
Discovering relationships between data in an

enterprise information system using log analysis

Łukasz Korzeniowski

0000-0001-8458-9825

Nordea Bank Abp SA

Satamaradankatu 5, FI-00020,

Helsinki, Finland

Email: lukasz.korzeniowski@protonmail.com

Krzysztof Goczyła

0000-0003-3009-8988
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Abstract—Enterprise systems are inherently complex and
maintaining their full, up-to-date overview poses a serious chal-
lenge to the enterprise architects’ teams. This problem encour-
ages the search for automated means of discovering knowledge
about such systems. An important aspect of this knowledge is
understanding the data that are processed by applications and
their relationships. In our previous work, we used application
logs of an enterprise system to derive knowledge about the
interactions taking place between applications. In this paper,
we further explore logs to discover correspondence between
data processed by different applications. Our contribution is
the following: we propose a method for discovering relationships
between data using log analysis, we validate our method against a
benchmark system AcmeAir and we validate our method against
a real-life system running at Nordea Bank.

I. INTRODUCTION

L
ARGE enterprises, especially those with a long history

of operation, face the challenge of modernizing their

processes and adapting them to the changing environment.

One of the key, and often the most challenging, aspects

of such adaptation is the modernization of the enterprise’s

IT infrastructure. This is usually a complex endeavor, that

includes exiting legacy systems, reorganizing the architecture,

and harmonizing the data usage across the enterprise system.

Each of these activities requires the enterprise architects team

to have a good understanding of the existing IT infrastructure

constituting the enterprise system, including the processes, ap-

plications participating in them, and the data being processed.

In [1] we proposed a method for discovering the knowledge

about the interactions between applications in an enterprise

system based on the analysis of application logs. We chose

this type of analysis as the basis for our method due to some

interesting properties of logs. Firstly, logging is a common

practice present in IT from its very beginning, meaning

that both legacy and modern applications are expected to

create some sort of log (a trace of the actions executed

by an application). Secondly, logs contain rich information,

which blends the working application’s technical and business

aspects. Lastly, log entries tend to be kept up-to-date with

the executed application code. All of these properties make
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application logs a perfect candidate for deriving the actual

knowledge about various aspects of the enterprise system in

an automated way.

In this paper, we further explore the potential of application

log analysis in terms of supplying enterprise architects with

valuable information about the enterprise system. This time,

we focus on the data processed by applications. We try

to find correspondence between data processed by different

applications, which can be treated as good candidates for

reconstructing relationships between data models used by

different applications of the system. This information can

be valuable in many aspects – it allows for the “detection”

of pieces of information used by various applications, it

allows for explaining information from legacy applications by

finding its correspondence to information in modern (well-

documented) applications, and it allows for attaching some

business meaning to information by utilizing the business part

of log entries. Our work fits in the domain model extraction

area of the landscape of automated log analysis proposed by

the authors of [2]. Other research in this area includes ontology

discovery with process mining [3], search query categorization

into a predefined taxonomy using search log analysis [4], or

learning expert knowledge on applying security rules based on

security log [5]. Our contribution to the body of knowledge is

three-fold:

• we propose a method for automated discovery of rela-

tionships between data processed by applications, using

textual analysis of the log content,

• we validate our method on the benchmark system

AcmeAir [6],

• we validate our method on a real-life system running at

Nordea Bank.

The rest of the paper is organized as follows. In Section

II, we present a formal statement of the problem. Section III

describes the proposed method of log analysis. In section IV,

we introduce the two datasets used for the evaluation of our

method and we define the evaluation criteria. In Section V, we

compare our method with alternative approaches and describe

the related work. We present the conclusions and plans for

future work in Section VI.
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Fig. 1. An example of a fragment of an enterprise system S from the banking
domain, related to the execution of cash transfers. The yellow color denotes
different applications constituting the system. Red, green, and blue colors
denote the data attributes processed by each of the applications.

II. PROBLEM STATEMENT

Let enterprise system S consists of a set of applications

A = {a1, . . . , an}. Let each application ai ∈ A process some

data represented by a set of data attributes Di = {di
1
, . . . , di

ki}.

