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Abstract—Metaprogramming, the practice of writing programs
that manipulate other programs at compile-time, continues
to impact software development; enabling new approaches to
optimisation, static analysis, and reflection. Nevertheless, a sig-
nificant challenge associated with advanced metaprogramming
techniques, including the constexpr functionality introduced to
C++ in 2011, is an increase in compilation times. This paper
presents ClangOz, a novel Clang-based research compiler that
addresses this issue by evaluating relevant constant expressions
in parallel, thereby reducing compilation time.

ClangOz includes a set of compiler intrinsics that allows
developers to parallelise their own code and take full advan-
tage of recent constexpr language support. By utilising paral-
lel evaluation, ClangOz significantly reduces the compile time
for metaprogramming-intensive codebases, enhancing developer
productivity and iterative software development processes.

Benchmark results demonstrate the performance advantage
of ClangOz over traditional compilers, including a decrease in
compilation times across all benchmarks; and parallel efficiency
of up to 95% in one case. The evaluation of constant expressions
in parallel unlocks substantial speedups, enabling developers to
leverage advanced metaprogramming techniques without sacri-
ficing compilation efficiency.

We highlight the opportunities afforded by the constexpr
functionality and emphasise the importance of compiler sup-
port for efficient metaprogramming. By introducing ClangOz,
a compiler tailored for parallel evaluation of relevant constant
expressions, developers can utilise modern metaprogramming
while minimising compilation times parametrically.

I. INTRODUCTION

C
OMPILE time metaprogramming in C++ has been of

interest since the discovery that C++ templates were

Turing complete [1]. Exploration of compile time metapro-

gramming has resulted in the addition of constant expressions

to the language; a concept proposed in 2003 [2]; and added in

C++11 with the inclusion of the constexpr specifier. A constant

expression is an expression which would remain constant at

runtime and could thus be evaluated at compile time. The

constexpr specifier allows functions and variable declarations

to assert that they can be evaluated at compile time. With

the addition of this specifier, compile time programming has

become more approachable, with a syntax almost identical to

runtime code.

Since the addition of constant expressions to C++, the

standard library specification has begun to incorporate sup-

port for both compile time and runtime execution for its

functionality. With the increasing constexpr support, larger

program segments can now be evaluated at compile time.

However, as more components are evaluated at compile time,

so too do compilation times increase. Adding parallelism to a

program can help increase performance when used correctly.

Yet parallelism is currently only available in runtime contexts;

there is no existing concept of C++ compile time parallelism.

In this article we introduce ClangOz [3], an experimental

Clang [4] compiler which adds support for the parallel execu-

tion of for-loops at compile time. ClangOz seeks to give users

control of parallelism through compiler intrinsics. The intrin-

sics are a set of functions built into the compiler, which may

be utilised to convey information about the algorithm being

constexpr parallelised to ClangOz. A higher level application

programming interface (API) is also provided which builds

upon the execution policy overloads of existing standard C++

runtime library functions such as std::for_each, to allow easier

access to constexpr parallelism.

A survey of related and relevant literature is presented in

Section II. Section III covers the ClangOz compiler, discussing

its architecture; parallel constant expression evaluation; and in-

trinsics library, along with a concise implementation example

of std::for_each. Before concluding in Section V, Section IV

reports on experiments, with benchmarks implemented using

the novel compile time parallelism feature, and considers per-

formance and scaling in comparison with serial counterparts.
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II. BACKGROUND

Parallelism within compilers is not new, and much research

has been undertaken, aiming to speed up different phases of

the compiler. For example, investigation on the parallelisation

of parsing [5], assembling [6], semantic analysis [7], lexical

analysis [8] and code generation [9] compiler phases have

been conducted. Despite this, most modern compilers avoid the

additional complexity of adding parallelism for performance.

The research presented in this paper differs from the prior art

as it pertains to a smaller segment of the compiler; a subsection

of the semantic analysis process. Nevertheless, it does adds an

overhead for compiler developers; even if it is smaller in scope.

This work is also distinct in placing the parallelism into the

users’ hands through an API, making the parallelism explicitly

programmable.

The landscape of C++ compile time programming has

continued to expand in recent years. In the 2020 iteration of

the language (C++20 [10]) dynamic memory allocation and

deallocation at compile time was added [11]. This allowed

the creation of variable size containers at compile time. C++20

also introduced a feature called Concepts [12], allowing a user

to constrain template instantiation according to composable

boolean predicates. Concepts allow for increased user defined

type-safety within code bases, while improving error mes-

sages. Further proposals are pending, with the most interesting

possible additions being metaclasses [13] and reflection [14].

