
A Reusability-Oriented Use-Case Model

Specification Language

Bogumiła Hnatkowska, Piotr Zabawa

0000-0003-1706-0205

0000-0002-5078-9869

Wroclaw University of Science and Technology

Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

Email: {bogumila.hnatkowska, piotr.zabawa}@pwr.edu.pl

Abstract—Use-case models play an essential role in software
development processes. They are used to specify functional
requirements, estimate software development project efforts, and
plan iterations. The use-case model is subject to change as
requirements are modified, or the model is refactored. Therefore,
it is essential that the use-case model is not redundant and
its parts are reusable. Existing approaches for use-case model
specification support reusability in a limited way. This paper
fills the gap. It introduces a new approach to conveniently yet
semi-formally specifying the entire use-case model. The paper
presents the Use-Case Flow Language metamodel, consisting of
its abstract syntax and a description of the semantics of the
metamodel elements. A concrete textual syntax of the language
is also provided and informally described. An example of a use-
case model specified in the proposed notation is presented in the
paper.

I. INTRODUCTION

T
HE SOFTWARE requirements specification (SRS) is one

of the most important artifacts documenting the qualities

of a software product. It is always produced regardless of the

development methodology used. The SRS can take different

forms, including use-case models, product backlogs with user

stories, or documents written in free natural language. In the

case of a use-case model, the SRS consists of a use-case

diagram and the associated use-case specification documents,

typically documented using structured texts, tables, or graphi-

cal notations (e.g., activity diagrams).

Textual specifications are the most widely used because

they are easy to understand and quick to define, even for

non-technical people. Still, on the other hand, they can be

misinterpreted or incomplete [1]. Therefore, many researchers

(e.g., [2], [3], [4]) try to define templates, a set of patterns

or rules that help to keep use-case specifications complete,

coherent, and consistent.

The important aspect of use-case specification, not fully

covered by the existing research, is the specification reusa-

bility. The same steps, step sequences, flows, or subflows can

be applied in many places when the change in one place

will influence all their instances. There are already defined

some reusability mechanisms in the UML, like «include» and

«extend» dependencies and generalization. However, they are

defined at the use-case level. To have an advantage of these

mechanisms for use-case fragments, one should introduce new

use-cases just for the reusability, which would increase the use-

case number significantly, making the use-case diagram and

the whole use-case model more complicated.

The paper aims to define a general-purpose language for

writing textual use-case model specifications, emphasizing

reusability. The proposed notation is consistent with existing

good practices, and the result of their application, i.e., the tex-

tual use-case specification should have the necessary features

to allow its further processing, e.g.:

• Checking use-case models’ completeness and correctness.

• Bi transformation into diagrammatic notations, e.g., ac-

tivity diagrams or flow visualization.

The motivation to cover the use-case model by a standar-

dization process was and still is very strong. The reasons for

standardization efforts are as follows:

• The use-case model is used for the specification of

functional requirements.

• Use-cases are the source information not only for the

implementation of a software product but also for the ver-

ification of the product by functional tests; the functional

tests can be implemented directly from the use-cases in

parallel with the implementation.

• The use-case model is used to estimate the development

efforts (use-case points method [5]).

• Use-cases play a crucial role in iterative software deve-

lopment projects as the iteration plans are organized for

a set of use-cases or similar constructs.

The contribution of this paper is a notation specification of

a use-case model flow language (Use-Case Flows Language,

UCFL) used for scenario definition as a supplementary part of

a use-case diagram. The specification includes the language

metamodel (abstract syntax) – see section III, and concrete

textual syntax (T-UCFL) – see section IV. The metamodel

takes the form of a UML class diagram, while the concrete

syntax is given in the form of context-free grammar. The

notation is presented with several examples. It is characterized

by a minimal set of keywords used in use-case flow steps.

Examples of the T-UCFL usage are contained in section V.

And, finally, the content of the research presented in the paper

is summarized in section VI.

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 567–576

DOI: 10.15439/2023F5469

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 567 Thematic track: Practical Aspects of and

Solutions for Software Engineering



II. RELATED WORK

A metamodel is a typical form of abstract syntax rep-

resentation, also used for use-case models ([6], [7]). Such

a metamodel can have many different representations, both

graphical and textual. The authors decided to propose their

own metamodel for the use-case specification formalism in

order to overcome the limitations of existing, e.g., the lack of

iterations or interruptions.

