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Abstract—We consider a single-server queueing system with
multiple customer types having bounded processing times in
which users are scheduled according to the Shortest Remaining
Processing Time (SRPT) discipline, with First In First Out
(FIFO) as the tie-breaker. We assume that the processing times
of jobs arriving in the system are bounded. We use probabilistic
methods to find, under typical heavy traffic assumptions, a suit-
able approximation of the workload and queue length processes
after a long time has passed and show that these processes
are divided among the customer classes according to specific
proportions, depending on their arrival rates and distributions
of initial service times. Our results are confirmed by simulations.

Index terms—Queueing systems, shortest remaining pro-

cessing time, heavy traffic, diffusion approximations, mul-

tiple customer classes.

I. INTRODUCTION

T
HE SHORTEST Remaining Processing Time (SRPT)

service protocol assigns preemptive priority to the task

with the smallest residual service time. It started gaining

interest after Schrage had proved in [24] that it minimized the

number of jobs in a single-server system. SRPT is also well

known in queueing theory for minimizing the mean response

time (Schrage and Miller [18]). Since then, its properties

have been widely studied. Schreiber provides a summary

of early work on SRPT in [25]. More recent research of

this protocol includes investigating fairness (e.g., Wierman

and Harchol-Balter [27]) or tail behavior (Núñez-Queija [19],

Nuyens and Zwart [20]). In [12], Gromoll, Kruk and Puha

prove, under typical heavy traffic assumptions, a diffusion

limit theorem for a measure-valued state descriptor. Another

approach, approximating SRPT by the Earliest Deadline First

(EDF), leads to the same result (with a slight loss of generality)

in [16]. The follow-up research on this topic includes obtaining

diffusion limits under nonstandard spatial scaling by Puha [23]

and limits for queues with heavy tailed service time distri-

butions by Banerjee, Budhiraja and Puha in [4]. Moreover,

Atar, Biswas, Kaspi and Ramanan presented in [3] a unified

framework for analyzing single server queueing systems under

various service protocols, including SRPT.

Some authors discussed the possibility of implementing

the SRPT policy in practice. The main factor impeding it is

its unfairness, which could potentially lead to a few tasks

having much greater response times (so-called "starving").

However, it has been noted in many works that large jobs

are only negligibly penalized at most. For example, Agrawal,

Bansal, Harchol-Balter and Schroeder in [1] and [2] propose

a method of improving the performance of Web servers

by implementing SRPT-based scheduling. Another study by

Harchol-Balter and Schroeder ([14]) presents the possibility of

a great improvement of the performance of a Web server by

changing the traditional fair scheduling policy to SRPT. There

are also more recent papers concerning this topic. For example,

[6] describes a way of improving the default Linux scheduler

by using the existing CFS (Completely Fair Scheduler) and

FIFO schedulers to approximate SRPT.

Recent studies suggest that the SRPT protocol performs

well in the case of multiserver systems with a single queue.

Grosof, Scully and Harchol-Balter proved in [13] that the mean

response in the M/G/k queue under the SRPT discipline is

asymptotically optimal in the heavy-traffic limit. Dong and

Ibrahim ([8]) considered the multiserver M/G/k+G queue with

impatient customers with the SRPT protocol and showed that

in this setting, SRPT asymptotically maximizes the system

throughput among all scheduling disciplines. However, it was

also shown that the SRPT protocol can behave suboptimally

in multiclass queueing networks to the extent of rendering the

queueing system unstable ([7]).

Another related field of research involves studying resource

sharing networks under the SRPT service discipline. In [10],

[11], a notion of minimality, related to maximizing the cor-

responding cumulative transmission time with respect to jobs

with residual service time not greater than a given threshold,

was introduced and it was shown that SRPT is minimal in

this sense. Moreover, in [11], another optimality criterion,

local edge minimality, was proposed and it was proved that

it characterizes a certain subclass of SRPT disciplines, named

strong SRPT protocols.

This paper focuses on a single-server queueing system with

multiple customer classes. Previous research on this topic

includes the work of Peterson ([21]) concerning heavy-traffic

limit theorems for queueing networks with multiple customers

classes divided into two types: high-priority ones having a

preemptive priority over low-priority ones, with customers
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within each of these types served according to the FIFO

policy. In [17], Kruk and Sokołowska establish a fluid limit

theorem for a single-server queueing model with K classes of

customers, served according to the SRPT protocol, with FIFO

used as the tie-breaker.

In this paper, we extend the analysis of [12] and prove

a diffusion limit theorem for a multidimensional measure-

valued state descriptor Z(t) defined in Section II, under usual

heavy traffic assumptions. More precisely, we first describe

a stochastic model for a single-server queuing system with

multiple customer classes. We focus on the case of bounded

service times of jobs arriving in the system. In order to obtain

a diffusion limit, we consider a sequence of such models and

apply diffusion scaling as in (1) to follow. We make typical

heavy traffic assumptions, as detailed in Section III. The main

results of this paper are Theorems 1 and 2. They enable us to

easily obtain results for the corresponding workload and queue

length processes. This method gives us a way to approximately

predict the proportions between the workloads (and queue

lengths) of the customer classes in the long run.

The paper is organized as follows. In the second section,

we present the mathematical model of the queueing system

outlined above and introduce stochastic processes describing

its state. In the third section, we introduce a sequence of such

models and describe the necessary assumptions. In Sections

IV and V, we state and prove the main theorems of this

paper. In Section VI, we provide a brief overview of computer

simulations illustrating our results.

A. Notation

Let N denote the set of positive integers, let R denote the

set of real numbers and let R+ = [0,+∞). For a, b ∈ R,

we write a ∨ b (a ∧ b) for the maximum (minimum) of a
and b and ⌊a⌋ for the largest integer not greater than a. By

convention, a sum over the empty set of indices equals zero.

The sets (a, b), [a, b) and (a, b] are empty for a, b ∈ [0,∞] with

a ≥ b. The Borel σ-field on R+ will be denoted by B(R+).
For B ∈ B(R+), we denote the indicator of the set B by IB .

We also define the function χ(x) = x, x ∈ R+. For a function

g : R+ → R and T > 0, let ∥g∥T = sup{|g(t)| : 0 ≤ t ≤ T}
and ∥g∥∞ = sup{|g(t)| : t ≥ 0}.

For a vector a = (a1, ..., aK), with either real or measure-

valued elements, by aΣ we denote
∑K

i=1 ai, unless stated

otherwise, where it is a weighted sum. The same notation is

used for vector-valued processes.

Let M denote the set of finite, nonnegative measures on

B(R+). When µ ∈ M and a, b ∈ R+ ∪ {+∞}, we will

simply write µ(a, b), µ[a, b), µ(a, b] instead of µ((a, b)),
µ([a, b)), µ((a, b]), respectively. Moreover, we will write

µ(x) instead of µ({x}) to denote the measure of a single-

element set {x}. For ξ ∈ M and a Borel measurable function

g : R+ → R that is integrable with respect to ξ, define

⟨g, ξ⟩ =
∫

R+
g(x)ξ(dx).

The set M is endowed with the weak topology, that is, for

ξn, ξ ∈ M, we have ξn
w
→ ξ if and only if ⟨g, ξn⟩ → ⟨g, ξ⟩ as

n → ∞ for all bounded, continuous real functions g on R+.

With this topology, M is a Polish space ([22]). We denote

the zero measure in M by 0 and the measure in M that puts

one unit of mass at a point x ∈ R+ by δx. For x ∈ R+, the

measure δ+x is δx if x > 0 and 0 otherwise. Let M0 denote

the set of those elements of M that do not charge the origin

and have a finite first moment.

