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Abstract—In this paper we consider filtering and processing
large data streams in intelligent data acquisition systems. It
is assumed that raw data arrives in discrete events from a
single expensive sensor. Not all raw data, however, comprises
records of interesting events and hence some part of the input
must be filtered out. The intensity of filtering is an important
design choice because it determines the complexity of filtering
hardware and software and the amount of data that must
be transferred to the following processing stages for further
analysis. This, in turn, dictates needs for the following stages
communication and computational capacity. In this paper we
analyze the optimum intensity of filtering and its relationship with
the capacity of the following processing stages. A set of generic
filtering intensity, data transfer, and processing archetypes are
modeled and evaluated.

I. INTRODUCTION

S
ENSOR technology has developed rapidly over the past

decades. Numerous surveys can be found, each limited

to a specific sensor technology type. An important research

topic is the computational and communication integration of

multiple sensors in a network [1], [2], [3], [4], [5]. There is an

implicit assumption here that the economics of constructing,

deploying and operating such a system are such that the use of

multiple sensors is plausible within project budget constraints.

In this paper we envision a problem with a different empha-

sis where there is a single, very expensive “sensor”. Examples

of such a device include detectors for particle accelerator

experiments such as the CERN Large Hadron Collider [6], or

the recently announced Electron Ion Collider [7] to be built at

Brookhaven National Laboratory. Another example is the use

of a large radar equipped drone for monitoring ocean traffic.

A final example is the use of imaging satellites for ocean,

weather, environmental monitoring and earth resources sensing

[8]. Note that what we generically consider a “sensor", may

consist of a large number of individual sensing elements (as

in a particle detector) but we refer to the ensemble collection

as a sensor.

The commonality in all these examples is that the sensor

increasingly can generate raw data at rates that are much

faster than the data can be downloaded over a communication

channel(s) onto servers for processing. Moreover, not all data

collected by the sensor is valuable enough to be retained for

further processing. The generally proposed solution for this

problem is to have onboard pre-processing of the data at the

detector, the drone or the satellite. This processing is not

classical data compression but more so the use of data analysis,

machine learning (ML) or other type of broadly understood

artificial intelligence techniques to pre-process the raw data

for a much smaller processed summary that is more amenable

to transmit. Thus, only interesting particle tracks, ship tracks

and weather patterns may be transmitted, but the majority of

the raw data isn’t. For simplicity of exposition we will say

that the ML algorithm serves as a filter on the raw data,

independently of the field of origin of the actually applied

filtering technique. Clearly this situation has similarities with

edge computing where sensors/actuators at the network edge

do local processing in order to reduce the amount of network

traffic to distant cloud facilities. Again, the specification of a

single sensor here makes our problem have a unique character.

In this paper we analyze the intensity of data filtering in the

first stages of data processing necessary for the shortest time

to obtain results. The intensity of filtering is important for the

following reasons: (i) filtering algorithms are often hardware-

implemented, and consequently, have costly realization, their

changes are less flexible than in software (especially in remote

posts like satellites); (ii) the higher intensity of filtering, the

more complex algorithm is applied which results in longer

filtering time and/or more extensive hardware system; (iii)

the size of data emerging from the filtering stage determines

needs for capacity in the further stages of data processing

pipeline where more sophisticated algorithms are executed;

(iv) and vice versa the speed of communication between the

stages of data pipeline and processing in the stages following

the initial filtering have impact on the required intensity of

raw data filtering. For the purpose of analyzing systems of

the above nature, an extensive set of the single expensive

sensor (SES) models for filtering and processing problem

will be examined. These cases are meant to illustrate the

modeling and solution possibilities and be representative in

a generic way. A common sense expectation is that high

intensity of initial data filtering reduces amounts of the data

analyzed in the pipeline and thus reduces the time to obtaining

the results. However, more intensive filtering is also more

time-consuming. Thus, due to interaction between nonlinear

speed of filtering and complexity of processing the data in
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TABLE I
SUMMARY OF NOTATIONS

αi size of load part assigned to stage 2 processor i [byte]

A0 reciprocal of the first stage processing speed [e.g.
s/byte]

Ai reciprocal of the heterogeneous second stage process-
ing speed on processor i [e.g. s/byte]

A reciprocal of the second stage processing speed for
identical processors [e.g. s/byte]

Ci reciprocal of the communication speed between stage
1 and heterogeneous stage 2 processor i

C reciprocal of the communication speed between stage
1 and stage 2 for identical processors [e.g. s/byte]

F fraction of retained data
m number of machines (a.k.a. servers, processors) in the

second stage
T execution time of the whole filtering and processing

workflow
V size of input data (at the front-end of the system)

the later stages, the processing time may have a minimum

at a certain filtering intensity. We investigate such minima

in this paper. Furthermore, options for combining advanced

processing algorithms of various complexity classes in the data

processing workflow are analyzed.