The concrete syntax of UCFL called T-UCFL takes the form

of a free context grammar – such a solution was used in [8] for

a similar purpose. The grammar has been developed with best

practices in mind. As this is a textual specification, the authors

draw inspiration from many existing books [2]-[4] and papers

[9]-[10]. These references suggest, among others, different

templates of use case scenarios, keyword sets, and ways of

identifying steps. To the best of the authors’ knowledge, none

of them pay attention to the reusability of the step, step

ranges, or global flows. The existing reusability mechanisms

are defined as reusable templates [11] or patterns [6], [7].

Use-case specifications with globally visible flows are col-

lected in a use-case model. A similar idea is given in [12],

where the authors suggest using "several mechanisms to factor

out common usage like error handling from sets of use-cases",

but the idea is not formalized.

Common elements proposed in this paper include:

• use case name,

• documentation – can be a substitute for a goal, brief

description, primary and secondary actors,

• pre- and post-conditions – similar to [13], post-conditions

can be divided into subgroups depending on the scenario

and return a specific state [9]; such a construct can be

used to model minimal guarantees and success guaran-

tees,

• subflows – as potential elements of reuse,

• the main flow of events – sometimes called scenario ([4])

or basic/normal course of events ([8], [12]),

• flows – called alternative flows ([4]), alternative courses

(e.g. [2]), or extensions (e.g. [3]).

Use-case flow is typically expressed in terms of actions.

Sometimes these actions have no implicit structure, e.g. [12],

[4], when the scenario is simply a sequence of sentences. In

the proposed approach, the actions are classified and uniquely

identified by step identifiers, which enables their reusability.

The step identification resembles the one proposed in [2], [11]

and implemented in some tools, e.g., CaseCompleted [14] or

Enterprise Architect [15].

The use-case semantics, especially the control flow, must

be clearly defined. This can be achieved by using specific

keywords. The keywords used in the literature to represent

the control flow are as follows:

• GOTO step ([11]) or USE-CASE CONTINUES AT step

([14]).

• IF-THEN-ELSE-ELSEIF-ENDIF, MEANWHILE, VAL-

IDATES THAT, DO-UNTIL, ABORT, RESUME step,

INCLUDE use-case, EXTENDED BY use-case ([13]).

• IF, VALIDATES, RESUME FLOW, goto, and resume

statements are also defined indirectly in separate columns

with appropriate names (alternative FlowId, resume

FlowId) as identifiers to steps ([16]).

• USE-CASE CONTINUES AT, RETIRED n TIMES,

ENDS IN state ([9]).

• COND, INVOKE, REJOIN, FINAL: state ([7]).

Most of them were adapted in the proposed language, e.g.,

goto, validates that, includes, extends, and final.

III. UCFL METAMODEL

This section presents the abstract syntax and semantics of

the Use-Case Flow Language specification. The UCFL abstract

syntax, in the form of the UML class diagram, is shown in

Fig. 1. As the notation focuses on the specification of use-case

behavior, the UCFL abstract syntax does not contain either

actors or the relationships between them.

A. UCFL Containers

Container is a named element containing flows or their

refinements – subflows. We have two types of containers: use-

case model and use-case.

1) Use-Case Model: Use-case model is a container of

use-cases. It can define publicly visible flows and subflows.

Optionally, the use-case model can specify so-called use-case

model interruptible regions or flow-interruptible regions (see

section III-G) and be documented by a string.

2) Use-Case: Use-case is a basic modeling element that

represents interactions between the system and its actors

via flows and subflows. It may have optional documentation

describing the use-case goal. The use-case may also specify

use-case interruptible regions (see section III-G).

Pre and postconditions: A use-case may require some pre-

conditions to be met in order to enable the use-case behavior.

These preconditions (if any) are sentences in natural language.

The use-case behavior can change the state of the system.

The state changes are represented by postconditions. Each

postcondition is a sentence in natural language with a state

name, e.g., success, partial success, failure, or other, defined

by a modeler.

Generalization: Use-cases can be related to each other with

generalization relationships. A use-case can be the parent of

many use-cases (children). Only leaves of the inheritance tree

can have flows defined. A justification for this decision is given

later in this section.

B. UCFL Container Elements

1) Flow: Flow is a key element used to structure the use-

case behavior. It is a sequence of steps referring to actions

performed either by an actor or by the system. A step has a

sequence number and a step identifier constructed from the

flow identifier.

