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Abstract—From ancient times olive tree cultivation has been
one of the most crucial agricultural activities for Mediterranean
countries. In recent years, the role of Artificial Intelligence in
agriculture is increasing: its use ranges from monitoring of
cultivated soil, to irrigation management, to yield prediction, to
autonomous agricultural robots, to weed and pest classification
and management, for example, by taking pictures using a
standard smartphone or an unmanned aerial vehicle , and all
this eases human work and makes it even more accessible.

In this work, a method is proposed for olive disease classi-
fication, based on an adaptive ensemble of two EfficientNet-b0
models, that improves the state-of-the-art accuracy on a publicly
available dataset by 1.6-2.6%. Both in terms of the number of
parameters and the number of operations, our method reduces
complexity roughly by 50% and 80%, respectively, that is a level
not seen in at least a decade. Due to its efficiency, this method
is also embeddable into a smartphone application for real-time
processing.

I. INTRODUCTION

O
LIVE tree cultivation represents one of the most impor-

tant activities of agriculture for the civilizations of the

Mediterranean area. Indeed the countries of this area produced

roughly 65% of the world’s olive oils in the last years [1].

Olive-derived products have shown health benefits due to their

compounds [2]. In addition, olive trees are known to adapt to

environmental stresses such as salinity, drought, heat and high

levels of ultraviolet B rays [3], [4], [5] generating, during the

millennia, 600 species within 25 genera [6]. However, even

olive trees are affected by diseases: some of them are visible

on their fruits and can happen only during specific periods of

the year, while others have visible signs on the leaves [7]. The

signs of a disease can be different in different hosts and can

evolve over time.

Although olive cultivation techniques have been perfected

over the centuries, artificial intelligence has only recently

entered the olive industry, bringing a series of significant

innovations and improving the management of many issues,

like as predicting crop yields, plant health monitoring, disease

prevention, identification and classification, irrigation manage-

ment, monitoring and management of agricultural activities

[8], [9], [10] (e.g. sowing, harvesting, pruning,...), even for

olive disease [11], [12]. We propose here a highly efficient

solution that allows to classify olive diseases affecting leaves

directly from images taken by standard smartphone cameras.

This paper is organized as follows: in Sec. II, the dataset used

for experiments is described; in Sec. III, the solutions and the

experimental setup are described, while results are shown in

Sec. IV. The paper ends with a discussion and conclusion in

Sec. VI.

II. DATASET DESCRIPTION

To test our solution, the largest publicly available dataset

[13] has been used: it is composed of 3400 images representing

olive leaves affected by Alucus olearius or Olive peacock spot

or healthy. Tab. I shows the distribution of the classes, while

a sample of images for each class is shown in Fig. 1.

TABLE I: Data distribution of the dataset used.

Class Size

Aculus olearius 890

Healthy 1050

Olive peacock Spot 1460

III. DESIGN DESCRIPTION

A. EfficientNet

We selected EfficientNet-b0 [14] as the core model because,

according to its structure and the obtained results, it has the

best accuracy/complexity trade-off. Two main factors give

the efficiency of this architecture: the first is the compound

scaling (Fig. 2) by which input scaling (i.e. input size), width

scaling (i.e. convolutional kernel size) and depth scaling (i.e.

the number of layers) are performed in conjunction since, by

observation, they are dependent; the second is the use of the

inverted bottleneck MBConv (first introduced in MobileNetV2,

an efficient model designed to run on smartphones) as a main

module, reducing the complexity of convolution by expanding

and compressing the channels.

B. Ensembling

The most significant contribution to this work is given by

ensembling: it is a technique of combining several models,

called weak models, in order to provide produce a model
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Aculus olearius

Healthy

Olive peacock spot

Fig. 1: Samples from the dataset for Aculus olearius (first row), Healthy (second row) and Olive peacock spot (third row)

having better results than a single one [15]. Ensembling is also

known to reduce errors and improve the model’s generalization

capabilities. Due to its resource-consuming nature and the

exponential growth of model complexity, however, ensembling

is scarcely used in computer vision. By contrast, our method

allows performing ensembling in an adaptive and efficient way

(Fig. 3):

• we use only two weak models (achieving minimality and

efficiency);

• the ensemble is not a typical aggregation function, but it

is performed using a linear combination layer, trainable

by gradient descent (obtaining adaptivity);

• the ensemble is performed using the deep features in-

stead of the output, excluding redundant operations (for

efficiency).