We use “
d
= ” for equality in distribution, “

fd
→ ” to denote

the convergence of finite-dimensional distributions of stochas-

tic processes and “ ⇒ ” to denote convergence in distribution

of random elements of a metric space. All stochastic processes

used in this paper are assumed to have paths that are right

continuous with finite left limits (r.c.l.l.). For a Polish space

S , we denote by D([0,∞),S) the space of r.c.l.l. functions

from [0,∞) into S , endowed with the Skorohod J1 metric d
([9]). If S = R, we write D[0,∞) instead of D([0,∞),R).
For x ∈ D([0,∞),Rn) and t > 0, define x(t−) = lim

s→t−
x(s).

II. STOCHASTIC MODEL FOR AN SRPT QUEUE

The queueing model considered here consists of one server

and K job types. Let K = {1, ...,K}. The stochastic model

involves a random initial condition (Z(0), Sx, x > 0), de-

scribing the system at time zero, together with a measure-

valued state descriptor Z = (Zk, k ∈ K) specifying the time

evolution of the system.

A. Initial condition

The initial condition for each class k ∈ K consists of the

number Zk(0) of class k jobs in the queue at time zero, the

initial service time for each class k job, and the functions

describing the order in which the initial jobs with the same

initial service time complete service.

Assume that Zk(0) is a nonnegative integer-valued and finite

almost surely random variable for each k ∈ K. Initial service

times for each class k are given by the sequence {ṽjk}j∈N of

strictly positive, finite random variables. The initial job with

service time ṽjk, j ≤ Zk(0), is called job j for class k. The

state of the system will be described by a counting measure

with unit masses at the service times of the jobs present in

the system. More formally, for k ∈ K we define the initial

random measure Zk(0) ∈ M by

Zk(0) =

Zk(0)
∑

j=1

δ
ṽ
j

k

.

Let Z(0) = (Z1(0), ...,ZK(0)).
For every x > 0 the number of initial jobs with initial ser-

vice time x that are served to completion once t units of time

have been devoted to their service is ⌊t/x⌋∧
∑

k∈K Zk(0)(x).
Here we introduce processes Sx

k , k ∈ K, that dictate how

much service is allocated across classes. In particular, let Sx
k (t)

be the number of initial class k jobs with initial service time x
that have left the system by the time that the server has devoted

t units of time solely to serving jobs with this initial service

time. We assume that the random functions Sx
k (t) satisfy the

following consistency conditions:

1) Sx
k (0) = 0,
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2) Sx
k (t) is nondecreasing and

Sx
k (t) = Zk(0)(x), t ≥ xZΣ(0)(x), k ∈ K,

3) we have
∑

k∈K

Sx
k (t) = ⌊t/x⌋ ∧ ZΣ(0)(x).

The system (Z(0), Sx, x > 0), where Sx = (Sx
1 , ..., S

x
K), will

be called the initial condition.

B. Stochastic primitives

Let Ek be the exogenous arrival process for class k ∈ K.

For t ≥ 0, Ek(t) is the number of class k arrivals to the

system in the time interval (0, t]. For each k it is a (possibly

delayed) renewal process with rate αk > 0 such that the

interarrival times have standard deviation ak ≥ 0. Let E(t) =
(E1(t), ..., EK(t)), α = (α1, ..., αK) and a = (a1, ..., aK). In

particular, αΣ is the total arrival rate. For t ≥ 0 and k ∈ K
let Ak(t) = Zk(0) + Ek(t) and A(t) = (A1(t), ..., AK(t)).
Then job j of class k arrives at time T j

k = inf{t ≥ 0 :
Ak(t) ≥ j}. For k ∈ K and j ∈ N a random variable

vjk represents the service time of the (Zk(0) + j)th job

of class k. We assume that the random variables {vjk}j∈N

are strictly positive and form an independent and identically

distributed sequence with common distribution νk on R+ for

each k ∈ K. For k ∈ K let the sequences {vjk}j∈N be mutually

independent. Assuming that the mean ⟨χ, νk⟩ > 0 and the

standard deviation bk =
√

⟨χ2, νk⟩ − ⟨χ, νk⟩2 ≥ 0 we define

βk = ⟨χ, νk⟩
−1 for each class. We put ν = (ν1, ..., νK).

Define pk = αk/αΣ, k ∈ K. Then νΣ =
∑

k∈K pkνk is a

mixture of service time distributions. It may be thought of as

the distribution of the initial service time of a randomly chosen

customer. Let ρ = αΣ⟨χ, νΣ⟩ be the traffic intensity.

It will be convenient to combine the stochastic primitives

for job classes into measure-valued load processes

Vk(t) =

Ek(t)
∑

j=1

δ
v
j

k

, t ≥ 0, k ∈ K,

and V(t) = (V1(t), ...,VK(t)). Then for each k ∈ K, Vk ∈
D([0,∞),M), since Ek ∈ D([0,∞),R+).

C. Basic performance processes, service protocol

For j ∈ N, k ∈ K and t ≥ T j
k let wj

k(t) denote the residual

service time of job j in class k at time t. Thus, wj
k decreases at

rate one when the job j of class k is in service and is constant

otherwise. In particular, wj
k is identically equal to zero after

the departure of the job j from the system.

Customers are served using the SRPT service protocol,

which gives preemptive priority to the job with the shortest

residual service time. In case of a tie, FIFO is used as a tie-

breaking rule. When both the service times and the arrival

times of two or more jobs are the same, we break the tie in

an arbitrary manner.

The state of the system at time t will be described by a K-

dimensional vector of counting measures with unit masses at

the residual service times of the jobs of each class still present

in the system. More formally, for t ≥ 0 and k ∈ K, the state

descriptor of class k is defined as follows:

Zk(t) =

Ak(t)
∑

j=1

δ+
w

j

k
(t)
.

Put Z(t) = (Z1(t), ...,ZK(t)). For t ≥ 0 and k ∈ K, we

define the workload of class k by Wk(t) = ⟨χ,Zk(t)⟩ and

W (t) = (W1(t), ...,WK(t)). Let Qk(t) = ⟨1,Zk(t)⟩ denote

the number of customers of class k ∈ K present in the system

at time t and define Q(t) = (Q1(t), ..., QK(t)).

III. DIFFUSION LIMIT

We define a sequence of systems to which the diffusion

scaling is applied. Let R be a sequence of positive real num-

bers increasing to infinity. Consider an R-indexed sequence of

stochastic models, each defined as in Section II. For each r ∈
R there is an initial condition (Zr(0), Sr,x, x > 0), stochastic

primitives Er
k and {vr,jk }j∈N with parameters αr

k, a
r
k, ν

r
k, β

r
k,

brk, prk and ρr, for each class k ∈ K. We also have arrival

processes Ar with arrival times {T r,j
k }j∈N, k ∈ K a state

descriptor Zr and processes W r, Qr. The stochastic elements

of each model are defined on a probability space (Ωr,Fr,Pr)
with expectation operator Er.

A diffusion scaling is applied to each model in the R-

indexed sequence as follows. For each r ∈ R and t ≥ 0,

let

Êr(t) =
1

r
(Er(r2t)− r2tαr),

Ẑr(t) =
1

r
Zr(r2t),

Ŵ r(t) =
1

r
W r(r2t), (1)

Q̂r(t) =
1

r
Qr(r2t),

V̂r(t) =
1

r

(

Vr(r2t)− r2tαrνr
)

.

A fluid scaling is applied to functions Sr,x. For each r ∈ R,

x > 0 and t ≥ 0, let

S̄r,x(t) =
1

r
Sr,x(rt).

Let α = (α1, ..., αK) ∈ (0,+∞)K , a = (a1, ..., aK) ∈
(0,+∞)K and define α(t) = αt, t ≥ 0. Let ν = (ν1, ..., νK)
be a vector of probability measures on R+ such that for each

k ∈ K

νk(0) = 0, ⟨χ, νk⟩ =
1

αk

, 0 < ⟨χ2, νk⟩ < ∞.