Our models are largely tractable. Parts of the evaluation

of the models use concepts from the theory of divisible (i.e.

partitionable) loads, a well established concept, that provides

elegant solutions particularly for linear models [9], [10], [11],

[12], [13]. The divisibility of the loads means that big volumes

of data are processed and the discrete units of data are small in

relation to the whole data size. It is also assumed that the loads

can be divided into parts processed independently in parallel.

Further organization of this paper is the following. In the

next section related literature is outlined. The filtering and

parallel processing problem is formally defined in Section III.

Section IV is dedicated to analytical derivation of the formulas

guiding selection of the optimum filtering intensity. Results

of numerical modeling of filtering and processing systems

are provided in Section V. The last section is dedicated to

conclusions. The notations are summarized in Table I.

II. RELATED WORK

In the literature on sensor networks, particularly wireless

sensor networks, there are general surveys [14] and surveys on

specific technological aspects of sensor networks such as trans-

port and routing [15], fault detection [16], security solutions

[17], optimizing sensor-source geometries and minimizing the

number of sensors [18], the use of swarm intelligence for

performance optimization [19] and numerous applications.

There has been some work on analytical models of sen-

sor data generation, communication and computation. For

instance, an early work is [1] which examined scheduling for

measurement and data reporting in wireless sensor networks.

Data gathering networks have been the subject of research

by Berlińska and recently by Luo et. al. Data gathering

networks have been studied in connection with background

communication [3], limited base station memory [4], data

Single
Expensive
Sensor

Raw data
bursts

Buffer for
raw data
filtering

Prallel
Processing

stage 1 inter-stage
communication

stage 2

V
T

data units in
time units

Filtering
algorithm

Fig. 1. Data filtering and processing system architecture.

compression [5], [20], [21], energy minimization [22] and in

the case of tree data gathering networks [2]. The case when

the load is processed in a pipeline fashion has been studied in

[23], [24].

Most work to date has involved multiple sensors, unlike

the single expensive sensor paradigm of this paper. An LHC

data acquisition system [6] is a good example of a single

expensive sensor with data filtering and parallel processing.

In LHC protons circulate in bunches and opposing beams that

cross each other resulting in collisions with 40MHz frequency.

Only data from particle collisions with sufficient energy and

momentum are allowed to proceed from the so-called level-1

trigger to the second stage of processing (so called high-level

trigger) for further reconstruction of particle trajectories and

analysis.

III. PROBLEM FORMULATION

It is assumed that there is a two-stage workflow: (1) the first

stage is related to sensor data filtering, (2) the second stage

conducts further data processing. An overview of the system

architecture is shown in Fig.1. The data from the sensor arrive

in discrete events each delivering V units of data. The arriving

chunk of data is intercepted in the input buffer, and all filtering

algorithms use this buffer. The same buffer is used to send the

filtered data to the second stage of processing. The use of a

single buffer in this model is an aggregate representation of

specialized buffer architectures that may be needed in practice

to handle the influx, staging and filtering of massive amounts

of data. The data chunks may arrive repetitively, then it is

assumed that at most V units of data arrive in a chunk once

in T time units. The first stage filtering is done in linear

time, but the intensity of filtering, i.e. fraction F of the initial

data transferred to the second stage, is related to the speed of

filtering.

In the second stage more intricate, than filtering, data

processing is conducted requiring machines with substantial

computing power, memory and storage. Hence, these can be

dedicated data centers or cloud systems. The machines running

in the second stage will be referred to as servers or processors.

Many different algorithms may be executed in parallel in the

second stage. For example, different algorithms discovering
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unrelated artifacts may be run in parallel. In such a case it is

assumed that each specific data-processing algorithm receives

the same data set, has its own set of processors, and all the

many algorithms are executed independently of each other.

The longest path in the data-processing would always go to

the processor(s) running the most time-consuming algorithm.