C. Validation pipeline

The validation pipeline can be split into two main phases:

1) 5-fold cross-validation with end-to-end EfficientNet-b0

training, using transfer learning [16] from ImageNet pre-

trained models [17], because transfer learning provides

faster convergence;

2) 5-fold cross-validation with fine-tuning of the ensemble,

using the two best models from the previous phase.

The design choices used during the validation are:

Input size: set to 512×512 because, after a preliminary

investigation, it gives the best trade-off between image

quality and computational costs.

Batch size: set to the maximum available using our GPU

(32GB RAM), which is 50 for the end-to-end and 200 for

the fine-tuning.

Regularization: early-stopping with patience of 10

epochs is used, helping to prevent overfitting.

Optimizer: AdaBelief [18] with learning rate 5 · 10
−4,

betas (0.9, 0.999), eps 10
−16, using weight decoupling

without rectifying, in order to have both fast convergence

and generalization.

Validation metric: Weighted F1-score which better

takes into account both errors and data imbalance.

Dataset split: training and test subsets are preset, in

every run of the 5-fold cross-validation, the training set

is split 80/20 in train/valid.

Standardization: data are processed in order to belong

to a distribution with values around the average and the

unit standard deviation, improving stability and conver-

gence of the training.

Obviously, each run of the cross-validation of both phases is

associated with a different initialization of the random model
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Fig. 2: Example of scaling types, from left to right: a baseline network example, conventional scaling methods that only

increase one network dimension (width, depth, resolution) and, at the end, the EfficientNet compound scaling method. Image

taken from the original paper [14].
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Fig. 3: Graphical scheme of the models used in this work: on the left, an end-to-end trainable EfficientNet-b0; on the right,

the fine-tunable adaptive ensemble.

parameters.

IV. EXPERIMENTAL RESULTS

According to Tab. II, the EfficientNet-b0 with the selected

design choices already provides a good starting point with an

average F1-score of 0.969, 0.983 and 0.999 for test, valid and

train set, respectively, with high robustness (i.e. low variance).

The ensemble further reduces the variance and improves the

generalization power (i.e. performance on valid and test) by an

average of +1.5% and +1.4% on test and valid, respectively.

The final errors are 12 (test: 9; valid: 2; train: 1) and in Fig.

4 the confusion matrix for the test set is shown.

The strength of the proposed solution is even more signif-

icant when compared with the State of the Art (SOTA) Tabs.

III-IV, indeed the EfficientNet-b0 has the values of the same

metric as the best performing SOTA model, and it uses only

52% of parameters and 21% of FLOPs, while considering

the Ensemble the complexity (both parameters and FLOPs)

is roughly doubled, but it is still lower than the SOTA, for a

+1.6% on all the metrics.

V. DISCUSSION

In order to stress our method, we tested an ensemble of

five weak models: while using other datasets, generally this

improves the results a little at the expense of complexity,

as Tab. V shows, in this case, the results don’t improve, the

errors remain exactly on the same 12 images even if distributed

among the different splits.
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Fig. 4: The confusion matrix on the test split of the best ensemble model.

TABLE II: Metrics (F1-score) on the subset of 5-fold cross-validation runs of both end-to-end weak (left) and fine-tuning

ensemble models (right). The ensemble has a twofold contribution: improving generalization performances (+1.5% on test,

+1.4% on valid, on average) and robustness (halving the deviation). Data is organized best-to-worst fold (top-to-bottom), and

then the models corresponding to the first two rows in the left table are used as weak models for the ensemble.

Weak

Test Valid Train

0.97206 0.98713 1.00000
0.97203 0.98534 0.99724
0.96925 0.97973 0.99862
0.96777 0.98159 1.00000
0.96620 0.98529 1.00000

Mean 0.96946 0.98382 0.99917

Std 0.00231 0.00273 0.00110

Ensemble

Test Valid Train

0.98676 0.99632 0.99954
0.98382 0.99816 0.99862
0.98382 0.99816 0.99862
0.98382 0.99632 1.00000
0.98382 0.99632 0.99954

Mean 0.98441 0.99706 0.99926

Std 0.00118 0.00090 0.00055

TABLE III: Comparing metrics of the SOTA models. Since, in their papers, the authors did not mention if the values refer

either as mean/best or on test only/whole dataset, we reported the mean values (best in brackets) on both test only and whole

dataset.