The former allows users to define a compile time function that

manipulates how a class’s definition is generated; for example

to make member functions of a class public by default. The

latter allows deeper compile time introspection of types; for

instance, to check the names of class members.

Additions like these to the language specification have

allowed for projects that were previously impossible. The

processing of regular expressions at compile time [15], static

reflection through a library rather than the language [16], big-

integer computation [17] and compile time functional com-

position [18] are prominent examples. Such projects require

a sizable amount of computation at compile time, and would

benefit from acceleration by constexpr parallelisation.

Providing language features to allow processing at compile

time is not unique to C++. Lisp [19], D [20], Rust [21],

Julia [22], Elixir [23] and Circle [24] all give various com-

pile time facilities. Lisp was the first language with Turing-

complete compile time functionality; Lisp provides this feature

in the form of macros which, unlike C-style macros, can per-

form computation as well as text substitution. The D program-

ming language has many similarities to C++. Its compile time

features are based upon it, with the intent to simplify them. The

D language allows compile time programming using constructs

similar to C++ templates and constant expressions, though it

extends these concepts with the introduction of eponymous

and nested templates. In contrast: Rust, Julia and Elixir make

use of Lisp-style macros that manipulate the AST for their

compile time metaprogramming. Rust and Julia also support

compile time computation through constant expressions that

share similarities with C++. The Circle language is interesting

as it builds on-top of C++17, adding a host of new data-driven

metaprogramming features including range operators and pack

generators. The concepts introduced in this paper could in turn

be extended to such programming languages, having similar

compile time capabilities, albeit in a different guise when the

capabilities are macro based.

The evaluation of constant expressions at compile time

has parallels in the field of partial evaluation [25], where

programs are specialised dynamically at runtime or statically at

compile time to achieve better performance. Partial evaluation

of programs can lead to optimisations including constant fold-

ing; code simplification; strength reduction; and control flow

optimisation. All such optimisations are possible through the

explicit utilisation of constexpr within C++ to specialise code;

and we recognise that the comparison of partial evaluation

and C++’s compile time features has been made before [26].

Research into partial evaluation and its applications have been

ongoing for many years; and recently applied to the field

of High-Performance Computing with the aim of increasing

performance in a myriad of ways. For example, using static

partial evaluation to optimise memory access patterns on

the GPU [27]; creating domain specific languages utilising

partial evaluation to facilitate high-performance libraries for

accelerators [28]; and in the development of compilers and in-

terpreters for dynamic languages that utilise partial evaluation

to speculatively optimise code [29]. In a similar vein to the

work in this paper for compile time evaluation, some research

on parallel evaluation of partial evaluation has also been

conducted. Some examples are the parallelisation of a partial

evaluator utilised in the specialisation of mutually recursive

procedures [30]; distributed parallelisation of partial evaluators

within programming languages [31]; and parallelisation of

partial evaluations within evolutionary algorithms [32].

III. COMPILE TIME PARALLELISM

The ClangOz1 compiler builds on Clang by adding paral-

lelisation support to for loops in specific constexpr contexts.

This is performed using an API of four intrinsic functions2,

used to communicate to the compiler how a loop should be

parallelised. The intrinsic calls are placed within the function

body containing each targeted loop; and assist with loop

dependency analysis [33].

When the following constraints have been met within a

constexpr function, ClangOz will use these intrinsics to gather

the information required to partition the loop body across

multiple CPU threads. There are two constraints that have to

be met by a for loop to be constexpr parallelised. First, it must

be within a constexpr function; and adjacent to the appropriate

parallelisation intrinsics. Second, the enclosing function must

include our new C++ execution policy class [34] within its

parameter list; and be invoked with the corresponding object

as an argument. An execution policy parameter allows an algo-

rithm designer to overload a function’s behaviour based on the

1The compiler has no connection to Mozart and the Oz language.
2These are not Clang intrinsics per se; though they perform a similar role.
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Fig. 1. Compilation Phases involved in the Parallelisation Process

type of each distinct policy. For example, a std::for_each func-

tion may be passed a std::execution::parallel_policy which

indicates that the std::for_each should select an overload that

has a parallelised implementation. In the case of ClangOz a

new constexpr_parallel_policy was added to ClangOz’s C++

standard library (a modified version of Clang’s implementation

of the C++ standard library: libc++) which is used to indicate

that a function should be constexpr parallelised if possible.