From the perspective of a graphical language representation,

a flow is a path (possibly looped) in the graph without any

branches. Flows can be assembled into a graph using specific

actions, e.g., conditional. The first action in the flow can

568 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



C
o

n
ta

in
e
r

S
u

b
fl

o
w

-i
s
M

a
in

 :
 B

o
o

le
a

n
[0

..
1

]

-i
d

 :
 S

tr
in

gF
lo

w

-n
a

m
e

 :
 S

tr
in

g

N
a
m

e
d

-n
u

m
b

e
r 

: 
In

te
g

e
r

- 
/ 

s
te

p
Id

 :
 S

tr
in

g

S
te

p

-t
e

x
t 

: 
S

tr
in

g
 [

0
..

1
]

A
c
ti
o
n

E
v
e
n

t

T
ri

g
g

e
r

T
ri

g
g

e
ri

n
g

A
c
ti

o
n

C
a
s
u

a
l

-c
o

n
d

it
io

n
 :

 S
tr

in
g

C
o

n
d

it
io

n
a
l

O
v
e
rr

id
in

g

R
e
fe

re
n
c
e

R
e
fe

re
n

c
e
T

o
S

te
p

R
e
fe

re
n

c
e
T

o
R

a
n

g
e

R
e
fe

re
n

c
e
T

o
S

u
b

fl
o

w

R
a
n

g
e

G
o

T
o

-c
o

n
d

it
io

n
 :

 T
e

x
t

E
x
te

n
s
io

n
 p

o
in

t

-s
ta

te
 :

 S
tr

in
g

F
in

a
l

F
lo

w
In

te
rr

u
p

ti
b

le
IR

e
g

io
n

-t
e

x
t 

: 
S

tr
in

g

-w
it
h

C
o

n
te

x
t 

: 
B

o
o

le
a

n
[0

..
1

]

In
te

rr
u

p
ti
b

le
R

e
g

io
n

-c
o

n
d

it
io

n
 :

 S
tr

in
g

[0
..

1
]

-n
u

m
b

e
r 

: 
In

te
g

e
r[

0
..

1
] 

{u
n

iq
u

e
}

L
o

o
p

R
e
g

io
n

-c
o

n
d

it
io

n
 :

 S
tr

in
g

[0
..

1
]

-n
u

m
b

e
r 

: 
In

te
g

e
r[

0
..

1
]

In
te

rn
a
lL

o
o

p

-d
o

c
u

m
e

n
ta

ti
o

n
 :

 S
tr

in
g

[0
..

1
]

U
s
e
C

a
s
e
M

o
d

e
l

-d
o

c
u

m
e

n
ta

ti
o

n
 :

 S
tr

in
g

[0
..

1
]

U
s
e
C

a
s
e

U
s
e
C

a
s
e
II
n

te
rr

u
p

ti
b

le
R

e
g

io
n

F
in

a
lU

s
e
C

a
s
e

F
in

a
lS

y
s
te

m

G
o

to
C

tx

-t
e

x
t 

: 
S

tr
in

g

P
re

c
o

n
d

it
io

n

-t
e

x
t 

: 
S

tr
in

g

-s
ta

te
 :

 S
tr

in
g

P
o

s
tc

o
n

d
it

io
n

G
e
n

e
ra

li
z
a
ti

o
n

U
s
e
C

a
s
e
M

o
d

e
lI
n

te
rr

u
p

ti
b

le
R

e
g

io
n

In
c
lu

d
in

g
A

c
ti

o
n

E
x
te

n
d

in
g

A
c
ti

o
n

-w
it
h

C
o

n
te

x
t 

: 
B

o
o

le
a

n
[0

..
1

]

E
v
e
n

tT
ri

g
g

e
re

d
c
ti

o
n

A
c
to

rC
h

o
ic

e

u
n

ti
l

e
x
a

c
t

m
a

x

<
<

e
n

u
m

e
ra

ti
o

n
>

>

L
o

o
p

T
y
p

e

D
e
p
e
n
d
e
n
c
y

*

0
..

*

c
h

il
d

0
..

1

e
x
te

n
d

e
d

1
..

*

1

c
a

u
s
e

d
 b

y

1
..

*

1
..

*

h
a

n
d

le
r

tr
ig

g
e

r

0
..

1

to

s
c
o

p
e

1
..

*

*

*

in
c
lu

d
e

d

*

0
..

*
0

..
*

s
c
o

p
e

1
..

*

p
a

rt
s

*
*

*

fr
o

m

*

s
o

u
rc

e

p
a

re
n

t
*

1
..

