig. 2 for an illustration.

The dual functions of wX , wk and wh are denoted by
w∗

X , w∗
k and w∗

h, respectively, and these functions have the
following forms.

If X ̸= J , we have

w∗
X(z) = −|X|z, 0 ≤ z ≤ K,

and if X = J ,

w∗
X(z) = −nz, −K ≤ z ≤ K.

For w∗
k, we have

w∗
k(z) = 0, z ≥ 0,

and finally w∗
h can be written as

w∗
h(z) =



































































0, if z ≤ s1,

z − s1, if s1 ≤ z ≤ s2,

−s1 + s2 + 2(z − s2) if s2 ≤ z ≤ s3,

. . .

−
∑r−1

i=1 si + (r − 1)sr+

r(z − sr), if sr ≤ z ≤ sr+1,

. . .

−
∑n−1

i=1 si + (n− 1)sn+

n(z − sn), if z ≥ sn.

Using w∗
X and w∗

h, the dual of (PWL2) can be concisely
expressed as follows:

minimize
∑

X∈X

w∗
X(zX) +

H
∑

h=1

w∗
h(−zh)

s.t.
∑

ebX :exk
∈CebX

zX +
∑

eth :exk
∈Ceth

zh + λk = 0,

(DP) λk ≥ 0, for all k = 1, . . . , L

0 ≤ zX ≤ K, for all X ∈ X , X ̸= J

−K ≤ zJ ≤ K.

Notice that the lower bound for λk coincides with the left
endpoint of the domain of w∗

k, and the lower and upper bounds
for zX and zJ coincide with the left and right endpoints of
the domain of w∗

X and w∗
J .

Since the matrix of problem (PWL2) is the transpose of a
network matrix, (DP) is a network circulation problem, the
only problem with it is that in the objective function we have
w∗

h(−zh), i.e., the negative of zh is substituted in the convex
function w∗

h. However, it is easy to overcome this issue by
reversing the arcs eth . So, our final network has the same set
of nodes and arcs as D, except that the arcs eth are directed
oppositely. For an edge exk

, the lower bound for the flow value
λk is 0 and there is no upper bound, while the cost is 0. For an
edge ebX , let the cost function be the piecewise linear w∗

X and
if X ̸= J , the lower bound is 0 and the upper bound is K, and
when X = J , the lower bound is −K and the upper bound
is K. For an edge eth , we have no lower or upper bounds
and the cost function is the piecewise linear w∗

h. There are no
lower or upper bounds for the flows on non-tree edges in D,
and the cost function is 0.

Proposition 2. The minimum cost circulation problem defined

above is equivalent to the problem (DP). The cost of a

minimum cost circulation is equal to the optimal value of

(DP).

The minimum cost circulation problem defined above
can be solved by the Cancel and Tighten method de-
scribed in [11]. Remember, the number of iterations
is O(|V (G)| log(|V (G)|C)), and one iteration takes

796 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

O(|E(G)| log |V (G)|) time. Observe that C = O(n) holds in
our case. It can be assumed that the length of the scheduling
horizon dmax − rmin is at most 2np. Therefore, the number
of different p-length time slots is O(n2), and the number of
constraints in (1) and (4) is O(n4). Hence, |V (G)| = O(n4)
and |E(G)| = O(n4) in our case.

C. Solution of the primal problem (PWL2)

By Proposition 2, an optimal solution to (DP) can be
obtained by solving a minimum cost network circulation
problem with convex cost functions on the arcs, using an
algorithm of [11]. It remains to show how to determine the
primal optimal solution for (PWL2). Since the dual space of
circulations is the space of co-circulations, the optimal primal
solution is represented by an appropriate co-circulation. One
can read out the following lemma from [11].

Lemma 7. Let x∗
e , e ∈ E denote an optimal solution to

the minimum cost circulation problem. If he, e ∈ E is

a co-circulation satisfying c⊣e (x
∗
e) ≤ he ≤ c⊢e (x

∗
e) for all

e ∈ E, then he, e ∈ E is an optimal solution to the dual

problem, where c⊣e and c⊢e are the corresponding left and right

derivatives, respectively.