We make the following asymptotic assumptions for the se-

quence of stochastic primitives. Assume that as r → ∞,

αr → α, ar → a, Êr ⇒ E∗, (2)

where E∗ is a K-dimensional Brownian motion starting from

zero with drift zero and covariance matrix Σ = [σij ] such that
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σkk = a2kα
3
k, k ∈ {1, ...,K}. In particular, if the coordinate

processes of E∗ are independent, then σij = 0, i ̸= j. Put

bk =
√

⟨χ2, νk⟩ − ⟨χ, νk⟩2, k ∈ K,

and b = (b1, ..., bK). In addition, assume the heavy traffic

condition that for some γ ∈ R

lim
r→∞

r(1− ρr) = γ. (3)

For the sequence of service time distributions, we assume that

νr = ν, i.e., νr does not depend on r. Then βr = β, prk →
pk := αk

αΣ
as r → ∞, where α is given by (2), ρr → 1 as

r → ∞ and br = b. Define

x∗ = sup{x ∈ R+ : αΣ⟨χI[0,x], νΣ⟩ < 1}.

We assume that x∗ < ∞.

For the sequence of diffusion scaled initial conditions

{(Zr(0), Sr,x, x > 0)}r>0 we assume that as r → ∞

Ŵ r
Σ(0) ⇒ W ∗

0 , (4)

where W ∗
0 is some random variable. It is well known ([15])

that from (2), (3), (4), the fact that service time distributions

νr do not depend on r and that SRPT is a work conserving

discipline, it follows that as r → ∞

Ŵ r
Σ ⇒ W ∗

Σ, (5)

where W ∗
Σ is a reflected Brownian motion with initial value

W ∗
Σ(0)

d
= W ∗

0 with drift −γ and variance (a2Σ + b2Σ)αΣ per

unit time. It can be shown ([12]) that if x∗ < ∞ then Q̂r
Σ ⇒

Q∗
Σ :=

W∗

Σ

x∗
.

Before we proceed, we state a standard result, as presented

in [12].

Proposition 1. For each r ∈ R, let {xr
k}

∞
k=1 be an inde-

pendent and identically distributed sequence of nonnegative
random variables on a probability space (Ωr,Fr,Pr) with
finite mean µr and standard deviation σr, independent of a
(possibly delayed) rate αr > 0 renewal process Br such that
the standard deviation of the interarrival times equals ar ≥ 0.
Assume that B̂r ⇒ B∗ as r → ∞, where

B̂r(t) =
1

r

(

Br(r2t)− r2tαr
)

, t ≥ 0,

and B∗ is a one-dimensional Brownian motion starting from
zero with drift zero and variance a2α3 per unit time. Suppose
that for some finite nonnegative constants µ, σ, and positive
α, a we have that µr → µ, σr → σ, αr → α and ar → a as
r → ∞. Further assume that for each ε > 0,

lim
r→∞

E
r
(

(xr
1 − µr)2I[|xr

1
−µr|>rε]

)

= 0.

For r ∈ R, n ∈ N and t ≥ 0, let

Xr(n) =
n
∑

k=1

xr
k and X̂r(t) =

Xr(⌊r2t⌋)− ⌊r2t⌋µr

r
.

Then, as r → ∞, (B̂r, X̂r) ⇒ (B∗, X∗), where X∗ is
a Brownian motion starting from zero with drift zero and

variance σ2 per unit time, independent of B∗. Furthermore,
as r → ∞,

Ŷ r(·) ⇒ X∗(α(·)) + µB∗(·),

where for each r ∈ R and t ≥ 0,

Ŷ r(t) =
Xr(Br(r2t))− r2tαrµr

r
,

and α(t) = αt.

IV. THE CASE OF νΣ(x
∗) > 0

The results in this section require all the assumptions made

in Section 3. To simplify the notation, we will write Sr
k and

S̄r
k instead of Sr,x∗

k and S̄r,x∗

k and similarly Sr and S̄r instead

of Sr,x∗

and S̄r,x∗

.

Theorem 1. Let x∗ < ∞, νΣ(x
∗) > 0. Assume that as r →

∞

(

Ẑr(0), S̄r, Ŵ r
Σ(0)

)

⇒ (Z∗(0), D,W ∗
0 ) (6)

in M
K × (D[0,∞))K × R, where

Z∗(0) =

(

pkνk(x
∗)

νΣ(x∗)

W ∗
0

x∗
δx∗ , k = 1, ...,K

)

(7)

and

D(t) =

(

pkνk(x
∗)

νΣ(x∗)

t ∧W ∗
0

x∗
, k = 1, ...,K

)

, t ≥ 0. (8)

Then

(

Ẑr
k , k = 1, ...,K

)

⇒

(

pk
νk(x

∗)

νΣ(x∗)

W ∗
Σ

x∗
δx∗ , k = 1, ...,K

)

.

(9)

A. Proof of Theorem 1

The general idea of the proof of Theorem 1 is to first show

that in the diffusion limits all jobs with service times less than

x∗ are prioritized so that their corresponding workload and

queue length processes vanish. This implies that the processes

Ẑr
Σ converge weakly to a multiple of δx∗ . Then we use

functional limit theorems and the fact that FIFO is the tie-

breaking rule to prove that in the diffusion limit the queue

lengths and the workloads of job classes are divided according

to the proportions in the statement of the theorem. In the

proof, we follow the ideas of Peterson [21], with customers

having the residual service times not less than x∗ regarded as

the low priority (L) ones with necessary modifications. The

most important difference is that in [21] the priority of a job

cannot change. In our setting however, the priority of a job

can change from low to high (H). It happens every time a

job with service time x∗ receives some service and hence its

residual service time is decreased. Consequently, our problem

requires a somewhat more careful approach, described below

in more detail.

122 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



1) Additional notation: For k ∈ K, r ∈ R and t ≥ 0
denote

V r
k (t) = ⟨χ,Vr

k(t)⟩, V̂ r
k (t) = ⟨χ, V̂r

k(t)⟩,

V r
k,H(t) = ⟨χI[0,x∗),V

r
k(t)⟩,

Qr
k,H(t) = ⟨I[0,x∗),Z

r
k(t)⟩,

W r
k,H(t) = ⟨χI[0,x∗),Z

r
k(t)⟩,

V̂ r
k,H(t) = ⟨χI[0,x∗), V̂

r
k(t)⟩,

Q̂r
k,H(t) = ⟨I[0,x∗), Ẑ

r
k(t)⟩,

Ŵ r
k,H(t) = ⟨χI[0,x∗), Ẑ

r
k(t)⟩

and

V r
k,L(t) = V r

k (t)− V r
k,H(t), W r

k,L(t) = W r
k (t)−W r

k,H(t),

V̂ r
k,L(t) = V̂ r

k (t)− V̂ r
k,H(t), Ŵ r

k,L(t) = Ŵ r
k (t)− Ŵ r

k,H(t).

In general, subscript “H” stands for high priority jobs, i.e.

jobs with residual processing times strictly lower than x∗

and subscript “L” indicates low priority jobs, i.e. those with

residual service times greater than or equal to x∗.

Recall that in our notation

Er
Σ(t) =

∑

k∈K

Er
k(t), Êr

Σ(t) =
∑

k∈K

Êr
k(t),

E∗
Σ(t) =

∑

k∈K

E∗
k(t), W r

Σ(t) =
∑

k∈K

W r
k (t),

and similarly,

Qr
Σ,H(t) = ⟨I[0,x∗),Z

r
Σ(t)⟩, Q̂r

Σ,H(t) = ⟨I[0,x∗), Ẑ
r
Σ(t)⟩,

W r
Σ,H(t) = ⟨χI[0,x∗),Z

r
Σ(t)⟩, Ŵ r

Σ,H(t) = ⟨χI[0,x∗), Ẑ
r
Σ(t)⟩,

W r
Σ,L(t)=W r

Σ(t)−W r
Σ,H(t), Ŵ r

Σ,L(t)=Ŵ r
Σ(t)−Ŵ r

Σ,H(t).