These constraints define a minimal C++ API that constexpr

functions must meet to undergo the parallelisation process. The

constraints were added as a way to limit the scope at which

ClangOz would try to apply its parallelisation process.

There are some limitations of the ClangOz compiler worth

noting. First, there is no support for nested parallelism; only

the outer loop of a loop nest is parallelisable. Second, only

a single loop is parallelisable within each function. Thirdly,

only container argument types owning contiguous data are sup-

ported; and container objects must utilise a pointer-based iter-

ator. An example usage of a constexpr parallel std::for_each

from ClangOz’s modified libc++ can be found in Listing 1.

execution::ce_par is a simple, 1-byte, pre-constructed con-

stexpr_parallel_policy object. Passing this policy into the

std::for_each indicates to use a parallel implementation of

the function; if one exists. The 4th argument, a C++ lambda

function, is then executed in parallel on the elements of the

std::array.

Listing 1 ClangOz’s modified libc++ supports a new ce_par

policy parameter, allowing users to avoid compiler intrinsics.

constexpr auto f() {

std::array<int, 4> arr {};

std::for_each(execution::ce_par,

arr.begin(), arr.end(),

[](int &i) { i++; });

return arr;

}

The parallelisation process takes place within Clang’s con-

stant expression evaluator. The constant expression evaluation

executes within the frontend, usually during the semantic

analysis process; either when generating the abstract syntax

tree (AST), or during later code generation.

The constant expression evaluator attempts constant folding

on expressions stored in AST nodes; collapsing them into a

value or values at compile time by processing the expression.

The values are calculated and stored using Clang’s APValue

class. This class holds constant data of arbitrary bit-widths for

several C++ value types; including float, integer and arrays.

Manipulation of APValue objects is pivotal to the paralleli-

sation process, and in particular those that are LValues. Gen-

erally, LValues are locators for objects. An LValue can contain

either the path from a complete object to its subobject; or a

memory address offset. These are important as the majority of

the parallelised standard C++ library algorithms use iterators:

an idiomatic abstraction over the traversal strategy of each

container. The parallelisation process manipulates and gathers

information from these iterators; with pointers a common

form.

Clang’s CallStackFrame and EvalInfo classes are also inte-

gral. The former acts as a call stack for the constant expression

evaluator; maintaining information for the current call stack

frame, and tracking the arguments passed to the frame and

the temporaries that reside within it. Alongside, a pointer to

the preceding frame in the stack is also stored, to facilitate

backwards traversal. The EvalInfo class maintains information

about the expression being evaluated, including the CallStack-

Frame. These classes maintain most of the evaluator’s state

during evaluation.

Two Clang AST components that are useful for the par-

allelisation process are the Expr and Decl family of classes.

The former maintains information about types of expressions;

for example CallExpr maintains information about function

invocations. The latter, tracks declarations or definitions of

different language constructs; for example information on each

function definition is stored within a FunctionDecl.

A. The Parallelisation Process

The parallelisation process consists of four phases (See Fig.

1). The first phase is verification, confirming that the two

constraints have been satisfied. These constraints are checked

whenever a for loop is encountered within a constexpr context.
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TABLE I
THE CLANGOZ INTRINSIC FUNCTIONS

Intrinsic Function Code Function and Parameters Synopsis

template <class T, class U>

constexpr void

__BeginEndIteratorPair(

T& Begin,

U& End

)

Indicates the range of a for loop, allowing the partitioning process to split work across

multiple threads. The __BeginEndIteratorPair or __PartitionUsingIndex intrinsic are

required and the minimum necessary for parallelisation.

• Begin, End: Indicates the beginning and end of the loops range.

• Type requirements: T and U must be a one member iterator where the member

is a pointer or a pointer.

template <class T, class U>

constexpr void

__PartitionUsingIndex(

T LHS,

U RHS,

RelationalType RelTy

)

Indicates the range of a for loop, allowing the partitioning process to split work across

multiple threads. The __BeginEndIteratorPair or __PartitionUsingIndex intrinsic are

required and the minimum necessary for parallelisation.

• LHS, RHS: Indicates the beginning and end of the loops range.