Consequently, in the following we analyze only one of the

possibly many parallel paths in data-processing. Namely, the

longest one.

A. First Stage Filtering Intensity and Complexity

The intensity of filtering is expressed by fraction F ∈ (0, 1]
controlling the amount of produced results. The amount of

results delivered from stage 1 to stage 2 is FV , where V is

the size of data injected into the first stage from the sensor.

This volume of data is filtered in time A0V . It is assumed

that the intensity of filtering F and speed of filtering are

interdependent. Precisely, the inverse of filtering speed is some

function A0(F ). Depending on the application, A0(F ) may

assume various forms. Here we list a few possibilities:

Case 1: A0(F) = 1/Fc, where c > 0 is some constant.

This kind of relationship may emerge as a consequence of

iterative filtering. Let i be the number of iterations that are

executed on each data unit, then A0 and F can be expressed

as

F = f i (1)

A0 = ai, (2)

where f ∈ (0, 1) is the fraction of data remaining after

each iteration of filtering, and f and a > 1 are some given

constants determined by the filtering algorithm. This means

that an iterative filtering algorithm is executed on each data

unit, and extending the algorithm by each new iteration takes

exponentially longer to process a data unit. This can be the

case when each data unit (e.g. a picture) is rectified with

increasing resolution. From equation (1), we get i = lnF
ln f .

From (2), lnA0 = i ln a, and hence, lnA0 ln f = lnF ln a.

Equivalently, we have lnA0 = lnF ln a/ ln f , and hence,

A0 = F
ln a
ln f . Since f ∈ (0, 1), a > 1, we have ln a

ln f < 0

and A0(F ) = 1
F c , where c = − ln a

ln f > 0.

Case 2: A0(F) = c ln(1/F). Again all filtering iterations

are executed on each data unit, each iteration takes the same

time and reduces output data size f ∈ (0, 1) times. Then as in

the previous case F = f i, i = lnF
ln f , but since each iteration

takes the same time, we have A0 = ai, and hence we obtain

A0(F ) = c ln(1/F ), where c = − a
ln f > 0.

Case 3: A0(F) = c(1− lnF). Suppose the filtering is a

sieve, i.e., the filtering algorithm sifts data in some buffer and

with each iteration part of the data is dropped. Suppose 1
j -

th of the initial data is removed in iteration j. Thus, after i
iterations V × 1

2 × 2
3 × · · · × i−1

i = V/i = FV data units

remain. Hence, F = 1/i. The filtering time T1 is proportional

to the diminishing data sizes: T1 = aV (1+ 1
2 +

1
3 + · · ·+ 1

i ) =
aHiV = A0V , where Hi is the ith harmonic number. Since

Hi ≤ 1 + ln i, A0(F ) = aHi ≤ a(1 + ln 1/F ) = c(1− lnF ),
where a = c is some constant.

Case 4: A0(F) = c(1− F). The data filtering is a sieve

again, and after i iterations the remaining data size is FV =
f iV where f ∈ (0, 1). Filtering time is T1 = A0V =

aV
∑i

j=1 f
i = aV 1−fi

1−f . Hence, F = f i, A0 = a 1−fi

1−f .

Consequently, A0(F ) = a(1−F )
1−f = c(1 − F ) where a

1−f = c
is constant.

Let us observe that in all the above cases A0(F ) decreases

with F which means that more intensive filtering (F de-

creases) requires longer computation (A0(F ) increases).

B. Inter-Stage Communication

The flow of results from stage 1 to stage 2 can be organized

in a number of ways. Here we assume two alternatives:

A. Sequential communication – time to transfer xi bytes to

server i and xj bytes to server j is Cixi + Cjxj .

B. Parallel communication – stage 1 to server connections

are mutually independent. Time to transfer xi bytes from

stage 1 to server i and xj bytes to server j is equal to

max{Cixi, Cjxj}.

C. Computational Complexity of the Second Stage

Computational complexity of the second stage depends

on the executed algorithms, necessary result integration and

storage. We adopt divisible load theory assumption [10], [12],

[13] that the data processed in the second stage is arbitrarily

divisible and can be processed in parallel. Potential ways

of parallelization are determined by a particular algorithm.