If an optimal solution x∗
e , e ∈ E is given, then by

Lemma 7, an optimal co-circulation is easy to obtain. For
e ∈ E, let ue and ve denote the starting and ending node
of e, respectively. Then finding a co-circulation satisfying
c⊣e (x

∗
e) ≤ he ≤ c⊢e (x

∗
e), e ∈ E is equivalent to finding

node potentials π satisfying π(ve) − π(ue) ≤ c⊢e (x
∗
e) and

π(ue)−π(ve) ≤ −c⊣e (x
∗
e) for all e ∈ E. Such node potentials

π can be found by a shortest path algorithm in the directed
graph we get by adding edges e ∈ E to the graph in reverse
direction as well. The edge lengths are c⊢e (x

∗
e) for edges

with original orientation and −c⊣e (x
∗
e) for edges with reverse

orientation. Since c⊢e (x
∗
e) and c⊣e (x

∗
e) are integral values in

our case, the optimal co-circulation found by a shortest path
algorithm is integral as well.

D. Application to a parallel machine scheduling problem to

minimize the total completion time of the jobs

In this subsection we show how to apply the previously
introduced techniques to a problem investigated by Brucker
and Kravchenko [5]. There are n jobs with common processing
time p, each of them having a release date and deadline. In
addition, there are m identical parallel machines. In a feasible
schedule each job is processed between its release date and
deadline on one of the machines, and at most m jobs are
processed concurrently at any time. The goal is to find a
feasible schedule, if one exists, that minimizes

∑

Ci, where
Ci denotes the completion time of Ji.

To begin with, we formulate the problem similarly to (IP).
Recall the definitions of the set of time slots I, and set of
intervals {Kh}h=1,...,H . Let C(Ik) denote the right endpoint

of Ik ∈ I. Variables xk, bX and th denote the same quantities
as in (IP).

minimize
L
∑

k=1

C(Ik)xk (7)

s.t.
∑

Ik∈N(X)

xk − bX = 0, for all X ∈ X (8)

bX ≥ |X|, for all X ∈ X (9)

(IP ′) : bJ = n (10)
∑

k:Ik⊇Kh

xk − th = 0, for each interval Kh

(11)

th ≤ m, for all h = 1, . . . , H (12)

xk ≥ 0, for all k = 1, . . . , L (13)

xk ∈ Z, for all k = 1, . . . , L. (14)

The objective function (7) expresses the total completion time
of the jobs. The rest of the constraints are analogous to that
of (IP). For a feasible solution (x, b, t), one can construct a
bipartite graph G(x,b,t) = (VI ∪ VJ , E) in the same way as
in Section IV-A. Analogously to Lemma 2, one can show that
G(x,b,t) admits a perfect matching and Proposition 1 holds.
Therefore, the problem can be solved efficiently if one can
solve (IP ′) efficiently. From Lemma 5, it follows that the size
of (IP ′) is polynomial in the size of the input, and similarly
to Lemma 6, one can show that the transpose of the matrix of
the system is a network matrix. Since the cost functions on the
arcs are linear functions of the flows, the dual is a circulation
problem with liner costs on the arcs, and a simple minimum
cost flow computation finds an optimal solution.

V. A SOLUTION TO PROBLEM P2

This section is devoted to problem P2. We aim to schedule
the jobs on m parallel machines in a way that the load
is as balanced as possible. We deal only with the case,
where the processing time of the all jobs is p = 1, but the
resource requirement of the jobs can be 0 or 1. We show that
this problem can be solved by a single minimum cost flow
computation in a network with convex costs on the arcs in
Section V-A. Then, we apply our formulation to the decision
problem of [4] in Section V-B.

A. A network flow formulation to solve P2

In order to describe a network flow representation of the
scheduling problem, we define the time slots for the jobs. Let
I ′ = {I1, . . . , IL′} be the set of all different unit-length time
slots in the set

n
⋃

i=1

{[ri + k, ri + k + 1] | ∀ k ∈ Z

s.t. 0 ≤ k ≤ min{n− 1, di − ri − 1}} .