• RelTy: Indicates the relational operator used within the loop’s condition e.g. >, <,

!=, <=, >=.

• Type requirements: T and U must be a numeric type, such as an integer.

template <class T>

constexpr void

__IteratorLoopStep(

T& StartIter,

OperatorType OpTy,

const T& BoundIter

)

States StartIter is bound to the loops step. Thread clones will initially be offset

by invoking operator based mutation the same number of steps taken by the thread

partitions loop at its start point. The operator used for mutation is indicated by OpTy.

• StartIter: Indicates the variable that will be offset.

• OpTy: Indicates the prefix or postfix operator (e.g. ++) used for mutation.

• BoundIter: Indicates the boundary of StartIter if one exists, preventing offsetting

past the boundary.

• Type requirements: T must be a one member iterator where the member is a

pointer or a pointer.

template <class T>

constexpr void

__ReduceVariable(

T Var,

ReductionType RedTy,

OperatorType OpTy

)

Indicates that a container or value should be reduced when the launched threads are

joined. Three types of reduction are supported PartitionedOrderedAssign, OrderedAs-

sign or Accumulate.

• Var: Notates the variable that should be reduced on thread completion.

• RedTy: Indicates the reduction method to be used by the compiler.

• OpTy: States the operator, if any, used to mutate the variable in the reduction step.

• Type requirements: T must be a vector or array iterator or numeric value.

The first step checks the enclosing context is a function, before

iterating over the function’s parameters to detect if the function

takes a constexpr_parallel_policy as an argument. As nested

parallelism is not supported, the second check makes sure that

no other constexpr parallel tasks are in flight.

The second phase is preparation, where the intrinsics are

processed; local data is prepared for each thread; and the

loop space is partitioned. This phase involves creating a

clone of the EvalInfo object per thread, as well as each of

the CallStackFrames it contains. The APValues that reside

in each CallStackFrame are also cloned; representing both

dynamically and statically allocated data.

After the data has been cloned the partitioning process

begins, using static loop partitioning to divide the work across

multiple threads. If the data cannot be divided evenly across

threads which are maintained by a single thread pool; any

excess work is given to the final thread. This partitioning

process is part of the LoopIntrinsicGatherer class, an addition

to ClangOz that implements the functionality for handling the

intrinsics, cloning data and reducing data. The partitioning is

reliant on the __BeginEndIteratorPair or __PartitionUsingIn-

dex intrinsic being used by the creator of the function to spec-

ify the loop bounds. These and other intrinsics are discussed

further in Section III-B.

The intrinsics are discovered prior to the partitioning process

by traversing the function body containing the loop, statement

by statement, checking the name of each function called

against the list of intrinsic names. This is done by making

the LoopIntrinsicGatherer a child of Clang’s ConstStmtVisitor

which recursively visits a Stmt, breaking it into its constituent

Stmt types. Each Stmt in the body of the FunctionDecl is then

iterated over, and passed to the recursive visitor, which then

searches for CallExpr nodes to verify and process.

Each thread has copies of the variables defining the loop

484 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



__BeginEndIteratorPair(First, Last);

__IteratorLoopStep(ResIter, OperatorType::PreInc);

__ReduceVariable(ResIter, ReductionType::PartitionedOrderedAssign, 

                             OperatorType::PreInc);

for (; First != Last; ++First) { *ResIter = (*First) + 1; ++ResIter; }

1 2 3 4 5 6 7 8

6 7 8 94 52 3

First Last

Input

ResIter

Thread Result

Result
ResIter

ResIter

2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

Thread 1 Thread 2

First Last First Last

Thread Input 5 6 7 8 1 2 3 4

0 00 0 0 00 0

Partition Begin Partition Begin

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

5 7 0 00 01 3

1 3 5 7

First Last

Input

Thread 1 Thread 2

First Last First Last

ResIter
ResIter

Thread Result

Thread Input

Result

ResIter

0 00 0 0 00 0

0 00 0

5 6 7 8 1 2 3 4

__BeginEndIteratorPair(First, Last);

__ReduceVariable(ResIter, ReductionType::OrderedAssign, 

                             OperatorType::PreInc);

for (; First!= Last; ++First)

   if (*First % 2) { *ResIter = *First; ++ResIter; }

Fig. 2. Example PartitionedOrderedAssign (Left) and OrderedAssign (Right) Reduction With Two Threads

bounds; provided in the initialisation, condition and iteration

statements. Dividing the workload across threads requires

offsetting the underlying APValues of these variables; and

in particular those found in the loop’s condition statement,

which help to define its range. In the case of the standard

library algorithms, the loop conditions are equality checks; for

example, comparing the start and end pointers from a container

to check that they are not equal. It is possible to offset the

pointer’s APValue to point to the start and end of the loop

partition for each thread, effectively segmenting the loop.