Let Lr(t) denote the number of units of service dedicated to

jobs with initial service times equal to x∗ by time t ≥ 0 in

the r-th system. Observe for future reference that Sr
k(L

r(t))
is the number of fully served initial class k jobs with initial

service time x∗ by time t in the r-th system.

2) Concentration of the mass at x∗: We will first show that

Q̂r
Σ,H ⇒ 0, r → ∞. (10)

Observe that (10) implies

Ŵ r
Σ,H ⇒ 0, r → ∞ (11)

since

Ŵ r
Σ,H ≤ x∗Q̂r

Σ,H . (12)

For r ∈ R and t ≥ 0, let

τ r(t) = sup{s ∈ [0, t] : Q̂r
Σ,H(s) = 0},

which equals zero by definition if

{s ∈ [0, t] : Q̂r
Σ,H(s) = 0} = ∅.

Then for r ∈ R and t ≥ 0

Q̂r
Σ,H(t) ≤ Q̂r

Σ,H(τ r(t)) +
1

r

(

Er
Σ(r

2t)− Er
Σ(r

2τ r(t)) + 1
)

= Q̂r
Σ,H(τ r(t))+Êr

Σ(t)−Êr
Σ(τ

r(t))+
1

r
+r(t−τ r(t))αr

Σ.

Indeed, the inequality above follows from the fact that

clearly τ r(t) ≤ t, so we can bound the (diffusion scaled)

number of high priority customers in the system at time t
from above by an analogous number of customers at time

τ r(t) increased by the number of external arrivals in this

time interval. The addition of 1 on the right-hand side of the

inequality is needed because of a possibility that there is no

job with service time less than x∗ at time r2τ r(t) in the system

and a job with service time x∗ is chosen for processing at this

time, which immediately increases the number of jobs with

residual processing times less than x∗ by 1.

First we find an upper bound on Q̂r
Σ,H(τ r(t)). Fix r ∈ R

and t ≥ 0. If τ r(t) = 0, then Q̂r
Σ,H(τ r(t)) = Q̂r

Σ,H(0).

Otherwise, τ r(t) > 0. If Q̂r
Σ,H(τ r(t)) = 0, then any

nonnegative upper bound suffices, so we can also assume

that Q̂r
Σ,H(τ r(t)) > 0. Then Q̂r

Σ,H(τ r(t)−) = 0 and

Q̂r
Σ,H(τ r(t)) > 0. Therefore in the rth system at time τ r(t)

the exogeneous arrival process has a jump. This means that

Q̂r
Σ,H(τ r(t)) ≤ Êr

Σ(τ
r(t)) − Êr

Σ(τ
r(t)−). Combining the

bounds for τ r(t) = 0 or τ r(t) > 0 gives

Q̂r
Σ,H(τ r(t)) ≤ Q̂r

Σ,H(0) + Êr
Σ(τ

r(t))− Êr
Σ(τ

r(t)−),

where by convention Êr
Σ(0−) = Êr

Σ(0) = 0. Hence

Q̂r
Σ,H(t)≤Q̂r

Σ,H(0)+Êr
Σ(t)−Ê

r
Σ(τ

r(t)−)+
1

r
+r(t−τ r(t))αr

Σ.

(13)

For r ∈ R and t ≥ 0 let θr(t) = t − τ r(t) and θ̃r(t) =
θr(t) + 1

r2
. For now, suppose that

rθr ⇒ 0. (14)

Then, it follows from (14) that as r → ∞,

θr ⇒ 0 and θ̃r ⇒ 0. (15)

Fix r ∈ R and t ≥ 0. By (1), we have

Êr
Σ(t)−Êr

Σ(τ
r(t)−)= Êr

Σ(t)−
1

r
Er

Σ(r
2τ r(t)−)+rτ r(t)αr

Σ

which, together with the fact that the process Er
Σ is nonde-

creasing, implies

Êr
Σ(t)− Êr

Σ(τ
r(t)) ≤ Êr

Σ(t)−Êr
Σ(τ

r(t)−)

≤ Êr
Σ(t)−Êr

Σ

(

(

τ r(t)−
1

r2

)+
)

+
αr
Σ

r
.

Therefore,

Êr
Σ(t)− Êr

Σ(t− θr(t)) ≤ Êr
Σ(t)−Êr

Σ(τ
r(t)−)

≤ Êr
Σ(t)−Êr

Σ

(

(

t−θ̃r(t)
)+
)

+
αr
Σ

r
.
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By (2), (15) and the fact that E∗
Σ is continuous almost surely,

we obtain (see [5], Section 17) that for t ≥ 0 as r → ∞

Êr
Σ(t)− Êr

Σ(t− θr(t)) ⇒ 0

and

Êr
Σ(t)− Êr

Σ

(

(t− θ̃r(t))+
)

+
αr
Σ

r
⇒ 0.

Hence, as r → ∞

Êr
Σ(t)− Êr

Σ(τ
r(t)−) ⇒ 0. (16)

Since the space M
K × (D[0,∞))K ×R is separable, we can

apply the Skorohod representation theorem ([5], Theorem 6.7)

and assume that all the random elements in (6)-(8) are defined

on a common probability space (Ω,F ,P), on which as r → ∞
(

Ẑr(0), S̄r, Ŵ r
Σ(0)

)

(ω) → (Z∗(0), D,W ∗
0 ) (ω) (17)

in M
K × (D[0,∞))K × R for almost every ω ∈ Ω. Fix

such an ω. In this paragraph, all the random elements under

consideration are evaluated at this ω. Observe that from

the consistency conditions for functions Sx
k listed in Section

II-A it follows that, for a given r, S̄r
k(t) = Ẑk(0)(x

∗) for

t ≥ x∗Ẑr
Σ(0)(x

∗). By (17), there exists a finite constant C
such that Ẑr

Σ(0)(x
∗) ≤ C for all r ∈ R. This means that all

the functions S̄r
k as well as the functions Dk are constant on

[Cx∗,∞). In this case, convergence in the Skorohod topology

to a continuous limit implies convergence in the uniform

topology as well ([5], Section 12). Hence, by (17) as r → ∞

|Ẑr
Σ(0)(x

∗)−Z∗
Σ(0)(x

∗)| =

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∑

k∈K

S̄r
k

∥

∥

∥

∥

∥

∞

−

∥

∥

∥

∥

∥

∑

k∈K

Dk

∥

∥

∥

∥

∥

∞

∣

∣

∣

∣

∣

(18)

≤

∥

∥

∥

∥

∥

∑

k∈K

S̄r
k −

∑

k∈K

Dk

∥

∥

∥

∥

∥

∞

→ 0.

This, together with (6), (7), (17), gives us

Q̂r
Σ,H(0) = ⟨I[0,x∗), Ẑ

r
Σ(0)⟩ ⇒ ⟨I[0,x∗),Z

∗
Σ(0)⟩ = 0, r → ∞,

(19)

which in turn, together with (2), (13), (14), (16) implies (10).

Therefore it remains to prove (14). For each r ∈ R and

t ≥ 0, we examine the behavior of W r
Σ,H on time intervals

of the form (r2τ r(t), r2t] to derive an expression that relates

Ŵ r
Σ,H(t) and θr(t). In particular, since for each r ∈ R and

t ≥ 0, Qr
Σ,H(s) ̸= 0 for all s ∈ (r2τ r(t), r2t] and the service

discipline is SRPT, it follows that for each r ∈ R and t ≥ 0,

W r
Σ,H(r2t) ≤ W r

Σ,H(r2τ r(t)) + V r
Σ,H(r2t)− V r

Σ,H(r2τ r(t))

+ x∗ − r2(t− τ r(t)).