Since the variety of possible second stage algorithms and

ways of parallelizing them seems unlimited, we will consider

a limited set of archetype algorithms as examples of typical

computational complexity functions:

Linear – The time to process x units of data is Aix
on processor i. Typical examples are searching for patterns,

compression, message digest (e.g. MD5) calculation or scoring

data units (like in the LHC example). Here we assume that

result collection time is negligible because the size of output

data is small or the results are left on the servers and storing

is included in the algorithm run time. Since result return is

neglected, it can be shown that in the optimum schedule all

servers must finish computations at the same moment [10],

[12], [13].

Loglinear – Sorting is a typical example of an algorithm

with loglinear complexity. Classic sequential sorting algo-

rithms like heapsort, quicksort have complexity O(n log n),
where n is the number of sorted items. We will assume that

a parallel version of these algorithms consists in splitting

the volume of data into parts, sorting the parts in paral-

lel, and then sequentially merging the results. Thus, on m
identical processors the complexity of this method would be

O((n/m) log(n/m) + n logm).
Quadratic - Computing a similarity matrix can serve as

an example of an algorithm with quadratic computational

complexity. Its sequential complexity is O(n2). In the case of

parallel processing, the square area of work, e.g. a similarity

matrix, may be partitioned into ℓ × ℓ squares distributed to

processors, where integer ℓ is a tunable parameter of the
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algorithm. There are ℓ2 tiles each of of size n2/ℓ2. Sending

and processing one square takes O(n2/ℓ2) time. If equal

numbers of ℓ2/m tiles are assigned to each of m proces-

sors, then receiving and processing them can be executed in

time O(n2/ℓ2 × ℓ2/m) which is O(n2/m). Note that tile

distribution may be different, that is, it may depend on the

communication and computing speeds of the processors.

IV. OPTIMUM FILTERING INTENSITY

Our goal in this section is to derive close-form solutions

(i.e. formulas) linking optimum filtering intensity F with other

system parameters to minimize the time required to transmit

and process all data. In many cases the obtained formulations

are not amenable to analytic solutions. In such a situation

further study is delegated to numerical modeling described

in the next section.

A. Parallel Communication, Linear Second Stage

In the optimum schedule, all servers communicate and

process in parallel, finishing at the same time T . Hence, we

have

α1(A1 + C1) = αi(Ai + Ci) i = 2, . . . ,m (3)

FV =
m
∑

i=1

αi (4)

In the above equation system all processors communicate and

compute in the same interval by (3), and all work is done by

(4). From (3) we get αi = (A1 + C1)/(Ai + Ci)α1 and

FV = (A1 + C1)
m
∑

i=1

α1

Ai + Ci
= K(A1 + C1)α1, (5)

where

K =
m
∑

i=1

1

Ai + Ci
(6)

is a constant. The schedule length is a sum of filtering,

communication and processing times:

T = A0(F )V + (A1 + C1)α1 = A0(F )V + FV/K. (7)

Thus, in order to minimize T , we have to minimize the

function

t(F ) = A0(F ) + F/K. (8)

We will now compute the optimum value of F for the

considered functions A0(F ). Note that practical values of F
belong to some interval [Fmin, Fmax] ⊂ (0, 1]. Thus, if the

computed optimum value F ∗ is larger than Fmax, we should

set F = Fmax. Similarly, if F ∗ < Fmin, then the smallest

possible value of F should be chosen.

1) A0(F) = 1/Fc, where c > 0 is a constant. Then,

t(F ) = F−c + F/K, (9)

t′(F ) = −cF−(c+1) + 1/K (10)

and

t′′(F ) = c(c+ 1)F−(c+2) > 0. (11)

Thus, t(F ) is minimized when t′(F ) = 0, i.e., for

cF−(c+1) = 1/K, (12)

F = (Kc)1/(c+1). (13)

2) A0(F) = c ln(1/F), where c > 0 is a constant. We have

t(F ) = −c lnF + F/K, (14)

t′(F ) = −c/F + 1/K (15)

and

t′′(F ) = c/F 2 > 0. (16)

Hence, t(F ) is minimized when

F = cK. (17)

3) A0(F) = c(1− lnF), where c > 0 is a constant. Then,

t(F ) = c(1− lnF ) + F/K, (18)

t′(F ) = −c/F + 1/K (19)

and

t′′(F ) = c/F 2 > 0. (20)

The minimum value of t(F ) is obtained for

F = cK. (21)

4) A0(F) = c(1− F), where c > 0 is a constant. Now we

have

t(F ) = c(1− F ) + F/K, (22)

t′(F ) = −c+ 1/K. (23)

Thus, t′(F ) does not depend on F . If c > 1/K, then

t(F ) is decreasing, and the maximum possible value of

F should be chosen. If c < 1/K, then t(F ) is increasing

and the smallest possible F should be selected.