For each data attribute dik ∈ Di, we denote the set of potential

values that the attribute can take by V (i, k).
A fragment of an example enterprise system with applica-

tions and respective data attributes is presented in Fig. 1. The

presented fragment is related to the processing of cash trans-

fers in a bank and consists of three applications - managing

clients, managing accounts, and cash transfer execution.

For any two data attributes dik, d
j
l , we define their level of

similarity using the Jaccard index

J(dik, d
j
l ) =

|V (i, k) ∩ V (j, l)|

|V (i, k) ∪ V (j, l)|
(1)

We define a data relationship graph G(S) = (U,E) as an

undirected graph, where E is the set of edges consisting of all

pairs of related data attributes dik, d
j
l , and U is the respective

set of vertices. An example of such a graph is presented in

Fig. 2.

Let L(ai) = (li
1
, . . . , li

ki) denote the log of application ai ∈
A, represented by a tuple of log entries.

We define the problem of discovering data relation-

ships as follows. Having a set of application logs L =
{L(a1), . . . , L(an)}, find approximate graph G

′

= (U
′

, E
′

).

III. PROPOSED METHOD

A. Method Overview

We propose a method that treats a log as a text. Such an

approach has several benefits. It does not require any arbitrary

assumptions to be made about the log content, which results

in a broader scope of the method’s usability. It also does

not require additional preprocessing of the log, apart from

unifying the log format across applications. Our method does

not require any knowledge of the underlying data attributes

for each application – they are discovered from the log

automatically. Fig. 3 presents an overview of the steps that

our method consists of.

Our method is parameterized by the following hyper-

parameters:

• N – the maximum length of n-gram embedding of a

token,

• ies – inner embedding similarity threshold,

socialSecurityNumber accountOwner sourceAccount

targetAccountIBAN

accCurrency transferCurrency

Fig. 2. A data relationship graph for the example system presented in
Fig. 1. Edges represent relationships between data attributes from different
applications. The coloring of nodes matches the coloring in Fig. 1.
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Fig. 3. Overview of data relationship discovery method.

• oes – outer embedding similarity threshold,

• mt – minimum number of tokens sharing the same

embedding that is required for the embedding to be

considered,

• ml – minimum length for a token to be considered valid.

The following subsections describe each of the steps in detail.

B. Token Embedding

We process the log of each application a ∈ A separately.

For each log entry, we extract a list of tokens using the regular

expression [@.A−Za− z0−9−]+. For each token in the log

entry and each k ∈ {1, . . . , N}, we create its embedding as

a k-gram of words [7] preceding the given token in the log

line. Such an approach means that the same token can have

multiple embeddings for a given value of k, depending on

the context (consisting of k preceding tokens). An example

of such embeddings is presented in Fig. 4. It can be noticed

that “NRT”, “destPort” and “miles” tokens have different

embeddings for both log lines due to different neighbor tokens

in each of the lines.

For each value of k and for each unique embedding e, we

maintain the set of all tokens sharing this embedding within

the L(a), which we denote as Emba(e, k). We denote the set

of all k-gram embeddings within a as Embak, and the set of

Fig. 4. 1- and 2-gram embeddings for sample log entries. Yellow color denotes
tokens with multiple embeddings.
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Fig. 5. Tokens sharing the same 1- and 2-gram embedding for sample log
entries from Fig. 2.

all embeddings within L(a) as Emba =
⋃

k∈{1,...,N} Embak .

Fig. 5 shows groups of tokens sharing the same embedding.

For given k-gram embedding e consisting of tokens

(tk, tk−1, . . . , t1) and l < k, we define an l-cut operation on

e, denoted as e|l, as follows: e|l = (tl, tl−1, . . . , t1).

C. Embedding Optimization

The result of the previous step is ambiguous – the same

groups of tokens are represented with multiple embeddings,

for different values of k ∈ {1, . . . , N}. To remove this

ambiguity, we search for the highest value of k such that

k-gram embedding of the groups of tokens represents them

better than k+1-gram embedding. The longer the embedding,

the more precisely it describes the represented tokens.

We start with the set of initial embeddings E that consists

of all 1-gram embeddings. For each 2-gram embedding e, we

then take the set of all tokens that it represents Emba(e, 2).
We compare this set with the set of all tokens represented as

1-cut of e, using the Jaccard index. If the index value is above

the ies threshold, we substitute the e|1 embedding in E with

e. We repeat this procedure for longer k-grams until k = N ,

each time comparing the k-gram embedding with its k-1-cut.