*

*

*
0

..
*

s
c
o

p
e

lo
o

p
 t

y
p

e

lo
o

p
 t

y
p

e

Fig. 1. UCFL abstract syntax

BOGUMIŁA HNATKOWSKA, PIOTR ZABAWA: A REUSABILITY-ORIENTED USE-CASE MODEL SPECIFICATION LANGUAGE 569



connect it to another flow (as a branch of another flow) -

see Fig. 2.

Fig. 2. Flow visualization – different flows are represented by different colors

The flow declaration introduces a flow identifier and a name

(both of which must be unique within the context of the flow

owner) and, optionally, a trigger. A trigger specifies an action

(called a triggering action) that enables the flow. If the flow

has a trigger, the flow is called a handler. If the owner of the

flow is a use-case then the flow can be marked as a main flow

(a use-case must define exactly one main flow; other flows are

alternatives).

A flow can additionally define flow interruptible regions (see

section III-G) and loop regions (see section III-E).

A flow can be constructed from subflows.

2) Subflow: Subflow is a specialized flow with the re-

striction that its steps must refer to actions that form a

sequence that is casual, finals, and internal loops actions (see

section III-F). The subflow is a primary reusable element. It

can be shared by several flows; however, a subflow cannot

contain interruptible regions or loop regions.

C. Range

Range is a sequence of steps (from–to) included in one

flow. Ranges define the scope of flow interruptible regions

(see section III-G) or loop regions (see section III-E).

D. Loop Type

Loop type is an enumeration of literals defining different

types of loops: until (do something until condition), exact

(do something the exact number of times), max (do something

the maximum number of times). The type is specified when

defining a loop region or an internal loop action.

E. Loop Region

Loop region is the specification of a range that can be

repeated in the manner defined by a Loop type. If the Loop

type is set to until, the condition for the loop region must

be defined. Otherwise, the number attribute must be set.

F. Actions

Each step of the flow must refer to one action describing

the actor-system interaction in an informal way (text attribute

in Action metaclass).

1) Triggering Actions: A trigger specifies an action (so-

called triggering action) that enables the flow. It is the only

action that does not need to be referenced by a flow step

because it is assumed that it will be performed by an actor

to start the flow. There are two types of triggering actions:

actor choice action and event-triggered action.

Actor choice action: A flow can be started at the request of

the actor, represented by the Actor’s choice triggering action.

Event-triggered action: A flow can be started by an actor

sending an event to the system, which is modeled by an event-

triggered action.

The event-triggered action must refer to an event and

optionally can contain a request to store the context before the

event is handled (attribute withCtx). The event is understood

as something that happens at a specific time that requires the

system reaction. The event has a name that serves as an event

identifier. The context defines the name of the running flow or

subflow within the region scope (if any) and its running step,

which allows the behavior to be resumed later.

2) Casual action: Casual action is the most general. It is

used to model anything the actor or system must do, that

cannot be expressed by other actions.

3) Finals: A modeler can define a final action to express

that the system has completed its operation (Final system

action) or that a use-case has completed its operation in a

particular state (Final use-case action). Such an action should

be the last one in the flow (or subflow in the case of the final

system action).

4) Conditional: Conditional action represents a decision

made by the system under specific conditions. Such an action

may check whether another use-case has ended in a particular

state. It is usually the first action of the alternative flows.

5) Internal Loop: Internal loop represents a case where a

particular action is to be repeated in the manner defined by

the loop type (see section III-D for details).

6) GoTos:

GoTo: Goto action is used to define unconditional loops.

You can jump to a particular step in the same flow or any

flow in the same use-case provided that the referenced step

exists.

GoTo Ctx: The special version of goto action - Goto ctx

- allows you to return to the previously saved context (the

interrupted action is executed again).

7) Overriding: Overriding is a specific action used as a

branching mechanism in the flow definition. This action points

to the step in the base flow that is being overridden. The action

in the source step must be of the same type as the parent of

the overriding action (Actor choice or Conditional).

8) References: References represent the reusable elements

of the T-UCFL. Depending on the scope of reusability, three

types of reference are distinguished: reference to step, refer-

ence to subflow, and reference to range.

570 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Reference to step: Reference to step is the simplest reference

action, where the scope of reusability is limited to a single

action defined in the step to which the reference action refers.

You can imagine that the reused action is copied in place of

the reference to the step action.

Reference to subflow: Reference to subflow is the reference

action in which the scope of reusability is a particular subflow.

When the subflow activity is finished, the control flow is

passed back to the original flow.