B. Sequential Communication, Linear Second Stage

We assume that the sensor communicates with the proces-

sors in the order of their identifiers. Hence, we have

αi(Ai + Ci) = αi−1Ai−1 i = 2, . . . ,m (24)

FV =
m
∑

i=1

αi (25)

Equations (24) mean that communication to and computation

on processor i is preformed in parallel with computation on

processor i− i. It follows implicitly that processor i is started

after activating processor i− 1. Hence, we obtain

αi =
α1

∏i−1
j=1 Aj

∏i
j=2(Aj + Cj)

i = 2, . . . ,m, (26)

FV = α1

m
∑

i=1

∏i−1
j=1 Aj

∏i
j=2(Aj + Cj)

(27)

and

T = A0(F )V + (A1 + C1)α1 = A0(F )V + FV/L, (28)
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where

L =

m
∑

i=1

∏i−1
j=1 Aj

∏i
j=1(Aj + Cj)

. (29)

Equation (28) has the same form as (7), and hence, the

considerations from Section IV-A can be also applied in the

case of sequential communication.

C. Parallel Communication, Loglinear Second Stage

In the case of loglinear complexity of the second stage, it is

assumed that processing consists of three steps: parallel com-

munication, parallel processing chunks of data, and sequential

merging of the results. The latter can be executed in time

FV CM logm, where FV is the amount of data that has to be

collected, CM is reciprocal of merging speed (e.g. in sec/byte)

which is taking into account the speed of communication

between the servers providing data to merge and the merging

server, logm is a factor representing time to elect the smallest

value among m servers in the merging step. The former two

steps (parallel communication and processing) take the same

time T1 on all servers. Hence we have:

T1 = Ciαi +Aiαi lnαi i = 1, . . . ,m. (30)

Let us define

yi =
Ci

Ai
+ lnαi. (31)

We have

yie
yi =

(

Ci

Ai
+ lnαi

)

e
Ci
Ai αi =

=
1

Ai
(Ciαi +Aiαi lnαi) e

Ci
Ai =

T1

Ai
e

Ci
Ai .

(32)

Recall that if yey = x then y = W (x), where W is the

Lambert function [25]. Thus, we have

yi = W

(

T1

Ai
e

Ci
Ai

)

, (33)

and (30) can be written as

T1 = AiαiW

(

T1

Ai
e

Ci
Ai

)

. (34)

Hence, the load chunk sizes are:

αi =
T1

AiW
(

T1

Ai
e

Ci
Ai

) . (35)

The Lambert function cannot be expressed in terms of elemen-

tary functions, but T1 can be found numerically by solving

FV =

m
∑

i=1

T1

AiW
(

T1

Ai
e

Ci
Ai

) . (36)

The above equation is easier to solve in homogeneous systems

because all processors have the same parameters and load to

process is split equally. Then, each processor receives load of

size αi =
FV
m and equation (36) becomes:

FV =
mT1

AW
(

T1

A e
C
A

) . (37)

Moreover, we get from (33)

W

(

T1

A
e

C
A

)

=
C

A
+ lnαi =

C

A
+ ln

(

FV

m

)

=

= ln

(

FV e
C
A

m

) (38)

and hence,

T1 =
AFV

m
ln

(

FV e
C
A

m

)

. (39)

The schedule length including filtering, communication and

processing is

T (F ) = A0(F )V +
AFV

m
ln

(

FV e
C
A

m

)

+FV CM lnm (40)

We will now compute the optimum value of F for which T
is minimum.

1) A0(F) = 1/Fc, where c > 0 is a constant. Then,

T ′(F ) = −cV F−(c+1) +
AV

m

[

ln

(

FV e
C
A

m

)

+ 1

]

+

+ V CM lnm
(41)

T ′′(F ) = c(c+ 1)V F−(c+2) +
AV

mF
> 0 (42)

Hence, T (F ) is a minimum when T ′(F ) = 0.

2) A0(F) = c ln(1/F), where c > 0 is a constant. We have

T ′(F ) = −cV/F ++
AV

m

[

ln

(

FV e
C
A

m

)

+ 1

]

+

+ V CM lnm
(43)

and

T ′′(F ) = cV/F 2 +
AV

mF
> 0 (44)

Again, for F satisfying T ′(F ) = 0, T (F ) is minimum.