In the end, the set E contains all the embeddings for log L(a)
after optimization, which we denote as OEmba. Fig. 6 shows

the two consecutive steps of the optimization process.

OEmba(e) denotes the set of tokens represented by em-

bedding e within log L(a). The above algorithm ensures that

there is only one embedding (one value of k) that represents

a given set of tokens. Fig. 7 presents the example outcome of

the optimization process.

D. Token Filtering

We further optimize the set of embeddings. For each appli-

cation log L(a) and each embedding e ∈ OEmba:

• we discard e if |OEmba(e)| < mt,

• we define the filtered set of tokens, such that

∀e∈OEmbFEmba(e) = {t ∈ OEmba(e)|length(t) ≥
ml}.

FEmba(e) denotes the final set of tokens represented by

the embedding e within application log L(a), while FEmba

represents the set of all final embeddings for application a,

Fig. 6. Steps of the example optimization process for embeddings presented
in Fig. 5 and ies threshold of 0.9. The yellow color denotes the k− 1 cut of
the embedding. Each row in the table presents a step in the process. Green
cells denote the embeddings that have been accepted and red cells denote the
embeddings that have been rejected.

Fig. 7. The outcome of the example process presented in Fig. 6 Green cells
denote the embeddings that have been extended as part of the optimization.

and FEmb =
⋃

a∈A FEmba is a set of all embeddings in the

system.

The first optimization removes embeddings that represent

only a few tokens. Such embeddings are interpreted as rep-

resentations of static parts of the log entry, which are of less

interest in terms of data relationship discovery. The second

optimization removes short tokens, which decreases the chance

of discovering accidental relationships.

E. Graph Estimate Construction

We calculate a distance matrix between all FEmb embed-

dings using the Jaccard index as the distance measure:

∀e1,e2∈FEmb,e1 ̸=e2dist(e1, e2) =
|FEmb(e1) ∩ FEmb(e2)|

|FEmb(e1) ∪ FEmb(e2)|
(2)

We filter pairs of embeddings based on their distance, using

oes as the threshold, above which the embedding relationship

is considered strong enough and should be retained. The

retained embedding pairs form the edges of our approximate

graph G
′

and respective embeddings become the vertices

of the graph. Fig. 9 presents an example distance matrix

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA: DISCOVERING RELATIONSHIPS BETWEEN DATA IN ENTERPRISE SYSTEM USING LOG ANALYSIS 143



Fig. 8. The final set of embeddings for sample log entries presented in Fig. 4.

Fig. 9. Distance matrix for final embeddings from Fig. 8, based on the Jaccard
index.

for the final embeddings presented in Fig. 8. The respective

graph estimate is shown in Fig. 10, which shows a detected

relationship between originPort and destPort data attributes.

IV. METHOD EVALUATION

A. Dataset Overview

We evaluate our method using two datasets:

• AcmeAir – a dataset allowing us to assess the accuracy

of our method on a benchmark system, that we have full

knowledge about,

• NDEASET2 – a dataset from a real-life enterprise system

running at Nordea Bank.

Both datasets are described in detail in subsequent sections.

B. Benchmark Dataset

AcmeAir [6] is an open-source implementation of a ficti-

tious flight reservation system that is commonly used as a

benchmark system [8]. It consists of a web application and

several restful web services that contribute entries to a com-

mon log file. AcmeAir provides very limited documentation

that allows deriving only the data model (Fig. 11).

The AcmeAir documentation does not provide a component

diagram but limits itself only to listing backend services with

their responsibilities:

• BookingService - creating new bookings and canceling

existing bookings for a given customer,

Fig. 10. Graph estimate for the set of final embeddings and oes threshold of
0.25.

• CustomerService - creating and updating customer infor-

mation, managing the customer’s session,

• FlightService - allowing users for searching for flights by

airports and/or departure dates and searching for flight

segments.

However, based on the analysis of the system’s source code,

we have reconstructed missing elements of the component

model, which are presented in Fig. 12.

All AcmeAir components put their log entries into a com-

mon log file in a standardized manner. Each log entry produced

by AcmeAir consists of the following elements (see Fig. 13

for a log sample):

• Timestamp – date and time of creating the log entry,

• Logging level – either DEBUG or INFO,

• Source – the name of the component that created the

entry,

• Content – logged message.