Reference to range: Reference to the range is the reference

action in which the scope of reusability is limited to a specific

range.

9) Dependencies: Including: A use-case can include the

behavior of another use-case. The semantics of this action

is similar to the «includes» relationship in the UML [17]

where the including use-case is the owner of the flow with the

including action, and the included use-case is the one indicated

by the including action.

Extending: The flow of a use-case can contain an extending

action. The semantics of this action is like the «extends»

relationship in the UML [17] where the extended use-case is

the flow owner with the extending action, and the extending

use-case is that indicated by the extending action. The exten-

sion point describes a condition that must be satisfied for the

extension to take place.

G. Interruptible Regions

The UCFL allows the definition of interruption (exception)

handling mechanisms using so-called interruptible regions.

Such a region points to its scope. The scope of the region

can be either a set of use-cases (use-case model interruptible

region), a set of flows defined within a use-case model,

or a use-case (use-case interruptible region), a range (flow

interruptible region). The scope can be interrupted by any

event, that caused the interruption.

1) Use-case model Interruptible Region: Use-case model

Interruptible Region enables specification of the interruption

mechanisms at the use-case model. The interruption scope can

refer to any flow or a use-case defined in this container.

2) Use-case Interruptible Region: Use-case Interruptible

Region enables specification of the interruption mechanisms

at the use-case level. The interruption scope can refer to any

flow defined in this container.

3) Flow Interruptible Region: Flow Interruptible Region

enables specification of the interruption mechanisms at the

flow level. The interruption scope can refer to a range (step

from, step to) defined in the flow context.

H. Use-case generalization relationship

Use cases are classifiers and can inherit one from another.

An example of such inheritance is shown in Fig. 3. Assuming

that the use-case specification is given in natural language, the

question arises of how the use-case generalization influences

their specification, which can “include possible variations of

its basic behavior, including exceptional behavior and error

handling” [17].

Generally, a behavior is a specification of events that may

occur during the use-case lifetime. The specification must

contain at least one event – the event of its invocation [17]. The

behavior is invoked when an instance of the owning classifier

(i.e., use-case) is created.

In the case of use-case inheritance, a child’s specification of

events (including the triggering one) is inherited from the pa-

rent use-case, which makes the whole specification ambiguous.

Therefore, to avoid possible problems and misinterpretations,

we assume that any parent use-case must serve only as a root

of a use-case hierarchy. Use-case triggers for the hierarchy

leaves should determine which child to run.

IV. T-UCFL INFORMAL DESCRIPTION

This section demonstrates the use of the T-UCFL concrete

syntax ([18]) with several examples. The language grammar

has been designed to keep the language flexible and concise.

However, as the specification is intended to be processed by

computers, the grammar may impose some constraints on the

use of the language, such as the need to enclose elements in

quotes or the use of certain keywords.

A. T-UCFL Containers

The container – as an abstract class – has no textual

representation.

1) Use-case Model: A use-case model is a container and

a namespace for all other elements. Its declaration defines the

model’s name (e.g., Buying) and optional documentation. Its

definition contains shareable elements with global visibility

(flows and subflows), an optional declaration of interruptible

regions, and a list of use-cases. The concrete syntax assumes

that the documentation is textual; however, for readability

purposes, the authors decided to use a graphical version in

the example presented below (see Fig. 3).

Use-Case Model: Buying

Documentation:

Pay

CreditCard PayPal

Download invoice

extension points

Buy

Download invoice

Bank PayPal

Buyer

<<Include>>

<<Extend>>

Fig. 3. Buying use-case model documentation in the form of a use-case
diagram

BOGUMIŁA HNATKOWSKA, PIOTR ZABAWA: A REUSABILITY-ORIENTED USE-CASE MODEL SPECIFICATION LANGUAGE 571



2) Use-case: Use-case specification consists of a use-case

declaration followed by the use-case definition. The use-case

declaration defines a unique use-case name within the use-

case model (e.g., CreditCard) and, optionally, use-case

documentation.

Use-Case: CreditCard

Documentation: "Use-case enables payment

with a credit card."

3) Pre and postconditions: A use-case declaration can also

contain pre- or post-conditions placed after documentation (if

any). The precondition section has one or more statements

expressing conditions, for example

Preconditions:

- "Actor is logged in the system."

Quotation marks are required by formal grammar and can

be skipped if the use-case specification is not going to be

automatically translated.