To calculate the appropriate size of each partition, and the

amount required to offset the loop’s start and end by, the size

of the iteration space must be calculated. This distance can

then be divided by the number of partitions provisioned. For

loop bounds defined by integer values, this is straightforward.

With pointers, the size of the container’s element type is

required; and memory addresses to a contiguous container are

traversed using an offset based on the size of the element type.

Calculating the distance requires utilising this size to convert

from a memory address to an integral number representing

the loop’s range. This can then be used to calculate the offset

for each partition, and then each pointer can be offset by

the appropriate amount. Only containers of contiguous data

are supported, as partitioning non-contiguous data involving

arbitrary memory locations is non-trivial, and time intensive.

After the work has been distributed, the third phase begins:

the execution phase. Tasks, encapsulated as C++ function

objects (often lambda functions), are launched asynchronously,

and then a wait for completion is issued. The parallelised task

contains the constexpr evaluation of the body of the loop. The

initialisation and destruction steps in the loop’s evaluation are

executed sequentially, and occur once on loop entry and exit.

The task itself does not deviate from the original sequential

algorithm.

The final phase after thread completion is consolidation.

This phase focuses on synchronising thread data back into

the main process’s CallStackFrame and EvalInfo, allowing

sequential evaluation to continue. This is done in two steps, the

first copies the cloned data back into its original location. The

second step involves an optional reduction, and is controlled

by the __ReduceVariable intrinsic discussed in Section III-B.

Data that is marked for reduction by __ReduceVariable skips

the first step.

Data which has been cloned, is split into two components

before being copied back. The second component is specific

to array data, the first is for everything else. A primary thread

is selected to copy data for the non-array component, which

is dependent on an EvalStmtResult object returned by each

parallel task. This EvalStmtResult is a Clang enumerator that

contains different evaluation result flags for statements. Each

returned EvalStmtResult is checked: if all return successfully,

then the final thread is selected as the primary thread. As the

whole loop range was iterated across, the newest values should

be contained within the final partition space. In other cases,

where threads complete early, perhaps due to encountering

return or break statements, the first thread that signalled

early completion is selected. This ensures that values in later

partitions are ignored, as they would not be processed when

executing the loop sequentially.

The re-synchronisation of arrays is done by determining

which elements have been written to by each thread and

then copying these elements from the respective clone, to the

original. This does not factor in alteration of the same array

element by multiple threads.

Applying reductions can be thought of as a special case

of the first step which can be requested by a user through

the __ReduceVariable intrinsic when a more complex data

synchronisation method is required. There are several different

types of reduction possible, and these are discussed in Section

III-B.

B. The Intrinsic Functions

The compiler intrinsics are used as standard C++ functions,

to communicate to the compiler how a loop is to be paral-

lelised. They are implemented as functions rather than Clang

intrinsics as it simplified modifications to the parallelisation

process. This use of an API of intrinsics has much in common
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template <class _ExecutionPolicy, class _ForwardIterator, class _Function>

constexpr __enable_if_constexpr_par_execution_policy_t<_ExecutionPolicy, void>

for_each(_ExecutionPolicy&& __exec, _ForwardIterator __first,

_ForwardIterator __last, _Function __f)

{

__BeginEndIteratorPair(__first, __last);

__ReduceVariable(__first, PartitionedOrderedAssign, PreInc);

for (; __first != __last; ++__first)

__f(*__first);

}

Fig. 3. Constexpr parallelised libc++ std::for_each implementation

with OpenMP [35] and other directive-based programming

paradigms.

The intrinsics required to describe the parallelisation of a

loop should be placed prior to the loop within a function that

meets the aforementioned constraints. There are four different

intrinsic functions used for parallelisation, with descriptions

listed in Table I. The intrinsics have no body and are no-ops

at runtime with a trivial overhead at compile time. They are

defined as function templates so that they can be used with

a variety of different types. The name of the intrinsics are

prefixed with double underscores to avoid conflicts with user-

defined functions. The parameters of each intrinsic allow users

to pass important information to the compiler.