In our analysis, we use logs produced by a fork of

AcmeAir [9] which extends the logging to cover HTTP re-

quests/responses issued within AcmeAir. We use the AcmeAir

driver – a built-in simulator of user interactions with the

system – to generate a log file used in further analysis. The

workload is generated in a multi-threaded manner. We use

five threads to simulate concurrent actions taken by users of

the web application. It is important to note that although the

log is generated in a multithreaded way, log entries do not

contain any information allowing one to identify a thread

within which specific entries are logged. We use a log fragment

of 1000000 lines (file size: 314MB). We have found that

larger log fragments do not introduce more information as

the patterns appearing in the log keep repeating.

As part of log preprocessing, we performed the following

transformations to the log:

• we transform the content into a CSV format to be aligned

with our real-life dataset. Each log entry is described by

timestamp, source, and message.

• For the log entries where HTTP request/responses are

logged, we derive the source from the HTTP endpoint.

Such an approach better reflects the actual relationship

between the data and the service that processes them.

Both the original and the preprocessed logs are available in

[9].

C. Real-life Dataset

We used a log dataset NDEASET2 from a real-life system

deployed at Nordea Bank, which we refer to as NDEASYS.

As compared to the NDEASET1 dataset described in our

previous work [1], NDEASET2 covers a full working week

of the NDEASYS. The total size of the dataset is larger by

an order of magnitude (95GB). It covers one more application

and one additional process (daily reporting). We followed the

same rules for removing bias as described in [1] to ensure

proper diversity of the dataset, which include:

• team diversity – applications built by teams of different

sizes, experiences, locations,
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Fig. 11. Class diagram of AcmeAir system available in its documentation.

Web application

Booking Flight Login Customer

MongoDB

Fig. 12. Component model of AcmeAir.

Fig. 13. An AcmeAir log sample. Yellow color denotes the timestamp,
magenta – the logging level, green - the source of the log entry, and cyan –
the message.

• application diversity – we included dedicated business

applications, purely technical components, and shared

service platforms (e.g., storage or communication ser-

vices),

• time diversity – applications built in different periods,

• integration diversity – applications communicating using

different interfaces and exchange formats.

The bias of the dataset related to logs being collected within

the same company is mitigated by the fact that Nordea does

not enforce any strict rules for log creation and log content

for non-regulatory logging.

The fragment of the architecture of the NDEASYS that

contributes to the creation of logs within NDEASET2 is shown

in Fig. 14. Applications B and D are both providing data of

the same type to A, but using different formats. Application

A enriches the received data with data from applications C,

E, and F . The final result is aggregated as part of the daily

reporting and the aggregated data are provided to application

G.

Table I describes the characteristics of the NDEASYS2

dataset. As part of the log preprocessing, we unify all of the

logs in the dataset to a common CSV format with timestamp,

source, and message columns, which match the format of the

AcmeAir logs that we use as a benchmark. Fig. 15 presents

an anonymized example of log entries in NDEASET2.

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA: DISCOVERING RELATIONSHIPS BETWEEN DATA IN ENTERPRISE SYSTEM USING LOG ANALYSIS 145



TABLE I
CHARACTERISTICS OF THE NDEASYS2 DATASET

App

Log

size
[MB]

Application diversity Team diversity Time diversity Integration diversity

Type Size
No.

locations
Dev.

period

Dev.

duration
[months]

Integration
style

Format

A 26000 dedicated 3 2 2020-2022 24
Messaging,

RPI

Swift
(ISO15022, ISO 20022),

JSON

B 165 technical 1 2 2020 1 Messaging
Swift

(ISO15022)

C 7000 shared service 2 2 2016-2020 48 RPI JSON

D 18 technical 1 2 2020 6 Messaging
Swift

(ISO15022)

E 64000 shared service 3 2 2016-2022 72 RPI JSON

F 153 shared service 3 2 2016-2022 72 RPI JSON

G 80 dedicated 1 2 2020 1 Messaging
Swift

(ISO15022

Fig. 14. The architecture of the system used for evaluation. Lines denote
pairs of interacting applications, and arrows denote the direction of the data
flow.