Each post-condition section, if any, should define a name of

a final system state name (e.g., success, partial-success, error)

followed by one or more conditional statements, e.g.,

Postcondition(success):

- "An order is stored by the system."

4) Generalization: If a use-case has a parent, its name

follows the child use-case name and “-->” symbol, e.g., Pay

is the parent use-case for the CreditCard use-case:

Use-Case: CreditCard --> Pay

B. T-UCFL Container Elements

1) Flow: Flow is a named element with an additional string

identifier. A flow can be defined in the context of a use-case

model, typically as a handler for some event or in the context

of a particular use-case. A use-case should have exactly one

flow with the reserved name: Main flow, and any number

of alternative flows with unique identifiers.

Each flow defines a sequence of numbered steps. The step

number is constructed with a sequence number preceded by

the flow identifier (skipped for the main flow), e.g.:

Use-Case: Buy

Trigger: ...

Main flow:

1. ...

2. ...

Flow B: The_order_data_invalid

B1. ...

Flow C: Unsuccessful_payment

C1. ...

The example shown above presents the Buy use-case with

the main flow and two alternative flows B and C (B is

the identifier, The_order_data_invalid – is the flow

name). The main flow of the use-case has a triggering action

defined.

2) Subflow: A subflow is an element of reuse. It can be

visible globally (subflows defined at the use-case model level)

or locally (subflows defined at the use-case level). They serve

to split long flow definitions into manageable fragments. Only

casual, final, and internal loop actions are allowed in the

subflow definition.

A subflow example is given below:

Subflow P: Car_info

P1. ...

P2. ...

C. Range

Range defines a subsequence in a flow, identified by two

steps identifiers, e.g., 2.-3. consists of 2 steps (2 and 3 in

the Main flow), A.5.-A.7. consists of 3 steps in the flow

A.

D. Loop Type

Loop type is a keyword (one of until, exact, max) used

together with a loop region or internal loop action to specify

the loop type – see section V for examples.

E. Loop Region

The loop region works in a similar way to an interruptible

flow region. It specifies a range of steps to be repeated as

specified by the associated loop type. The loop region is placed

after all the steps of the flow, e.g.,

Main flow:

1. ...

2. ...

Steps 1-2 can be repeated exactly 3 times

Steps 1-2 can be repeated

until "condition."

F. Actions

1) Triggering Actions: A triggering action is typically used

to specify how an actor starts a particular flow. In this case,

it is specified before the flow, after the Trigger keyword.

Examples of triggering actions include Actor choice action

or Event-triggered action. However, the triggering actions can

also be referenced by flow steps.

Actor choice action: A flow can be started by an actor (their

decision). Such action must start with Actor wants and be

followed with "decision" written in quotation marks, e.g.,

Use-Case: CreditCard --> Pay

Trigger: Actor wants "to pay with a credit

card"

Main flow: ...

2) Event-triggered action: A flow can also be started by an

event sent asynchronously by an actor. Such an action must

start with Actor sends and be followed with the event

name and one of event or event with ctx, e.g.,

Actor sends cancelling_service event

Actor sends cancelling_service event

572 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



with ctx

The latter action contains the request to store the context

before the event is handled.

3) Casual action: Casual action is the most general. It

is a free text without keywords present in other types of

actions like verifies, includes, ends with or goto

(e.g., "System asks about the order data"), rep-

resenting something that the actor or the system must do.

The grammar requires this action to be enclosed in quotation

marks.

4) Finals: The modeler can define a final action expressing

that the system finishes operation (The system ends) or

a use-case finishes in a specific state (e.g., failure) with the

phrase: The use-case ends with failure. Such an

action should be the last one in the flow. The first one means

that the system stops running.

5) Conditional: The conditional action repre-

sents a decision made by the system. It must

contain the phrase System verifies or

System verifies that, followed by a phrase

containing a condition, e.g., System verifies that

"the order data are valid". Such an action

may check whether another use-case ended in a

specific state, e.g. (System verifies that

Pay use-case ended with failure).

6) Internal loop: One can define that a given action should

be repeated a specific number of times specifying its loop type,

e.g.,

• "Actor selects products" max 3 times.

• "Actor selects products"

until "he is satisfied".

7) GoTos: GoTo: GoTo action is used to define uncondi-

tional loops. We can jump to a particular step in any flow

defined in the specific context (a use-case model or a use-

case) provided that the referenced step exists, e.g., Goto 2.

(a jump to the 2nd step in the Main flow), Goto A3. (a

jump to the 3rd step of flow A).