Again, the addition of x∗ on the right-hand side of the

inequality is needed because of a possibility that there are

only jobs with service time greater than or equal to x∗ at time

r2τ r(t) in the queue.

By applying diffusion scaling and rearranging, we obtain

for r ∈ R and t ≥ 0

Ŵ r
Σ,H(t) ≤ Ŵ r

Σ,H(τ r(t)) + V̂ r
Σ,H(t)− V̂ r

Σ,H(τ r(t)) +
x∗

r
+ (αr

Σ⟨χI[0,x∗), νΣ⟩ − 1)rθr(t).

Using the same line of reasoning that gave rise to (13), for

r ∈ R and t ≥ 0,

Ŵ r
Σ,H(t) ≤ Ŵ r

Σ,H(0) + V̂ r
Σ,H(t)− V̂ r

Σ,H(τ r(t)−) +
x∗

r
+ (αr

Σ⟨χI[0,x∗), νΣ⟩ − 1)rθr(t).

Since Ŵ r
Σ,H(t) ≥ 0 for all r ∈ R and t ≥ 0, it follows that

for such r and t

(1− αr
Σ⟨χI[0,x∗), νΣ⟩)rθ

r(t) ≤ Ŵ r
Σ,H(0) + V̂ r

Σ,H(t)

− V̂ r
Σ,H(τ r(t)−) +

x∗

r
. (20)

By (2) and the theorem assumption, we have that

lim
r→∞

(

1− αr
Σ⟨χI[0,x∗), νΣ⟩

)

= 1− αΣ⟨χI[0,x∗), νΣ⟩ > 0.

(21)

Hence, for r sufficiently large,
(

1− αr
Σ⟨χI[0,x∗), νΣ⟩

)

θr ≥ 0
for all t ≥ 0. Using Proposition 1, one can prove (see [12])

that

V̂ r
Σ,H ⇒ V ∗

Σ,H , r → ∞, (22)

where V ∗
Σ,H is a Brownian motion starting from zero with zero

drift and finite variance per unit time. Then (17) and (20)-(22)

together imply that θr ⇒ 0, r → ∞. By the same line of

reasoning that gave rise to (16), we have that for t ≥ 0

V̂ r
Σ,H(t)− V̂ r

Σ,H(τ r(t)−) ⇒ 0.

By using this, (6), (7), (12) and (19)-(21) we obtain (14).

3) Proportional breakdown: For r ∈ R let σr(t) be the

time of arrival to the rth system of the job with service

time x∗ which most recently completed service before time

t (if none has yet completed we define it as 0). Let σ̄r(t) =
1
r2
σr(r2t), t ≥ 0. We will now prove that σ̄r ⇒ e, where

e(t) = t for t ≥ 0. For t ≥ 0 we have

W r
Σ,L(t) ≥ V r

Σ,L(t)− V r
Σ,L(σ

r(t))− ur(t)

+ x∗ (Zr
Σ(0)(x

∗)− Sr
Σ(L

r(t))) , (23)

where ur(t) denotes the partial service (if any) that has been

performed in the time interval [σr(t), t) on the next job with

service time x∗. Recall that Sr
Σ(L

r(t)) is the number of fully

served initial jobs with initial service time x∗ by time t in

the rth system, so the last term is the workload of initial low

priority jobs still present in the system at time t. The fact that

(23) holds is a consequence of the FIFO discipline among the

jobs with the same residual service time. Notice that ur(t) ≤
x∗. On the other hand, we also have that for t ≥ 0

W r
Σ,L(t) ≤ V r

Σ,L(t)− V r
Σ,L(σ

r(t)−)− ur(t)

+x∗ (Zr
Σ(0)(x

∗)−Sr
Σ(L

r(t)))+⟨χI(x∗,∞),Z
r
Σ(0)⟩,

(24)
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where V r
Σ,L(0−) = V r

Σ,L(0) = 0 by convention. The last term

in (24) takes into account possible initial jobs with processing

times greater than x∗. Under the diffusion scaling Ŵ r
Σ,L(t) =

1
r
W r

Σ,L(r
2t) we have Ŵ r

Σ,L = Ŵ r
Σ − Ŵ r

Σ,H and by (5) and

(11),

Ŵ r
Σ,L ⇒ W ∗

Σ. (25)

Under the diffusion scaling, since Zr
Σ(0)(x

∗)−Sr
Σ(L

r(t)) ≥ 0,

(23) yields for t ≥ 0

Ŵ r
Σ,L(t) ≥ V̂ r

Σ,L(t)− V̂ r
Σ,L(σ̄

r(t))−
1

r
ur(r2t)

+ rαr
ΣνΣ(x

∗)(t− σ̄r(t)). (26)

Since σr(t) ≤ t, (26) gives us after rearranging

0 ≤ t− σ̄r(t) ≤
1

rαr
ΣνΣ(x

∗)

(

Ŵ r
Σ,L(t)

−V̂ r
Σ,L(t) + V̂ r

Σ,L(σ̄
r(t)) +

1

r
ur(r2t)

)

. (27)

Let T > 0. Since convergence in the Skorohod topology to a

continuous limit implies convergence in the uniform topology,

we have ∥Ŵ r
Σ,L∥T ⇒ ∥Ŵ ∗

Σ∥T . For t ∈ [0, T ], we can bound

V̂ r
Σ,L(σ̄

r(t)) by ∥V̂ r
Σ,L∥T , so (27) after taking norms gives

∥t− σ̄r(t)∥T ≤
1

rαr
ΣνΣ(x

∗)

(

∥Ŵ r
Σ,L∥T +2∥V̂ r

Σ,L∥T +
x∗

r

)

.

Define the continuous functions hr : R → R and h : R → R

by hr(x) = x
r

and h(x) = 0, x ∈ R. Then, by Theorem

2.7 of [5], hr(∥Ŵ
r
Σ,L∥T + 2∥V̂ r

Σ,L∥T + x∗

r
) ⇒ h(∥Ŵ ∗

Σ∥T +

2∥V̂ ∗
Σ,L∥T ) = 0. Thus the right hand side above converges

in probability to zero, which in turn implies that σ̄r ⇒ e by

Theorem 3.1 of [5].

For t ≥ 0, let

Ir(t) :=x∗
(

Ẑr
Σ(0)(x

∗)−S̄r
Σ(L̄

r(rt))
)

+rαr
ΣνΣ(x

∗)(t−σ̄r(t)),

where L̄r(t) = 1
r
Lr(rt). From (23)-(24) we have that

Ir(t) ≤ Ŵ r
Σ,L(t)− V̂ r

Σ,L(t) + V̂ r
Σ,L(σ̄

r(t)) +
1

r
ur(r2t),

(28)

Ir(t) ≥ Ŵ r
Σ,L(t)− V̂ r

Σ,L(t) + V̂ r
Σ,L(σ̄

r(t)−) +
1

r
ur(r2t)

− ⟨χI(x∗,∞), Ẑ
r
Σ(0)⟩. (29)

Notice that

⟨χI(x∗,∞), Ẑ
r
Σ(0)⟩ ⇒ 0, r → ∞. (30)

Indeed,

Ŵ r
Σ(0) = ⟨χI[0,x∗], Ẑ

r
Σ(0)⟩+ ⟨χI(x∗,∞), Ẑ

r
Σ(0)⟩.

By (7) and (18), ⟨χI[0,x∗], Ẑ
r
Σ(0)⟩ ⇒ W ∗

0 , so, taking (4) into

account, we see that (30) must hold.