Fig. 15. Example of one log entry from NDEASET2. Yellow color denotes
the timestamp, green –the source application, and cyan –the message.

D. Evaluation Criteria

For each dataset, we use evaluation criteria suitable to

the level of knowledge about the system that the dataset

is based on. For AcmeAir, we can assume full knowledge

about the system and its data model due to its simplicity

and open-source nature. Based on the data model presented

in Fig. 9, we construct the reference data relationships graph

shown in Fig. 16, which serves as our ground truth. Arrows

are introduced for clarity only. They denote the direction of

the relationship and are not taken into consideration during

method evaluation. Vertical lanes represent different services

Login Customer Booking Flight

creates
opens
session

relates
to flight

is communicated
with

Customer/
id

CustomerSession/
customerId

Booking/
customerId

Booking/
flightId

Flight/
id

Flight/
segmentId

FlightSegment/
id

FlightSegment/
originPort

FlightSegment/
destPort

consists of

Fig. 16. Graph of data relationships in AcmeAir system, serving as our ground
truth.

depicted in Fig. 10. Nodes within a lane represent data

attributes managed by a given service. Each node is described

by an attribute and entity it belongs to (e.g. Customer is an

entity and id – is its attribute). Edges of the graph represent

relationships between data attributes. Only the attributes that

are related to one another are presented in the graph.

We use the F1 score of the set of graph edges to determine

the accuracy of our method for the AcmeAir dataset.

For the NDEASET2 dataset, we are unable to construct a

reference graph. However, our knowledge of the NDEASYS

system allows us to assess, whether or not the discovered

relationship is correct. Therefore, for this dataset, we use only

the precision of the discovered set of edges as the measure of

our method’s accuracy.

E. Benchmark Results

To be able to compare the outcome of our method with the

ground truth presented in Fig. 16, we need to perform two

types of mapping:

• mapping of discovered data attributes to the data at-

tributes from Fig. 11 (details of mapping are presented
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TABLE II
MAPPING OF DATA ATTRIBUTES BETWEEN THE ACMEAIR LOG AND THE

REFERENCE DATA RELATIONSHIP GRAPH

Log
Reference data relationship

graph

Service
Discovered

attribute
Entity Attribute

Booking

returnbookingid Booking id

departbookingid Booking id

number Booking id

_id Booking id

customerid Booking customerId

userid Booking customerId

user Booking customerId

byuser Booking customerId

flightid Booking flightId

retflightid Booking flightId

retflight Booking flightId

toflight Booking flightId

toflightid Booking flightId

retflightsegid Flight segmentId

toflightsegid Flight segmentId

Flights

scheduledarrival
time

Flight
scheduledArrival

Time
scheduleddeparture

time
Flight

scheduledDeparture
Time

_id Flight id

flightsegmentid Flight flightSegmentId

toairport FlightSegment destPort

fromairport FlightSegment originPort

originport FlightSegment originPort

destport FlightSegment destPort

miles FlightSegment miles

Customer
_id Customer id

user Customer id

byid Customer id

Login login Customer id

Web

user Customer id

miles FlightSegment miles

_id FlightSegment id

destport FlightSegment destPort

originport FlightSegment originPort

in Table II),

• mapping of the denormalized data model present in the

logs to a normalized model present in Fig. 11.

The latter mapping is necessary because the information in

the logs of individual services represents some part of the

view of the overall schema of the application. Additionally,

the information in logs overlaps between the logs of different

services.

It is expected that logs contain more information than only

related to data schemas, thus the resulting data relationship

graph will be richer (having more nodes and edges) than the

reference graph from Fig. 16. To provide a fair assessment of

our method, we first present the results on a subgraph limited

to the set of nodes from Fig. 16. Then we discuss separately

0
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F
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Fig. 17. The results of our method were measured by the F1 score. Colors
denote the outcome for different values of n. Dashed lines represent precision,
dotted – recall, and solid – F1 measure. The horizontal axis represents different
values of the oes meta-parameter.

the rest of the graph.