3) A0(F) = c(1− lnF), where c > 0 is a constant, is

dealt in the same way as the previous case because

[c ln(1/F )]′ = c(1− lnF )′ = −c/F .

4) A0(F) = c(1− F), where c > 0 is a constant.

T ′(F ) = −cV +
AV

m

[

ln

(

FV e
C
A

m

)

+ 1

]

+V CM lnm

(45)

and

T ′′(F ) =
AV

mF
> 0 (46)

and T (F ) is a minimum when T ′(F ) = 0.
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D. Sequential Communication, Loglinear Second Stage

In this case communications and parts of processed load are

linked by the system of equations:

Ci+1αi+1 +Ai+1αi+1 lnαi+1 = Aiαi lnαi

i = 1, . . . ,m− 1
(47)

FV =
m
∑

i=1

αi (48)

Equations (47) ensure that work on processor i − 1 is pro-

cessed in parallel with communication to and computation on

processor i. This set of nonlinear equations does not seem to

have an easy analytical solution. Therefore, we will recourse

to numerical methods to solve (47)-(48) and find F for which

the processing time is minimum.

E. Parallel Communication, Quadratic Second Stage

As mentioned in Section III we assume that the quadratic

amount of work is shared between the m processors. This

amount of work can be split into ℓ2 work units, each of size

(FV/ℓ)2. We will assume that ℓ is large and hence work

can be sufficiently flexibly divided as in the linear case. Yet,

mind that the amount of work, i.e. data to be processed,

grows proportionately to (FV )2. Furthermore, a homogeneous

system is considered. Similarly to the linear case (Section

IV-A), results are not explicitly merged. We have

T1 = αi

(

A

(

FV

ℓ

)2

+ 2C

(

FV

ℓ

)

)

i = 2, . . . ,m

(49)

ℓ2 =
m
∑

i=1

αi (50)

Equations (49) mean that communication and processing is

performed in the same interval on all processors. Since the

system is homogeneous, αi = ℓ2/m, for i = 1, . . . ,m, the

whole schedule length is

T (F ) = A0(F )V +
ℓ2

m

(

A

(

FV

ℓ

)2

+ 2C

(

FV

ℓ

)

)

(51)

We will now compute the optimum value of F for which T
is minimum.

1) A0(F) = 1/Fc, where c > 0 is a constant. Then,

T ′(F ) = −cF−(c+1)V +
2FAV 2

m
+

2CV ℓ

m
(52)

T ′′(F ) = c(c+ 1)V F−(c+2) +
2AV 2

m
> 0 (53)

Hence, T (F ) is minimum when T ′(F ) = 0. Unfortu-

nately, equation (52) does not seem to have an easy

analytical solution for T ′(F ) = 0 and has to be solved

numerically.

2) A0(F) = c ln(1/F), where c > 0 is a constant. We have

T ′(F ) = −cV/F +
2FAV 2

m
+

2CV ℓ

m
(54)

T ′′(F ) = cV/F 2 +
2AV 2

m
> 0 (55)

Again, T (F ) is minimum when T ′(F ) = 0 and

F =

√

4C2V 2ℓ2/m2 + 8cAV 3/m− 2CV ℓ/m

4AV 2/m
(56)

3) A0(F) = c(1− lnF), where c > 0 is a constant, is

dealt in the same way as the previous case because

[c ln(1/F )]′ = c(1− lnF )′ = −c/F .

4) A0(F) = c(1− F), where c > 0 is a constant.

T ′(F ) = −cV +
2FAV 2

m
+

2CV ℓ

m
(57)

and

T ′′(F ) =
2AV 2

m
> 0. (58)

Hence, T (F ) is minimum when F = mc−2Cℓ
2AV .

F. Sequential Communication, Quadratic Second Stage

We have a set of equations determining work distribution:

2Cαi+1

(

FV

ℓ

)

+Aαi+1

(

FV

ℓ

)2

= Aαi

(

FV

ℓ

)2

i = 1, . . . ,m− 1

(59)

ℓ2 =

m
∑

i=1

αi (60)

Unfortunately, this set of nonlinear equations does not seem to

have an easy analytical solution for F minimizing the schedule

length. Therefore, we will recourse to numerical methods to

solve (59)-(60) and find F for which the processing time is

minimum.