Using Proposition 1, one can prove (see [12]) that

V̂ r
Σ,L ⇒ V ∗

Σ,L, r → ∞, (31)

where V ∗
Σ,L is a Brownian motion starting from zero with zero

drift and finite variance per unit time. From (28)-(29), using

(25), (30)-(31), the fact that σ̄r ⇒ e and the Random Time

Change Theorem ([5], Theorem 14.4) we have that

Ir ⇒ W ∗
Σ. (32)

We can now obtain the desired breakdown for the workload

processes. For t ≥ 0, k ∈ K we have the following inequali-

ties, analogous to (23)-(24):

W r
k,L(t) ≤ V r

k,L(t)− V r
k,L(σ

r(t)−)− ur
k(t)

+ x∗ (Zr
k(0)(x

∗)− Sr
k(L

r(t))) + ⟨χI(x∗,∞),Z
r
k(0)⟩,

(33)

W r
k,L(t) ≥ V r

k,L(t)− V r
k,L(σ

r(t))− ur
k(t)

+ x∗ (Zr
k(0)(x

∗)− Sr
k(L

r(t))) , (34)

where ur
k(t) denotes the partial service (if any) that has been

performed in the time interval [σr(t), t) on the next job of

class k with service time x∗. Notice that ur
k(t) ≤ x∗ for all

k ∈ K.
Under diffusion scaling, (33) yields

Ŵ r
k,L(t) ≤ V̂ r

k,L(t)− V̂ r
k,L(σ̄

r(t)−)−
1

r
ur
k(r

2t)

+ x∗
(

Ẑr
k(0)(x

∗)− S̄r
k(L̄

r(rt))
)

(35)

+ rαr
kνk(x

∗)(t− σ̄r(t)) + ⟨χI(x∗,∞), Ẑ
r
k(0)⟩

and (34) yields

Ŵ r
k,L(t) ≥ V̂ r

k,L(t)− V̂ r
k,L(σ̄

r(t))−
1

r
ur
k(r

2t)

+ x∗
(

Ẑr
k(0)(x

∗)− S̄r
k(L̄

r(rt))
)

(36)

+ rαr
kνk(x

∗)(t− σ̄r(t))

for t ≥ 0, k ∈ K. Since Zr
k ≤ Zr

Σ and χ is nonnegative, from

(30) we have that as r → ∞

⟨χI(x∗,∞), Ẑ
r
k(0)⟩ ⇒ 0. (37)

Suppose that for each k ∈ K, r ∈ R

Irk(t) :=x∗
(

Ẑr
k(0)(x

∗)−S̄r
k(L̄

r(rt))
)

+rαr
kνk(x

∗)(t−σ̄r(t))

⇒
αkνk(x

∗)

αΣνΣ(x∗)
W ∗

Σ(t). (38)

Using this, (35)-(37), the fact that σ̄r ⇒ e and the Random

Time Change Theorem, we can write that

Ŵ r
k,L ⇒

αkνk(x
∗)

αΣνΣ(x∗)
W ∗

Σ = pk
νk(x

∗)

νΣ(x∗)
W ∗

Σ. (39)

From Section IV-A2 and (30) it follows that Ẑr
Σ ⇒

Ŵ∗

Σ

x∗
δx∗ .

Taking this into account gives us (9). Therefore it remains to

prove (38).

Recall from (2) that αr → α as r → ∞ and that by

the Skorohod representation theorem we may assume that all

the random elements in (6)-(8) are defined on a common

probability space (Ω,F ,P) such that (17) holds for almost
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every ω ∈ Ω. In what follows, all the random elements are

evaluated at such an ω. Using an analogous line of reasoning

as the one that led us to (18) we obtain that, as r → ∞,

|Ẑr
k(0)(x

∗)−Z∗
k(0)(x

∗)| → 0 (40)

and, similarly,

sup
t≥0

|S̄r
k(t)−Dk(t)| → 0. (41)

Observe that

Irk −
αkνk(x

∗)

αΣνΣ(x∗)
Ir = x∗

(

Ẑr
k(0)(x

∗)−
αkνk(x

∗)

αΣνΣ(x∗)
Ẑr

Σ(0)(x
∗)

+
αkνk(x

∗)

αΣνΣ(x∗)
S̄r
Σ(L̄

r(rt))− S̄r
k(L̄

r(rt))

)

.

By (7),

Z∗
k(0)(x

∗) =
αkνk(x

∗)

αΣνΣ(x∗)

W ∗
0

x∗
=

αkνk(x
∗)

αΣνΣ(x∗)
Z∗

Σ(0)(x
∗),

so by (40),
∣

∣

∣

∣

Ẑr
k(0)(x

∗)−
αkνk(x

∗)

αΣνΣ(x∗)
Ẑr

Σ(0)(x
∗)

∣

∣

∣

∣

→ 0

as r → ∞. Similarly, by (8) and (41)

sup
t≥0

∣

∣

∣

∣

S̄r
k(L̄

r(rt))−
αkνk(x

∗)

αΣνΣ(x∗)
S̄r
Σ(L̄

r(rt))

∣

∣

∣

∣

→ 0

as r → ∞, which implies that the limits as r → ∞ of Irk and
αkνk(x

∗)
αΣνΣ(x∗)I

r coincide and, by (32), proves (38).

V. THE CASE OF νΣ(x
∗) = 0

In this case we take a seemingly different approach. We start

from modeling an exogeneous arrival process EΣ common

for all jobs. When a job arrives at the system, we randomly

assign it to a class 1, ...,K with probabilities p1, ..., pK
correspondingly1. We also assume that there are no customers

in the system at time 0. This is described more formally below.

Let (Ω,F ,P) be the probability space on which the stochas-

tic elements of the model are defined. Let EΣ be the exogenous

arrival process, i.e. for t ≥ 0, EΣ(t) is the number of arrivals

to the system in the time interval (0, t]. It is a delayed renewal

process with rate αΣ > 0 such that the interarrival times

have standard deviation aΣ ≥ 0. Then job j arrives at time

T j = inf{t ≥ 0 : EΣ(t) ≥ j}.

Let {ϕi}i∈N be i.i.d. random vectors, independent of EΣ

such that for each i ϕi = (ϕi,1, ..., ϕi,K), where ϕi,k = 1 if

job i belongs to class k and ϕi,k = 0 otherwise. We assume

that P(ϕi = ek) = pk, where ek is the kth unit vector in

R
K and pk ∈ (0, 1) for each k ∈ K,

∑

k∈K pk = 1. Put

p = (p1, ..., pK). Let Φ(n) = (Φ1(n), ...,ΦK(n)) =
∑n

i=1 ϕi.

In words, Φk(n) is the number of class k jobs among the first n
jobs which arrived in the system. We can now define Ek(t) =
Φk(EΣ(t)), k ∈ K, t ≥ 0 and E(t) = (E1(t), ..., EK(t)).
Put αk = pkαΣ, k ∈ K and α = (α1, ..., αK). We define the

1As we will see, this is a special case of the approach considered in Sections
1-4, with the exogeneous arrival process E having dependent coordinates.

processes Z , W , Q and V analogously as in Section II. We

assume that Zk(0) = 0 for each k ∈ K.

Let vi represent the initial service time of the ith job in the

system. We assume that (ϕi, vi)i≥1 are i.i.d. random vectors

independent of E and that νk is the conditional distribution

of vi under the condition of ϕi = ek, k ∈ K. We put νΣ =
∑

k∈K pkνk. For j ∈ N, k ∈ K and t ≥ T j let wj(t) denote

the residual service time of job j at time t. As before, the

SRPT protocol is used.