Fig. 17 Shows the results of our method for the limited

graph under different values of meta-parameters. It can be

observed that for n = 2 and n = 3, the results are the

same, and the n meta-parameter, in general, does not have

a key influence on the overall score. A much more significant

parameter is oes, which determines the perception of similarity

between data attributes. The best F1 score of 0,72 was reached

for the oes value of 0.1. We interpret such a low value as our

method needing an argument to exclude a relationship (low

level of similarity). This follows the intuition that, even though

two attributes are closely corresponding to one another, they

do not have to share the same values across the whole log. It

is more probable that the set of shared values would be rather

small because of a different set of services being triggered

depending on the processes executed in the system.

An example of a graph generated by our method is shown in

Fig. 18. The thick edges denote data relationships that match

the reference data relationship graph from Fig. 16. We can

see that the generated graph is much richer in information

and our method gives a couple of interesting insights into

the underlying data schemas. Firstly, it shows the potential of

detecting unknown relationships based on data. An example

is a relationship between CustomerSession/customerId and

Booking/customerId which was detected based on matching

values that both attributes take. An interesting part of the

graph is a complete subgraph under Web service, whose

nodes represent airport names. The fact that these attributes

were extracted and are connected means that these values

must frequently occur next to one another in logs. It is the

case since when a flight is booked, origin and destination

airports are logged in a single log entry. The fact that these

attributes form a complete subgraph is the effect of the low

cardinality of the set of airports. Combined with the automated
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Login Customer Booking Flight Web

bookings/200

Booking/flightId

Booking/customerId

Booking/segmentId

FlightSegment/miles

Flight/flightSegmentId

flights/50

flights/00
flights/200

Flight/id

Flight/scheduledArrivalTime

Flight/scheduledDepartureTime

FlightSegment/originPort

FlightSegment/destPort

customer/200

Customer/id

CustomerSession/customerId

login/200

web/ika

web/svo

web/ams

web/bom

web/nrt

web/syd

web/fra

web/getflightbyairportsanddeparturedate

FlightSegment/id

web/sin

web/hkg

web/yul

web/fco

web/jfk

web/del

web/user

web/cdg

web/lhr

Fig. 18. A data relationship graph was generated for n=3, ies=0.9, and
oes=0.1. Vertical lanes denote services depicted in Fig. 12. Nodes within
a lane represent data attributes discovered in the log of a given service. Thick
edges represent data relationships that match the reference relationship graph
in Fig. 16.

TABLE III
CHARACTERISTICS OF THE NDEASYS2 DATASET

n Discovered data attribute (n-gram embedding)

2 booking, byuser

2 flightsegment, _id

3 customer, by, user

3 flights, by, user

generation of the AcmeAir log sample, this resulted in all

the origin/destination airport combinations being exhausted. It

shows that our method is susceptible to the identification of

false relationships for data of low cardinality. This is normally

addressed in our method by choosing only long enough tokens

(ml meta-parameter of our method). For the AcmeAir dataset,

however, the minimum token length was set to 3 to utilize the

airport data as a means of detecting other relationships.

In Fig. 18 it can be observed that the graph con-

tains nodes representing data attributes that are not

present in the original model in Fig. 11, e.g. web/user

or web/getflightsbyairportanddeparturedate. These attributes

come from the analysis of log entries that do not directly

log the whole data entity but are representants of typical

observation-point logging used by developers [10]. Such at-

tributes are valuable since they provide an additional semantic

context to interpret other attributes. In the case of web/user,

we can interpret that a customer is a user of the system.

The graph presented in Fig. 18 is created after performing

the attribute mapping described at the beginning of the section.

The full set of results achieved by our method for various

meta-parameters is available in [9] in the GEXF format. How-

ever, it is interesting to analyze raw data attributes. Table III

presents a sample extract of raw attributes represented by n-

grams for n ∈ {2, 3}. The set of tokens constituting the n-gram

can also be viewed as a semantic context, which can be used

for the refinement of the generated graph in the future.

Our method has also identified some false positives –

numeric nodes that represent an accidental correlation of data

that should be treated as noise. Filtering out this noise is one

of the challenges for our future work.

F. Real-life System Results

Our method has been executed against a log of the real-life

system running at Nordea Bank - NDEASYS. We used the

following meta-parameters to get the best results:

• N = 4,

• ies = 0.9,

• oes = 0.1,

• mt = 10,

• ml = 5.

Since, due to the size of the domain, it is hard to obtain the full

ground truth, we focused on identifying falsely discovered data

relationships. The edges of the resulting graph were validated

using our domain knowledge. Our method achieved a precision

of 0.98 on NDEASET2.