__BeginEndIteratorPair and __PartitionUsingIndex indicate

to partition iterations of the loop across multiple threads based

on the loop bounds indicated by their arguments. The former

was designed with the use of C++ standard library containers

and algorithms in mind, which make use of begin and end

iterators to mark the range of loops. The latter was designed

with numeric loop conditions in mind and takes an extra

parameter indicating the relational operator used within the

loop’s condition clause.

__IteratorLoopStep indicates that a pointer based index is

bound to the loop’s step. Clones of the index are offset by the

number of loop steps taken by the loop in the thread partition

at its start point. The offset is calculated by mutating the

index by the number of loop steps taken by the C++ operator

indicated by the OpTy argument. This keeps the bound value

synchronised with the loop across all threads, and is used for

indices not used within __BeginEndIteratorPair.

The intrinsic __ReduceVariable helps to denote how a

container or value should be reduced when the launched

threads are joined. Three reduction types are supported: Par-

titionedOrderedAssign, OrderedAssign and Accumulate. Accu-

mulate is used in conjunction with an accumulator variable,

ensuring that the local result from each thread is combined

using the specified operator to obtain a final value. Parti-

tionedOrderedAssign is intended for use with containers, and

its operation is illustrated in Fig. 2. This reduction assigns

elements to the original container in order, where each element

is taken from the starting offset in each thread partition, to

its final offset on thread completion. This allows appropriate

collapse of data as threads are working on local copies of

data rather than shared data. OrderedAssign (also Fig. 2) is

similar to PartitionedOrderedAssign, although it is used with

containers that have not been modified in lock step with the

loop. OrderedAssign assigns elements to the original container

in order, where each element is taken from the initial offset

of each cloned container to its final offset within its partition.

C. An Example Constexpr Parallel Function

Within ClangOz’s libc++ library, 30 of the functions con-

tained inside the Algorithms and Numerics libraries have been

constexpr parallelised. In Fig. 3 a std::for_each is shown as an

example of how a function can be constexpr parallelised. The

function takes an execution policy as its first parameter which

will be verified by the compiler before it attempts parallelisa-

tion. In this example there is also an alias for an std::enable_if

check, which ensures the correct execution policy is used in

conjunction with this variation of std::for_each. Alternatively,

the compiler will select a more apt function if one exists, or

issue an error message.

Once the policy has been verified, each of the intrinsics

is processed; and in this example there are only two. The

first, __BeginEndIteratorPair defines the loop’s range which

the parallelisation process uses to partition the loop across

multiple threads. In this case the range is delimited by the

arguments __first and __last. The second intrinsic __Reduce-

Variable states that a PartitionedOrderedAssign should be

performed on the data pointed to by the argument __first.

OperatorType::PreInc indicates which operator to use when

traversing the data, allowing the compiler to correctly reduce

the data.

IV. PARALLELISM BENCHMARKING

Three constexpr programs based on existing benchmarks

were created to test the performance of the constexpr paral-

lelism implementation. The original benchmarks were modi-

fied to utilise function templates from ClangOz’s C++ standard

library supporting constexpr parallel execution. Benchmark se-

lection was also mindful that certain language features are not

available at compile time; for example assembly instructions

or goto statements.

The Blackscholes benchmark is taken from The Princeton

Application Repository for Shared-Memory Computers (PAR-

SEC) [36]. The PARSEC suite contains several multi-threaded

programs that explore different workloads on shared memory
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Fig. 4. Compilation Time and Speedup for the Mandelbrot Benchmark

architectures. Blackscholes processes financial data using a

partial differential equation.

The N-Body Problem and Mandelbrot benchmarks are based

on solutions provided to The Computer Language Benchmarks

Game [37]. These are originally micro-benchmarks with the

goal of testing performance of different programming lan-

guages as opposed to directly testing parallel performance.

All benchmarks are parallelised using static partitioning.

The partition sizes are selected by the compiler based on

the number of threads made available and the size of a

loop’s range. The parallelised loop regions are indicated by

an invocation of a std::for_each, which has been adapted to

support constexpr parallelisation. The std::for_each invokes a

function on each piece of data, in this case each thread will

be given a set of data to invoke the function on individually.