We apply diffusion scaling for a sequence of systems

similarly as in Section III. Let R be a sequence of posi-

tive numbers increasing to infinity. Consider an R-indexed

sequence of stochastic models presented in the previous

paragraph. For each r ∈ R, there are stochastic primitives

Er
Σ, {ϕ

r
i }i∈N,Φ

r
k, E

r, {vri }i∈N with parameters αr, arΣ, p
r
k, ν

r
k .

The stochastic elements of each model are defined on a prob-

ability space (Ωr,Fr,Pr) with expectation operator E
r and

variance operator Varr. We also have arrival times {T r,j}j∈N,

a state descriptor Zr and processes W r, Qr,Vr.

A diffusion scaling is applied to each model in the R-

indexed sequence as in (1). Furthermore, for each r ∈ R and

t ≥ 0, let

Φ̂r(t) =
1

r
(Φr(

⌊

r2t
⌋

)−
⌊

r2tpr
⌋

).

Let αΣ, aΣ ∈ (0,+∞) and define αΣ(t) = αΣt, t ≥ 0,

p = (p1, ..., pk) ∈ (0, 1)K ,
∑

k∈K pk = 1. We make

the following asymptotic assumptions for the sequence of

stochastic primitives. Assume that as r → ∞,

αr
Σ → αΣ, arΣ → aΣ, pr → p, Êr

Σ ⇒ E∗
Σ,
(42)

where E∗
Σ is a Brownian motion starting from zero with drift

zero and variance a2Σα
3
Σ per unit time. Moreover, we assume

that νr = ν, i.e., νr does not depend on r.

We will now determine the limits of processes Φ̂r and Êr

as r → ∞. We first apply Proposition 1 to the processes Φ̂r =
(

Φ̂r
k, r = 1, ...,K

)

. Fix k ∈ K. For each r ∈ R, {ϕr
i,k}i∈N

are independent Bernoulli distributed random variables such

that Pr(ϕr
i,k = 1) = prk. Hence E

rϕr
i,k = prk and Varr ϕr

i,k =
prk(1 − prk). Using the fact that prk → pk and Proposition 1,

we obtain

1

r





⌊r2t⌋
∑

i=1

ϕi,k − ⌊r2t⌋pk



⇒ Φ∗
k, r → ∞, (43)

where Φ∗
k is a Brownian motion starting from zero with drift

zero and variance pk(1 − pk) per unit time. By using the

Cramer-Wold device, multidimensional central limit theorem

and Prohorov theorem, we can generalize this to joint conver-

gence Φ̂r ⇒ Φ∗, where Φ∗ is a K-dimensional Brownian

motion starting from 0 with drift 0 and covariance matrix

C = [cij ]i,j such that cii = pi(1−pi), ci,j = −pipj for i ̸= j
(cf. [26], proof of Theorem 4.3.5). Moreover, this convergence

is joint with (42) and Φ∗ is independent of E∗
Σ.
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Now we use Proposition 1 again to obtain the limit of the

process Êr =
(

Êr
k, r = 1, ...,K

)

. Fix k ∈ K. Observe that

Êr
k(t) =

Φr
k

(

Er
Σ(r

2t)
)

− r2tαr
Σp

r
k

r
.

Therefore, by Proposition 1, Êr
k ⇒ E∗

k , where E∗
k(t) =

Φ∗
k(αΣt) + pkE

∗
Σ(t), t ≥ 0. Note that E∗

k is a Brownian

motion starting from 0 with drift 0 and variance per unit time

αΣpk(1−pk)+p2kα
3
Σa

2
Σ. Therefore, by an analogous argument

as in the previous paragraph, we obtain joint convergence

Êr ⇒ E∗, where E∗(t) = Φ∗(αΣt) + pE∗
Σ(t), t ≥ 0.

Note that E∗ is a K-dimensional Brownian motion starting

from 0 with drift 0 and covariance matrix D = [dij ]i,j such

that dii = p2i a
2
Σα

3
Σ + α2

Σpi(1 − pi), dij = Cov(Φ∗
i (αΣ) +

piE
∗
Σ(1),Φ

∗
j (αΣ) + pjE

∗
Σ(1)) = pipja

2
Σα

3
Σ − α2

Σpipj , i ̸= j.

Before we proceed, we present a general property of the

SRPT protocol, which will be used in the following proofs.

Lemma 1. Consider a single-server queueing system with
customers served according to the SRPT protocol. Let t ≥ 0
and let i, j be two jobs present in the system at time t with
initial processing times vi, vj and residual processing times
wi(t), wj(t) respectively. Then the intervals (wi(t), vi) and
(wj(t), vj) are disjoint.

Proof. Suppose that (wi(t), vi) ∩ (wj(t), vj) ̸= ∅. First,

consider the case when neither of the intervals is a subset of the

other. Without loss of generality we may assume that wi(t) ≤
wj(t) < vi ≤ vj , thus (wi(t), vi) ∩ (wj(t), vj) = (wj(t), vi).
This means that the job j, even though its initial processing

time was not less than vi, was partially served so that its

residual processing time is lower than the initial processing

time of the job i. Since the system uses the SRPT protocol,

this is possible only when vi = vj or when i arrived after j. In

the first case, the start of the processing immediately breaks

the tie so i cannot be partially processed before j gets fully

serviced, thus wi(t) = vi and therefore this case is impossible.

In the second case, let t1 be the time of the arrival of the job

i. If wj(t1) > vi, then for any t ≥ t1 the job j could only be

chosen for processing after i had been fully serviced, which

means that this case is impossible. If wj(t1) ≤ vi, then for

any t ≥ t1 the job i could only be chosen for processing after

j is fully serviced, which means that this case is impossible

as well.

Finally, consider the case when one of the intervals is a

subset of the other. Without loss of generality we can assume

that wj(t) ≤ wi(t) < vi ≤ vj . Arguing as above, we can

obtain that this is also impossible. This leads to a contradiction,

therefore the intervals (wi(t), vi) and (wj(t), vj) are disjoint.

We are now ready to formulate the main theorem in the

case under consideration.

Theorem 2. Let x∗ < ∞, νΣ(x
∗) = 0. Assume that for every

k ∈ K the limit
γk = lim

x↑x∗

fk(x), (44)

where fk is the Radon–Nikodym derivative of the measure
νk with respect to νΣ, exists. Under the assumptions of this
section, we have that, as r → ∞,
(

Ẑr
k , k = 1, ...,K

)

fd
→

(

pkγk
W ∗

Σ

x∗
δx∗ , k = 1, ...,K

)

. (45)

Proof (somewhat heuritstic). We first show that

Ẑr
Σ ⇒

W ∗
Σ

x∗
δx∗ , r → ∞. (46)

and that, for any x ∈ (0, x∗)
〈

I[0,x), Ẑ
r
Σ(t)

〉

⇒ 0,
〈

χI[0,x), Ẑ
r
Σ(t)

〉

⇒ 0, r → ∞.

(47)

This is done similarly as in the first part of the proof of

Theorem 1.

Fix t > 0 and ε > 0. Let {irj}j be the sequence of jobs

present in the system r and having residual processing time

in (x∗ − ε, x∗] at time t, i.e. such that wr
ij
(t) > x∗ − ε. In

what follows, we will simply write ij instead of irj when the

system in question can be inferred from the context. Let nr(t)
be the number of such jobs (of all classes) in the rth system

at time t. Notice that

nr(t)
∑

j=1

vrij ≥ W r
Σ(t)−

〈

χI[0,x∗−ε],Z
r
Σ(t)

〉

. (48)

We claim that

nr(t)
∑

j=1

vrij ≤ W r
Σ(t)−

〈

χI[0,x∗−ε],Z
r
Σ(t)

〉

+ ε. (49)

Indeed, by Lemma 1, the intervals of the form (wr
ij
(t), vrij )

are pairwise disjoint. All of these intervals are contained in

(x∗ − ε, x∗] by the definition of the sequence {irj}j , therefore

the sum of their lengths cannot exceed ε.