We performed an additional validation of the achieved

results based on the analysis of data flows within NDEASYS.

Based on Fig. 14, it is expected that data relationships are

found between applications B, G, A, and F , which represent

the main data flow. The discovered data relationships are

aligned with the diagram in Fig. 14. For every edge of

the architecture graph, there is at least one discovered data

attribute relationship between the two applications.

Also, other properties of our method revealed on the

AcmeAir dataset were confirmed:

• larger values of N tend to introduce an additional seman-

tic context to the data relationship graph,

• observation-point logging entries introduce a domain

nomenclature that puts other discovered attributes into

a concrete context.

While promising, these results still need to be validated

especially in terms of the recall and F1 measures. The size

of the data and the big number of discovered relationships do

not allow us to present an anonymized visualization of the

retrieved graph, analogous to Fig. 18.

G. Threats to Validity

Internal threats to validity include the construction of the

NDEASET2 dataset and the level of detail of logs. We tried

to mitigate both threats by choosing applications that provided

a decent level of diversity. We find team diversity especially

important, as it ensures log entries are created by developers

from different teams, potentially following different standards.

Also, the application diversity (different types of applications

included in the dataset) is meant to increase the overall

representativeness of the dataset. As for the quality of logs, we

will cover its influence on our method’s results in our future

work.

The biggest external threat to validity is the dataset from

Nordea Bank, which might not be representative of the whole

bank and enterprise systems in general. This threat might come

from the specific dataset that was chosen for research but

also from potential formal or informal rules regarding logging

practices enforced by Nordea. We tried to mitigate this threat
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by applying our method to a benchmark system, which is

however much simpler than an average enterprise application,

both business and technical-wise. In the future, we will try

to find other datasets to further mitigate these threats. It is

worth noting that although publicly available datasets are very

beneficial for the validation of our method and the general

reproducibility of research, they will never be close to the

size and complexity of real-life enterprise systems. Therefore,

apart from selecting open-source datasets, we will seek further

datasets inside Nordea Bank to retain real-world validation for

our research.

The threat to construct validity is an insufficient measure of

the quality of our method for the NDEASET2 dataset (we are

using only precision, not using recall, and not being able to

construct the reference graph). Construction of the reference

graph for NDEASYS is one of the goals of our future work.

Conclusion validity is threatened by data attributes with low

cardinality of values (e.g. currency symbols in the banking

industry or airport codes in the flight booking domain). Such

data attributes can be falsely considered as related just because

of a high chance of them getting the same values. Another

threat to conclusion validity is the low level of detail of logs

can result in relationships between data attributes not being

detected.

V. RELATED WORK

Discovering relationships between data is a topic studied

by schema matching discipline [11]. This domain is very

broad and uses several techniques, including matching strings,

matching words in certain languages, matching graphs, or

using ontologies representing knowledge in certain fields. The

goal of traditional schema matching is to match elements

between two schemas given as input. The authors of [12]

and [13] study a more general case where the number of

schemas to be matched is greater than two. Finding similarities

in attribute values (called duplicates) is the basis of the method

proposed in [14]. The authors perform schema matching based

on a small number of matching values in two schemas.

[15] proposes a method for matching knowledge graphs. The

authors split the process into schema-level and instance-level

matching. In the first phase, matching is performed using

only schema information, while in the second phase, the

result is further refined by matching the values that schema

attributes take. All of the approaches in the schema matching

domain assume full knowledge of the individual schemas

being matched. What is in the area of interest is only finding

the correspondence between the attributes of the schemas. This

is a significant difference compared to our method, which

needs to discover both the schemas and their corresponding

attributes.

Semantic data type discovery is a field of research that

focuses on assigning types that have well-defined meanings

to schema attributes. As compared to regular type detection

(e.g. whether an attribute is a string, int, or boolean), semantic

types hold much more information (e.g. postal code, surname,

country) and as such could be used to match attributes of

different schemas. [16] introduces Sherlock, a supervised-

learning approach to semantic type detection. It uses the

VisNet dataset to train a classifier that detects one of the 78

semantic types defined in the T2Dv2Gold Standard dataset.