GoTo Ctx: GoTo ctx is a special version of the goto action

that passes the control flow to the previously saved context (if

any). If no context is stored, the semantic is undefined. The

interrupted action defined by the context is executed again.

8) Overriding: Overriding actions are used to link flows in

a graph. They point to the action in another flow and should be

of the same type as the overridden action. Typically, they start

alternative flows in a use-case. An example of an overriding

action when a decision is made by the system might look like

this:

B1.3. System verifies that "the order

data are invalid"

The 3rd step in the main flow will be overridden in the B flow

with the action given above.

9) References: A reference is a basic reusability mech-

anism. One can reuse another step, step range, or subflow

behavior. Examples of such actions are given below:

• A1.2. (a step reference; in the 1st step of flow A, the

2nd step of the main flow is reused)

• A2.B3. (a step reference; in the 2nd step of flow A, the

3rd step of flow B is reused)

• B3.A1.-A2. (a range reference; in the 3rd step of the

flow B, the range of two steps 1-2 from the flow A is

reused)

Technically, the reference to a singular step or step range

can be thought of as a shortcut for a preprocessing mechanism

that copies the referenced elements to the places where they

are used and renumbers the steps respectively. Let us assume

that flow A contains the steps:

A3. Action 1

A4. Action 2

and that flow B contains the steps:

B1. Action 3

B2. A3.-A4.

B3. Action 4

The result of such preprocessing can look like this:

B1. Action 3

B2.a. Action 1

B2.b. Action 2

B3. Action 4

Subflows must be directly referenced (keyword subflow

followed by the subflow name) in the appropriate actions, e.g.

A2.subflow Car_Info

10) Dependencies: Including: One use-case can include

or extend another use-case behavior. This is modeled with

dependency actions: including or extending. An example of

the including action is given below:

System includes Pay use-case.

When the included use-case reaches the final action, the

control returns to the including use-case.

Extending: Two use-cases can also be linked with an ex-

tension relationship. The flow of the extended-use case should

contain the extension point definition, e.g.,

Extension point: "Actor requires the

invoice downloading."

The flow is extended with Download_invoice use-case

The extension point specifies a condition under which the

flow is extended with another behavior (here: "Actor requires

the invoice downloading"). The control returns to the extended

use-case when the extending use-case reaches the use-case

final action.

G. Interruptible Regions

An interruptible region defines a scope for which the normal

operation of the system can be interrupted by a specific event

(its name is given) coming from an actor.

BOGUMIŁA HNATKOWSKA, PIOTR ZABAWA: A REUSABILITY-ORIENTED USE-CASE MODEL SPECIFICATION LANGUAGE 573



1) Use-case model Interruptible Region: Use-case model

interruptible region is the one with the widest scope. If it is

present, it is placed at the beginning of the use-case model

definition, e.g., where any use case can be interrupted by the

close_system event.

Use-Case Model: Document_Editor

Any use-case can be interrupted

by close_system event

2) Use-case Interruptible Region: The scope of a use-case

interruptible region is limited to a specific use-case. If it is

present, it is placed at the beginning of the use-case definition,

e.g.,

Use-Case Model: Buy

Any flow can be interrupted by

close_system event

3) Flow Interruptible Region: The scope of a flow inter-

ruptible region is limited to a range within a specific flow. If

it is present, it is placed after all flow actions, e.g.,

1. ...

10. The use-case ends with success

Steps 1.-3. can be interrupted by

cancelling_service event with ctx

The flow interruptible region narrows the scope of the

event handling mechanism, e.g., the interruption will be only

handled within between steps 1-3 (inclusively).

V. EXAMPLE SPECIFICATION

This section contains a small example of a use-case model

from Fig. 3, which presents most of the constructs introduced

informally in section IV.

The first part of the T-UCFL model specification is related

just to the model:

Use-Case Model: Buying

Trigger: Actor sends

cancelling_service event

Flow A: Cancelling_service_event_handler

A1. "System asks

for cancellation confirmation"

A2. Actor wants

"to cancel the operation"

A3. The use-case ends with failure

Flow B: Cancellation_denied

B1.A2. Actor wants "to deny cancellation"

B2. Goto ctx

This part of the model specification is composed

of the use-case model called Buying; global flow A

named Cancelling_service_event_handler, which

is shared among all use-cases and can be triggered by the

cancelinig_service event generated by an actor; the

global flow B named Cancellation_denied which is a

branch of the A flow (see a reference step B1.A2.). The

Goto ctx action (if performed) will pass the control flow to

the context.