The performance data gathered for each benchmark is

displayed using two types of graph. The first is a line graph

comparing serial and parallelised execution times (during

compilation). Each of the plots in these graphs is calculated

by averaging six separate runs of each benchmark and data

size configuration. The second type of graph displays parallel

speedup; comparing times when using different numbers of

threads against the ideal speedup on different problem sizes

for the benchmark. The ideal speedup is a one to one match

for the number of threads used. A cumulative speedup graph

is also provided, including speedups for all of the benchmarks.

A. Timing Compile Time Performance

Performance of the constexpr paralleliser is measured by

comparing the speed of the parallelised constant expression

evaluator against the original serial implementation on each

of the benchmarks. The benchmarks are tested with different

numbers of threads using an Intel Core i9-12900K CPU,

containing eight performance cores, and with support for 16

hardware threads via hyper-threading. The benchmarks were

run under the WSL2 virtual machine on Windows 11; and

executed using two, four, eight and sixteen threads.

Time is measured from the beginning of a parallel region

to its end, rather than timing the length of the entire program;

this is to allow us to focus on the regions of interest. The

same location is measured for the serial execution. Three

timing intrinsics were implemented to allow measurement of

the phase within the ClangOz compiler.

It is worth noting that the same compiler is used for both the

parallel and serial tests, as the intrinsics are needed for timing

alongside a modified standard library implementation. This has

a minor impact on the measurements for both implementations

as the time measurement functionality requires checking the

intrinsics’ names, every time a function is considered for

parallel execution. To determine if the parallel code path

should be executed within the compiler, the verification phase

discussed in Section III-A must be processed, which also adds

an extra performance cost when evaluating the original serial

implementation.

B. Mandelbrot

The Mandelbrot benchmark consists of three main areas of

computation that are executed in parallel using std::for_each.

Two initialisation steps populate a 2D array of complex values

(a class containing two 64-bit floats) per pixel. Subsequently,

the main Mandelbrot computation uses the naïve escape time

algorithm. This algorithm loops over each complex value and

performs a repeating calculation until an escape condition

is met (limited to a maximum of 128 iterations). The final

value generated after the escape condition has been met is the

colour of the pixel which is assigned to an array of integers

representing the final image.

The graphs in Fig. 4 show that the increase in data size

gradually progresses towards higher polynomial growth as the

number of threads diminish. With more threads, the increase

in data size has less impact on compilation time. Breaking

the computation into two separate parallel regions, requiring

two thread group launches, has had minimal impact on this

benchmark. The speedup graph shows that across all image

sizes the performance improvement is similar.

C. Blackscholes

Blackscholes has two areas of computation which are par-

allelised, requiring two separate calls to std::for_each. The

first is the main computation which computes the Black-

Scholes equation; the second verifies the results from the
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Fig. 5. Compilation Time and Speedup for the Blackscholes Benchmark

first computation. The main data that requires cloning in this

benchmark is a 1D array containing a structure for each input

that owns 9 literal values.

The Blackscholes data in Fig. 5 shows promising perfor-

mance increases when utilising both two and four threads.

The speedup graph indicates that the highest speedup occurs

when larger input sets are used. Smaller data sets still yield an

increase but plateau or fall slightly at four threads. The poor

performance of the 4 and 16 sized data sets can be accounted

for by the increased cost of preparing and launching threads

outweighing the work required to process these tiny data sets.

D. N-Body

The N-Body benchmark has two parallel regions: the ad-

vance of the particle system; and the position and velocity

update. This means with more iterations of the system more

launches of threads occur. To allow a range of body numbers,

the number of iterations is restricted to 32; while still avoiding

compilation limits. The main data cloned within the bench-

mark are the bodies; structures containing seven 64-bit floats

stored contiguously within an array. The number of bodies is

the parameter that is varied within this benchmark.

The graphs in Fig. 6 show that increasing the number of

threads again outperforms the serial implementation, however

using two threads is the closest to the ideal speedup achieved

within this benchmark, with larger body numbers also aligned

with better performance. This is likely due to the cost of

cloning having an adverse impact on smaller workloads. As

with the Blackscholes benchmark, there is no improvement

in speedup as the number of cores is increased from eight to

sixteen (which utilises hyper-threading).