The authors of [17] propose the SATO algorithm, which

extends Sherlock by incorporating the concept of context. Data

attributes are matched not only based on the values they take

but also based on the neighbor attributes in the same schema.

Such an approach allows to properly classify semantic types

for attributes with a low number of samples. Both [17] and [18]

rely on model training for a given dataset which contrasts with

the unsupervised approach we take to derive data relationships.

[18] describes RaF-STD, an unsupervised learning approach to

semantic type detection. The authors exploit triples of schema

attributes that share common values and iteratively introduce

higher-level virtual attributes representing the notion of sim-

ilarity. This method does not require any prior knowledge of

the source schemas but requires the existence of such schemas,

which we do not assume in our method.

Automated log analysis is a field of research that focuses

on the extraction of data from logs in an automated fashion.

The authors of [2] split this field based on the type of knowl-

edge being extracted. According to this classification, domain

model extraction is a field that is somewhat relevant to data

attribute discovery. [19] presents a method for discovering an

ontology based on event logs and process mining techniques.

The method is validated using a dataset of stack overflow

posts and proved to generate a valid ontology in a computer

science domain. The use of an event log requires intensive log

preprocessing, which is not the case with our method, which

operates on raw application logs, with very little preprocessing

to unify log format across applications.

Log template generation is a field of research that aims in

finding patterns in lines of log files as part of a log analysis

task. Typically such patterns split a log line into static and

variable parts, which could be used to discover data attributes

in our method. [20] and [21] are two common methods for

discovering log patterns. According to [1], both of these

methods do not cope well with log lines of variable length

(e.g. XML document being logged), which can be a typical

case of logging entry/exit data. The authors of [10] classify

such log entries under the observation-point logging category

and show it is one of the most common types of log entries. [1]

proposes an SLT method for log template generation, which is

well-suited for handling log entries of variable length but the

result is coarse-grained – it does not provide any information

on the position of the variable parts within a log line. Our

method for data relationship discovery uses the context of

neighbor tokens to detect data attributes, so the position of

the variable tokens within a log entry is essential.

Word embedding is a sub-field of natural language pro-

cessing that aims in representing words in some text corpus

as multi-dimensional vectors. This corresponds to the initial

phases of our method, where we perform the embedding of

tokens of a log line. [22] and [23] are the two most popular

methods for word embedding. For both, there is a large set
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of pre-trained models over text corpora in various languages.

However, their usability to log analysis is limited. Firstly, they

require training of the model on a particular text corpus, as

the model is specific to the logs being analyzed. Secondly, the

set of words in log corpora is infinite due to information like

unique identifiers being commonly logged.

The method for discovering interactions between applica-

tions described in [1] shares similar ideas to the method

described in this paper. It looks for rare tokens in various

applications’ logs and uses the findings to justify the hypoth-

esis of the existence of a relationship between applications.

The main difference between [1] and this paper is that [1] is

focused on detecting the relationships between applications,

while this paper focuses on detecting relationships between

data attributes. For this purpose, we are looking not only at

the rare but also the more frequent tokens. Discovery of a

relationship of more frequent tokens (e.g. currency codes) in

two applications cannot be treated as a good justification for

the existence of a dependency (data exchange) between the

applications. Therefore the method presented in this paper

cannot be considered a generalization of the method described

in [1]. These methods are rather complementary and the

identification of relationships in data can be used to refine

the set of interactions discovered by [1].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an unsupervised method for

the automated discovery of data relationships in an enterprise

system. We validated our method on a synthetic and real-world

dataset. In both cases, it proved to be a useful tool for obtaining

an overview of the data processed by applications within an

enterprise system. For the real-world dataset, the method has

successfully detected correspondences between data attributes

in different applications, which can have multiple uses - failure

diagnosis, schema discovery, or schema mapping, to name a

few.

In the future, we will extend the method to take advan-

tage of additional information – locality of log entries, data

attributes described by n-grams with higher values of n, and

semantics hidden in the observation-point logging entries. We

will further analyze the retrieved relationship graphs for the

NDEASET2 dataset and work on establishing the ground truth

for NDEASYS to validate the recall and F1 measures. We

will also combine the proposed method for data relationship

discovery with the method of interaction discovery [1] to form

a comprehensive approach for discovering knowledge about an

enterprise system based on automated log analysis.
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