Note that for each job it suffices to consider only the first n
unit-length time slots, since there are n jobs. We define the
network D′ as follows. For every job, there is a job node in

EVELIN SZÖGI, TAMAS KIS: SCHEDULING JOBS TO MINIMIZE A CONVEX FUNCTION OF RESOURCE USAGE 797

s

J1

J2

J3

J4

I11

I12

I13

I21

I22

I23

t

f

f

f

Fig. 3: Network D′ for Problem P2, where jobs J1 and J2
require one resource unit and jobs J3 and J4 require 0. The
cost is measured by the convex function f on three edges, the
remaining edges have zero cost.

D′. For simplicity, the job nodes are denoted by J1, . . . , Jn.
For each Ik ∈ I ′, there are two time slot nodes in D′ denoted
by I1k and I2k . Furthermore, there is a source node s and a sink
node t. From s, there is an arc to every job node of capacity 1.
If Ji requires 1 unit of the resource, that is, µi = 1, then there
are arcs from Ji to all the nodes I1k such that Ik is feasible
for Ji. When µi = 0, there are arcs from Ji to all the nodes
I2k , such that Ik is feasible for the job. All these arcs have
infinite capacity. For all Ik ∈ I, there is an arc from I1k to I2k
of infinite capacity, and the cost function on this arc is f . The
cost function on all other arcs is 0. Moreover, there is an arc
from I2k to t of capacity m. See Fig. 3 for an illustration.

Proposition 3. The optimal feasible schedules are in one to

one correspondence with the integral minimum cost feasible

flows, where the total flow leaving s is n.

Despite of D′ having convex costs on some edges, a similar
network having only linear costs can be constructed in a
similar way as in [8], and the problem can be solved by any
minimum cost network flow algorithm.

B. Application to a scheduling problem with a resource of

bounded capacity

By choosing the convex function f properly, one can
decide the feasibility problem considered by Blazewicz [4] as
described in Section I. If c denotes the resource capacity, then
let f denote the following piecewise linear function: f(x) = 0
if x ≤ c and f(x) = x − c if x ≥ c, where c is the capacity
of the resource. Then there exists a feasible schedule using m
machines, where each job is processed in a time slot between
its release time and deadline if and only if there is feasible
flow of zero cost in the previously constructed network D′.
Notice that there is no need to solve a flow problem with arc
costs. Let the network D′′ be obtained from D′ by removing
all arc costs and setting the capacity of the arcs from I1k to I2k
to c. Then we have the following result.

Proposition 4. The scheduling problem of [4] with a bounded

capacity resource admits a feasible solution if and only of the

network D′′ admits a feasible flow of value n.

VI. PRELIMINARY COMPUTATIONAL RESULTS

We have implemented Algorithm 1 including the Cancel and
Tighten method in C++ for solving Problem P1 on randomly
generated problem instances. The goal of the test runs was to
assess how sensitive is the method to two problem parameters:
the number of the jobs n, and the ratio of the common
processing time and the size of the time windows of the jobs,
i.e, q = p/(di − ri). We generated three problem instances
for each combination (n, q) ∈ {20, 50, 100}× {0.1, 0.4}. The
common job processing time was p = 8. The time horizon
spanned 100 time units, and for each job Ji the release date
and deadline satisfied the constraint ri ≥ 0, di = ⌈ri + p/q⌉,
and di ≤ 100. We used the same piecewise linear convex
function f in all cases, where f(0) = 0, f has breakpoints at
1, 2, . . . , n, and the slope after breakpoint i is i.