E. Benchmark Comparison

The speedup graph in Fig. 7 compares the most time

consuming variations of each benchmark against each other

and indicates which benchmarks achieved the best perfor-

mance after parallelisation. The N-Body benchmark is the

best performer reaching the closest to the ideal speedup

across all of the benchmarks. This is due to the trivial size

and simplicity of the data that requires cloning. Until eight

threads, the Mandelbrot benchmark is the furthest from the

ideal speedup; possibly according to the number of parallel

regions, compared to the other benchmarks. Two of the parallel

regions execute relatively small computations, to fill small

arrays of data, while cloning a significant amount within

the context of each parallel function call. The possibility of

multiple thread launches causing cloning to have a negative

impact is highlighted by Blackscholes performing better than

Mandelbrot despite having a similar amount of data to clone

per parallel region, but less parallel regions overall. With

sixteen threads, hyperthreading should allow two threads to

run efficiently on each of the eight performance cores, but only

the Mandelbrot benchmark shows a reduction in execution

time at the largest thread count.

The results indicate that the parallelisation of for loops

during compile time evaluation can lead to notable speedups

when a large portion of the program conforms reasonably to a

loop. However, the cost of cloning and partitioning data comes

with significant costs. It is plausible that performance could be

increased by removing the need for cloning in cases where it

should not be required. For example, containers like std::array

which have no conflicting data accesses across threads should

not require cloning. This could yield a performance increase

in most of these benchmarks as the main input data is

generally contained in an array. Data that is not required

for the execution of the parallel constexpr function could

also be elided from the cloning process, which could have a

large impact on benchmarks that contain a significant amount

of data unrelated to the parallel invocation. A simple form

of workload balancing may also yield reasonable results in

certain circumstances where the majority of the work is not

perfectly divisible by the number of threads in use. Whilst

this is not seen in the performance analysis within the paper,

there is likely an opportunity for improvement over the current

implementation that could allow a performance increase.

V. CONCLUSION

As the C++ standard has evolved, additional compile time

language features have been added, extending the reach of

compile time metaprogramming. As C++’s compile time reper-

toire and its use has expanded, the problem of increasing
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Fig. 6. Compilation Time and Speedup for the N-Body Benchmark
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Fig. 7. Speedup Graph Comparison of all Benchmarks Compilation Time

compilation times becomes prominent, leading to adverse

effects on programmer work flow. This opens up the question

of how to alleviate the issue. In the project introduced here, the

option of acceleration through multi-threaded data-parallelism,

within the compiler is investigated. ClangOz, an extended

Clang compiler for C++ is introduced that can parallelise for

loops at compile time; including with reduction/accumulation.

Therein, intrinsic functions allow users to explicitly relay

information to the compiler about the loop being parallelised.

This firstly allows users the flexibility to implement their

own low-level compile time parallel algorithms, while un-

derstanding the intrinsics’ semantics. Together, the compiler

and intrinsics create a framework for accelerating constant

expression evaluation.

This low-level functionality has then been utilised to provide

a high-level API, which builds on recent C++ standard library

support for parallelism to implement 30 constexpr parallel

function templates. These functions are based on existing

function template signatures within the C++ standard library,

and differ only by a single argument; the policy parameter,

providing access to parallelism through C++ overloading.

Three compile time benchmarks were implemented that utilise

a constexpr parallel std::for_each from this extended library.

Through testing of these benchmarks it was shown that the

ClangOz framework can have large performance benefits; with

up to 95% parallel efficiency on one benchmark, and above

50% on average. These benchmarks also show that the com-

plexity of the framework can be hidden within a library; re-

moving users from the onus of understanding low-level intrin-

sics, while maintaining high performance. Benchmark results

nevertheless indicate that there is still room for improvement.

The current parallelisation process has some areas that could

be addressed to improve performance. One issue stems from

the fact that the data copying process required when forking

and joining threads can be expensive. This leads to significant

startup costs, meaning that multiple sequential parallel regions

for trivial amounts of computation are slower than if done

sequentially. Large data dependencies can also have an impact

on how much of a performance increase you will get from

the parallelisation process. Optimising or removing the need

for the cloning process would likely improve performance.

Another issue is the lack of work load balancing in the

implementation, which necessitates that users must choose

their thread partitioning carefully. When data is indivisible

by the thread count this can have a performance penalty as

one thread will keep the others waiting as it deals with the

excess data. A solution would be implementing a work load

balancing algorithm within the compiler. These adjustments

to the compiler could improve the parallelisation algorithm’s

overall performance.
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