By (5) and (47)-(49) we obtain that as r → ∞2

1

r

nr(r2t)
∑

j=1

vrij ⇒ W ∗
Σ(t). (50)

Observe that for r ∈ R and almost every (with respect to νΣ)

x ∈ (x∗ − ε, x∗)

P
r(ϕr

i = ek|v
r
i = x)

=
P

r(ϕr
i = ek)

Pr(vri = x)
·Pr(vri = x|ϕr

i = ek)

= prkfk(x). (51)

Consider the sequence {vrijϕ
r
ij ,k

}j . Obviously ϕr
ij ,k

= 1 if

the job irj belongs to the class k and ϕr
ij ,k

= 0 otherwise.

Similarly as before we can show that the limits of Ŵ r
k (t)

and 1
r

∑nr(r2t)
j=1 vrijϕ

r
ij ,k

coincide. By (47) and the fact that

Qr
Σ(t) = nr(t) +

〈

I[0,x∗−ε],Z
r
Σ(t)

〉

we obtain that as r → ∞

n̂r(t) :=
1

r
nr(r2t) ⇒ Q∗

Σ(t) =
W ∗

Σ(t)

x∗
. (52)

2In the context of diffusion scaling, we define the sequence {ij}j for time

r2t instead of t.
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If nr(r2t) is of the order less than r, then by (47)-(48) and the

bound vi ≤ x∗ for all i, Ŵ r
Σ(t) is asymptotically negligible.

On the other hand, if nr(r2t) is large, using the law of large

numbers, we get,

1

nr(r2t)

nr(r2t)
∑

j=1

vrijϕ
r
ij ,k

≈
1

nr(r2t)

nr(r2t)
∑

j=1

E
r
(

vrijϕ
r
ij ,k

)

(53)

and by (51), (44),

E
r
(

vrijϕ
r
ij ,k

)

=

∫ x∗

x∗−ε

uPr(ϕr
ij
= ek|v

r
i = u)dF r

j (u) (54)

= prk

∫ x∗

x∗−ε

ufk(u)dF
r
j (u)

= prk(γk + o(1))(x∗ +O(ε)),

where F r
j is the distribution function of vrij and O(ε) ∈

[−ε, 0]. Therefore, from (52)-(54) and (42) it follows that, as

r → ∞, any weak limiting distribution of a subsequence of

the sequence

1

r

nr(r2t)
∑

j=1

vrijϕ
r
ij ,k

=
n̂r(r2t)

nr(r2t)

nr(r2t)
∑

j=1

vrijϕ
r
ij ,k

is stochastically bounded from below by the distribution of

pk
W ∗

Σ

x∗
(γk(x

∗ − ε) + o(1))

and stochastically bounded from above by the distribution of

pkW
∗
Σ(γk + o(1)).

By letting ε ↓ 0 and taking (46), (50) into account we obtain

the desired breakdown and convergence of one-dimensional

distributions. It is easy to extend this result to convergence of

finite-dimensional distributions.

VI. SIMULATIONS

In this section we present the results of our computer

simulations. We simulated the system described in Section II

with two user classes. The times between arrivals of jobs of

each class are exponentially distributed with parameters α1,

α2 correspondingly.

We first consider the case when νΣ(x
∗) > 0. We assume

that α1 = 0.25, α2 = 1.25. Hence αΣ = 1.5. The initial

service times of the first class take the values 0.5, 1, 1.5
with equal probabilities and the initial service times of the

second class take the values 0.2, 0.3, 0.4, 0.6, 1.5 with equal

probabilities. Then we have x∗ = 1.5, ρ = 1, p1 = 1/6,

p2 = 5/6, νΣ(1.5) = 2/9 and p1ν1(1.5)/νΣ(1.5) = 1/4. We

assume that there are no customers in the system at time 0.

The results of the simulation in this case are shown in Fig. 1.

Let us add an initial condition consisting of 25 jobs in each

of two classes, with the same service time distributions as

jobs arriving in the system in the corresponding class. Notice

that their workloads are not even approximately distributed

according to the asymptotic proportions stated in Theorem 1.

The results are shown in Figure 2.

Now, let us change the initial condition. It still consists of

25 jobs in each class, but their processing times are distributed

uniformly on [0, 3], which is even further from the assumptions

on the initial condition in Theorem 1. The results are shown

in Fig. 3.

Now let us consider the case when νΣ(x
∗) = 0. Assume

that α1 = 1, α2 = 0.6. Then αΣ = 1.6. The initial service

times are uniformly distributed in the interval [0, 1] and [2/3, 1]
correspondingly. This gives us x∗ = 1, ρ = 1, p1 = 0.625,

p2 = 0.375, γ1 = 4/7 and p1γ1 = 5/14 ≈ 0.357. We assume

that there are no customers in the system at time 0. The results

are shown in Fig. 4.

We add an initial condition consisting of 25 jobs in each of

two classes, with the same service time distributions as jobs

arriving in the system in the corresponding class. The results

are shown in Fig. 5.

Let us summarize the results. In Fig. 1 we can observe in the

left chart that the proportion of workload of class 1 to the total

workload in the system stabilizes at p1ν1
(

3
2

)

/νΣ
(

3
2

)

= 1/4
after a long time has passed, which confirms that Theorem

1 holds true. Moreover, we can notice that the blue graph in

the right chart illustrating the predicted workload of class 1

obtained by applying Theorem 1 “lies close” to the red graph

presenting the actual workload of class 1. The prediction at

a given time is more accurate, if there are more tasks in the

system at this time.

Adding an initial condition in the simulation in Fig. 2

does not noticeably change the situation, even though at time

0 a large amount of workload is not distributed between

the two classes according to the proportions required by the

assumptions in Theorem 1. We can also observe less instability

in the left chart, since with such a number of initial tasks the

queue lengths remains at higher levels, where the proportions

are more stable. However, in Fig. 3 we can see that an

initial condition consisting of tasks greatly different from those

arriving in the system results in a notably slower convergence.

While the decreasing trend is still visible in the left chart, it

is very small in magnitude and in the simulated time horizon

the system did not manage to stabilize. Therefore, applying

Theorem 1 to predict the proportion of class 1 workload

to the total workload in the system gives us an inaccurate

approximation and the assumptions for the initial conditions

cannot be omitted.

In Fig. 4-5 we can see that if ν(x∗) = 0, we also obtain

similar results as above and can make analogous observations.

This indicates that Theorem 2 (and even its generalized form,

without assuming a zero initial condition) holds true.

VII. CONCLUSION

In this paper, we have proved a diffusion limit theorem for

the measure-valued state descriptor for a single-server queuing

system with multiple job classes and bounded processing times

of arriving jobs. In particular, we have shown that, under

suitable assumptions, the workload and the queue length in the
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Fig. 1. Simulation in the case of x∗ < ∞, νΣ(x
∗) > 0. The left chart illustrates the proportion of workload of class 1 to the total workload in the system

as a function of time. The right chart presents the predicted workload of class 1 obtained as a result of applying Theorem 1 (blue) and the actual workload
of class 1 (red).

Fig. 2. Simulation in the case of x∗ < ∞, νΣ(x
∗) > 0 with a non-zero initial condition. The interpretations of charts is the same as in Fig. 1.

Fig. 3. Simulation in the case of x∗ < ∞, νΣ(x
∗) > 0 with a different initial condition.

diffusion limit are divided between these classes according to

specific proportions. This result can be applied in practice –

it can be used to approximate proportions between workloads

of different classes in the long run. The simulations presented

in the last section indicate that it should be possible to further

generalize Theorem 2 by removing the zero initial condition

requirement.
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