Model Accuracy Precision Recall F1-score

VGG-19[19] 0.82 0.75 0.94 0.84

AlexNet[19] 0.84 0.86 0.87 0.86

VGG-16[19] 0.85 0.87 0.86 0.87

AlexNet (genetic)[20] 0.87 0.87 0.87 0.87

ViT Transformer[19] 0.95 0.94 0.98 0.96

DenseNet (genetic)[20] 0.96 0.97 0.96 0.96

ViT+VGG-16[19] 0.96 0.97 0.96 0.96

ResNet (genetic)[20] 0.97 0.97 0.97 0.97

EfficientNet-b0 (test) 0.970 (0.972) 0.970 (0.972) 0.969 (0.972) 0.969 (0.972)

EfficientNet-b0 (whole) 0.990 (0.992) 0.990 (0.992) 0.990 (0.992) 0.990 (0.992)

Ensemble-b0 (test) 0.986 (0.987) 0.985 (0.987) 0.986 (0.987) 0.985 (0.987)

Ensemble-b0 (whole) 0.996 (0.996) 0.996 (0.996) 0.996 (0.996) 0.996 (0.996)
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TABLE IV: Comparing complexity (expressed by the number of parameters and FLOPs) of the SOTA models.

Model #params FLOPs

VGG-19 ≈143.6M ≈19.63G

AlexNet ≈61.1M ≈0.71G

VGG-16 ≈138.3M ≈15.47G

ViT Transformer1
≈88.2M ≈4.41G

DenseNet2 ≈7.9M ≈2.83G

ViT+VGG-16 ≈226.5M ≈19.88G

ResNet3 ≈11.6M ≈1.81G

EfficientNet-b0 ≈5.2M ≈0.39G

Ensemble-b0 ≈10M4
≈0.78G5

1 authors did not specify the version they used, metrics are about the lightest one (ViT-B-32).
2 authors did not specify the version they used, metrics are about the lightest one (DenseNet-121).
3 authors did not specify the version they used, metrics are about the lightest one (ResNet-18).
4 the actual trainable parameters are 0.1M (the parameters of the combination layer) and the gradient backward propagation stops at this layer.
5 the forward pass can be parallelized, having the same execution time of a weak model.

TABLE V: Metrics (F1-score) related to the best ensembles

of five weak models.

Test Valid Train

0.98529 1.00000 0.99908

0.98529 1.00000 0.99908

0.98235 1.00000 0.99908

0.98235 1.00000 0.99908

0.98235 1.00000 0.99908

This approach to ensembling has been recently introduced

and discussed in [21], [22]; it has already proved excellent

applicability to AI-based methods for agriculture [23].

Specifically in [21], we tested our method on seven bench-

marking datasets, that are: CIFAR-10 [24], CIFAR-100 [24],

Stanford Cars [25], Food-101 [26], Oxford 102 Flower [27],

CINIC-10 [28] and Oxford-IIIT Pet [26]. The results demon-

strated that our novelties improve the SOTA for each dataset by

an average of 0.5%, using different kinds of images, reducing

complexity in terms of the number of parameters up to sixty

times and of FLOPs up to one hundred times. This results in a

considerable saving of time and costs compared to most recent

models (i.e. Vision Transformers [29]).

In [30], our method was also tested on images of plants

taken on the field, in different environments, backgrounds,

light conditions and at different stages of growth of the

weeds. This defined the baseline for an in-progress work, in

which, with the help of farmers taking pictures directly on

the field using a mobile app [31], a set of models trained and

being continuously extended, are contributing to significantly

improving the classification of about a hundred of the main

stressors that can interfere with wheat cultivation, such as

weeds, pests, diseases and damages.

Another real-world application using this solution on a

different domain was presented and discussed in [22]: using

a public database of lung ultrasound, the SOTA was reached

with 100% of accuracy in classifying healthy from Covid-19

from pneumonia cases.

VI. CONCLUSIONS

In this paper, we presented an efficient adaptive ensemble

method to classify olive leaf diseases using two EfficientNet-

b0 as weak models. The ensemble is performed by a linear

layer that combines the features of the weak models. Our

method increased the generalization strenghtby about 1.5%

and reduced the variance. Moreover, by parallelizing the

independent weak models, the complexity is comparable to

a single weak model, having 52% of parameters and 21% of

FLOPs of the best SOTA solution.

Due to its efficiency, given a significantly smaller architec-

ture in terms of the number of tunable parameters and floating

point operations comparable to those of a decade ago, this

solution can also be embedded into a smartphone application

for real-time classifications.

Further studies will be performed to investigate the use of

the efficient adaptive ensemble method with a greater number

of weak models.
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