V. NUMERICAL MODELING

This section is dedicated to showing tendencies in the

system parameters when the filtering intensity is optimum with

respect to the minimum total processing time. In cases not

amenable to representation with a closed-form formula, the

optimum value of F was found by use of Python method

scipy.optimize.fsolve. We assume that the amount of

input data is V = 1E6. We will analyze recurring patterns in

performance rather than particular numbers. Therefore, only

representative examples of the cases introduced in Section

III-A are extensively discussed. For simplicity, only homo-

geneous systems are analyzed.

A. Parallel Communication, Linear Second Stage

Fig. 2 presents the relationship between the retained data

fraction F and the schedule length T in case 2, i.e. A0(F ) =
c ln(1/F ), for m = 100 and several combinations of A, C
and c values. The smallest value of F for which T is shown

in Fig. 2 is 0.01, because F must be greater than 0. When

A = C = 5 and c = 0.001, filtering is fast, while data transfer

and processing in the second stage are rather slow. Hence, the

smaller amount of data is retained, the shorter schedule is

obtained. Contrarily, when A = C = 1 and c = 0.3, filtering
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Fig. 2. T vs. F for parallel communication, linear second stage, case 2,
m = 100.

Fig. 3. F ∗ vs. m for parallel communication, linear second stage, case 1,
A = 5, C = 2.

is slow, while data transfer and processing are rather fast. In

consequence, larger F (i.e. lower filtering intensity) results in

a smaller schedule length T . In the remaining two presented

cases, the optimum value of F is neither the minimum possible

(close to 0) nor the maximum possible (1). For A = C = 5
and c = 0.2, the best value of F is 0.2, and for A = C = 2,

c = 0.25 it is 0.65.

Fig. 3 shows how the optimum value of retained data frac-

tion F ∗ depends on the number m of second stage processors,

for case 1 (A0(F ) = 1/F c) with A = 5 and C = 2. When m
grows, parallel data transfer and processing take less time in

comparison to the filtering stage. Therefore, a larger fraction

of data should be retained, in order to decrease the filtering

time. Naturally, the optimal filtering intensity decreases when

filtering is slow, i.e., for large c. In particular, when c = 1E−1
and m ≥ 70, no filtering should take place.

The total processing time resulting from filtering the opti-

mum size of data for different values of c and m is depicted

in Fig. 4. Naturally, the schedule length decreases when more

processors are used. This effect is stronger when c is large.

Indeed, in this case, decreasing filtering intensity (F increases,

Fig. 4. T (F ∗) vs. m for parallel communication, linear second stage, case
1, A = 5, C = 2.

Fig. 5. T vs. F for sequential communication, linear second stage, case 1,
m = 10.

A0(F ) decreases), which is possible because of using a larger

number of processors, has a large impact on the filtering time.

B. Sequential Communication, Linear Second Stage

When communication is sequential, a smaller number of

second stage processors can be effectively used than in the case

of parallel communication. Therefore, in Fig. 5, we present

the schedule lengths obtained for different values of F and

network parameters, m = 10, and for filtering case 1. In

general, the visible tendencies are similar to the ones in Fig.

2. However, even when A = C = 1 and c = 0.3, the optimum

value of F is much smaller than 1, i.e. filtering must be more

intensive than for parallel communication. The best among

values analyzed here is 0.4. Indeed, sequential communication

is a bottleneck, and even very costly filtering can be beneficial,

because it decreases the communication time.

The optimum data fractions F ∗ for A = 5 and C = 2 are

presented in Fig. 6. The values are much smaller than in the

case of parallel communication (see Fig. 3). As we already

explained, intensive filtering decreases the communication

time, which dominates in the schedule length. The fraction
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Fig. 6. F ∗ vs. m for sequential communication, linear second stage, case 1,
A = 5, C = 2.

Fig. 7. T (F ∗) vs. m for sequential communication, linear second stage, case
1, A = 5, C = 2.

of retained data grows with increasing m at a slower pace

than in the case of parallel communication.

The optimum schedule lengths are shown in Fig. 7. Using a

larger number of servers results in a shorter processing time,

but the impact of changing m is smaller than in Fig. 4, because

using more processors m does not decrease the communication

time.