The code was compiled with Visual Studio 2019, and the
tests were run on a notebook computer with Intel Core I7
processor and Windows 11. We summarize the computational
results in Table I. We provide averages (rounded to nearest
integers) over 3 problem instances for each combination of
the parameters n and q. In each case, we provide the average
number of nodes and edges of the network D, the average
number of iterations, the average CPU time, and also the
average optimum values. All values are rounded to the nearest
integers. As we can see, the CPU time strongly correlates with
the number of graph edges. On the other hand, the number of
iterations lightly increases with the number of the jobs, but
for the same number of jobs, it is smaller for q = 0.4 than
for q = 0.1. In fact, this is what we expected, since problem
instances with a larger ratio q permit less freedom to choose
the starting times of the jobs.

VII. CONCLUSION

In this paper we gave polynomial algorithms to two load
balancing problem. A possible direction for a future research
is to investigate a problem slightly more general than Problem
P2. While the common processing time in P2 is one time unit,
it is an interesting question what can be said if the common
processing time is greater than one time unit. The complexity
of this problem is still open. One possible next step would be
to derive an approximation algorithm for the problem.

REFERENCES

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network

flows. Prentice-Hall, Inc., New Jersey, 1993.
[2] Philippe Baptiste. Scheduling equal-length jobs on identical parallel

machines. Discrete Applied Mathematics, 103(1):21–32, 2000.
[3] Philippe Baptiste, Peter Brucker, Sigrid Knust, and Vadim G. Timkovsky.

Ten notes on equal-processing-time scheduling. Quarterly Journal of the

Belgian, French and Italian Operations Research Societies, 2:111–127,
2004.

[4] Jacek Błażewicz. Deadline scheduling of tasks with ready times and
resource constraints. Information Processing Letters, 8(2):60–63, 1979.

[5] Peter Brucker and Svetlana Kravchenko. Scheduling jobs with equal
processing times and time windows on identical parallel machines.
Journal of Scheduling, 11:229–237, 08 2008.

798 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE I: Preliminary computational results for randomly generated inputs. n is the number of the jobs and q is the ratio of
the job length and the size of the time windows of the jobs.

n = 20, q = 0.1 n = 20, q = 0.4 n = 50, q = 0.1 n = 50, q = 0.4 n = 100, q = 0.1 n = 100, q = 0.4

Avg. number of graph nodes 87 86 92 89 92 92

Avg. number of graph edges 289 374 360 924 379 1785

Avg. number of iterations 1275 1102 1511 1293 1633 1493

Avg. optimal objective value 223 229 1028 1071 3685 3804

Avg. CPU time (millisec) 36 58 52 74 59 135

[6] Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W. Wong,
and David K. Yau. Scheduling for electricity cost in a smart grid. Journal

of Scheduling, 19(6):687–699, 2016.
[7] Márton Drótos and Tamás Kis. Resource leveling in a machine

environment. European Journal of Operational Research, 212(1):12–
21, 2011.

[8] Péter Györgyi, Tamás Kis, and Evelin Szögi. A polynomial time algo-
rithm for solving the preemptive grid-scheduling problem. unpublished,
2023.

[9] Bruce Hajek. Performance of global load balancing by local adjustment.
IEEE Transactions on Information Theory, 36(6):1398–1414, 1990.

[10] Nicholas JA Harvey, Richard E Ladner, László Lovász, and Tami Tamir.
Semi-matchings for bipartite graphs and load balancing. Journal of

Algorithms, 59(1):53–78, 2006.

[11] Alexander V. Karzanov and S. Thomas McCormick. Polynomial
methods for separable convex optimization in unimodular linear spaces
with applications. SIAM Journal on Computing, 26(4):1245–1275, 1997.

[12] Svetlana Kravchenko and Frank Werner. Minimizing the number of
machines for scheduling jobs with equal processing times. European

Journal of Operational Research, 199:595–600, 12 2009.
[13] Svetlana Kravchenko and Frank Werner. Parallel machine problems with

equal processing times: a survey. Journal of Scheduling, 14:435–444,
10 2011.

[14] R. R. Meyer. A class of nonlinear integer programs solvable by a single
linear program. SIAM J. Control Optim., 15(6):935–946, 1977.

EVELIN SZÖGI, TAMAS KIS: SCHEDULING JOBS TO MINIMIZE A CONVEX FUNCTION OF RESOURCE USAGE 799