C. Parallel Communication, Loglinear Second Stage

Fig. 8 presents the schedule lengths T obtained for different

values of F and network parameters, for parallel communica-

tion, loglinear second stage case 4. i.e. A0(F ) = c(1 − F ).
Recall that in the case of linear second stage and case 4,

the function T (F ) was always monotonous (Section IV-A,

equations (22, 23)). It can be seen in Fig. 8 that when the

second stage complexity is loglinear, T (F ) is also monotonous

for many choices of network parameters, but not for all of

them. In particular, when A = 10, C = 1, c = 1 and

CM = 0.01, the best among analyzed values of F is 0.45.

In cases 1 and 2 of data filtering complexity, the impact of

increasing the number of processors m on the optimum value

of F and schedule length is similar as for linear processing

Fig. 8. T vs. F for parallel communication, loglinear second stage, case 4,
m = 100.

Fig. 9. F ∗ vs. m for sequential communication, loglinear second stage, case
1, A = C = 3, CM = 1E−2.

complexity. The main difference is that the time of merging

the results also influences the results. When CM is big, the

merging stage becomes a bottleneck. Hence, more intensive

filtering is required to reduce its duration and thus to obtain

an optimum schedule.

D. Sequential Communication, Loglinear Second Stage

The differences between systems with sequential and par-

allel communication in the case of loglinear second stage are

similar to those present when the second stage is linear. Since

sequential communication is a bottleneck, optimum schedules

are obtained by more intensive data filtering. Fig. 9 shows that

even if m is large and filtering is slow, the fraction of retained

load should be at most several percent in case 1 of filtering

complexity. The optimum fractions obtained for cases 2, 3 and

4 are even smaller.

E. Parallel Communication, Quadratic Second Stage

When the second stage complexity is quadratic, intensive

data filtering is required to obtain a short schedule by de-
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Fig. 10. T vs. F for parallel communication, quadratic second stage, case
1, m = 100.

Fig. 11. T vs. F for sequential communication, quadratic second stage, case
1, m = 10.

creasing the duration of processing. It can be seen in Fig.

10, representing case 1 of the filtering complexity, that only

when c is really large (i.e. c > 1), it may not be beneficial to

decrease the data size as much as possible. In cases 2, 3 and

4 the fraction of retained data should be practically always as

small as possible.

F. Sequential Communication, Quadratic Second Stage

When communication is sequential and the second stage

complexity is quadratic, very intensive filtering should be used,

even if it is costly. For all combinations of parameter values we

studied, T (F ) is an increasing function (see Fig. 11). Although

the optimum fraction F ∗ increases slightly with growing m, it

stays below 0.01 for all settings we tested. Taking into account

the practical limitations on F , this means that the smallest

possible amount of data should be retained.

VI. CONCLUSIONS

In this paper we analyzed impact of data filtering intensity

on the performance of systems with single expensive sensors.

The analysis covered two-stage systems with generic repre-

sentations of filtering algorithms, communication patterns and

data processing methods. It appears that due to the interaction

of nonlinear complexity of filtering, transmission time and

further data processing stages, there exists filtering intensity

which is optimum for the overall processing performance.

These optima were investigated both analytically and com-

putationally. It appeared that the communication subsystem

and the second stage algorithm complexity have a large

impact on the first stage filtering intensity. The ability of

certain combinations of the system designs to scale is very

limited. In systems with sequential communication gains from

using parallel processors in the second stage are quickly

diminishing because data transfer easily becomes a bottleneck.

Processing with algorithms of high complexity (loglinear,

quadratic) should be delegated to even further stages of data

processing workflows because they incur needs for filtering

intensities which may be hard to realize. Thus, by exposing

scalability issues we demonstrated in this paper that designers

of workflows with data filtering and distributed processing

should strive for parallel data transfers and linear processing

algorithms when handling large volumes of data from the

sensors.
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[23] J. Berlińska and M. Drozdowski, “Scheduling divisible mapreduce
computations,” Journal of Parallel and Distributed Computing, vol. 71,
no. 3, pp. 450–459, 2011. doi: 10.1016/j.jpdc.2010.12.004

[24] ——, “Comparing load-balancing algorithms for mapreduce under zip-
fian data skews,” Parallel Computing, vol. 72, pp. 14–28, 2018. doi:
10.1016/j.parco.2017.12.003

[25] Wikipedia contributors, “Lambert W function,” https://en.wikipedia.org/
wiki/Lambert_W_function, [Online; accessed 5-August-2022].

440 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