The remaining parts of the T-UCFL specification contain

subsequent use-case specifications.

Use-Case: Buy

Postcondition (success):

- "An order is stored by the system"

- "An invoice is generated, assigned

to the order, and stored by the system"

Trigger: Actor wants "to buy an item"

Main flow:

1. ...

2. "System asks about order data

(including payment method)"

3. "Actor delivers the order data"

4. System verifies that "the order

data are valid"

5. System includes Pay use-case

6. System verifies that "the Pay

use-case ended with success"

7. "System stores an order,

generates an invoice,

and sends it by e-mail"

8. "System informs about

order completion and enables

an option to download the invoice"

9. Extension point: "Actor requires

invoice downloading"

The flow is extended with

Download_invoice use-case

10. The use-case ends with success

Steps 1.-3. can be interrupted

by cancelling_service event with ctx

The main flow contains several conditional actions (e.g., 4,

6). The 5th step contains an including action (Pay use-case is

included). The 9th step contains an extending action with the

condition defined. Finally, there is a flow interruptible region

consisting of step range 1.-3..

Then two alternative flows (B and C) are defined:

Flow B: The_order_data_invalid

B1.4. System verifies that

"the order data are invalid"

B2. "System informs about invalid data"

B3. Goto 2.

Flow C: Unsuccessful_payment

C1.6. System verifies that

"the payment ended with failure"

C2. "System informs about the lack

of payment"

C3. Goto 2.

In both cases, the first step refers to the step with conditional

574 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



action in the main flow and contains the condition, which

complements the condition from the main flow.

The specification continues with the Download_invoice

use-case specification:

Use-Case: Downolad_invoice

Postcondition (success):

- "An invoice is downloaded to

the Buyer's computer"

Main flow:

1. "System presents the invoice details

and asks for confirmation

of the invoice download"

2. Actor wants "to download the invoice"

3. "System sends the last buyer invoice

to the buyer's computer"

4. The use-case ends with success

Steps 1.-3. can be interrupted

by cancelling_service event with ctx

Flow B : Downloading_not_confirmed

B1.2. Actor wants "to skip downloading"

B2. The use-case ends

with partial success

The use-case has only one alternative flow B, which – in

contrast to the Buy use-case, is started by the actor’s choice

action.

There is also a group of three interrelated use-cases in the

Buying use-case model. The first is the Pay use-case, which

is abstract and has no flow. It has the following form:

Use-Case: Pay

Documentation: "Abstract use-case.

A root hierarchy for different

payment methods"

Postcondition (succes):

- "payment succesfull"

Postcondition (failure):

- "payment unsuccesfull"

The specification also contains two concrete use-cases

(CreditCard, PayPal) that inherit from the Pay use-case.

Because of limited space only the first is presented:

Use-Case: CreditCard --> Payment

Documentation: "Use-case enables payment

with a credit card"

Trigger: Actor wants "to pay with a

credit card"

Main flow:

1. "System asks for credit card details"

2. "Actor delivers credit card details"

3. "System sends a request to a bank

for payment and waits

for bank response"

4. System verifies that "the payment

was successful"

5. The use-case ends with success

Steps 1.-3. can be interrupted

by cancelling_service event

Flow B: Payment_unsuccessfull

B1.4. System verifies that

"the payment was unsuccessful"

B2. The use-case ends with failure

Other examples, together with the language abstract and

concrete syntax, are available at [18].

VI. SUMMARY

The concept of a new use-case model specification language

(UCFL) consisting of the metamodel, and a textual concrete

syntax (T-UCFL) was introduced in the paper. The main pur-

pose of the language is the specification of use-case behaviors.

It has commercial origins, as the need for the reusability-

oriented approach to use case modeling was recognized during

the authors’ commercial activities.

The T-UCFL syntax was stabilized on plenty of advanced

experiments focused on modeling non-trivial behaviors of

some invented software systems. The UCFL metamodel was

inferred from these experiments.

Concepts introduced in the paper are designed to extensively

support the reusability and avoid redundancy in use-case flows

for the whole use-case model. The reusability is achieved at

different granulation levels, from a singular step, steps’ range

to a subflow. Flow initial fragments are reused by definition

as they are shared with alternative flows. Inclusion, extension,

and generalization between use-cases are also supported.

The language helps to introduce changes into the use-case

model. A change made in one place "is visible" in many places

referring to the changed element.

The UCFL introduced in the paper seems to be very

promising and could be further developed. It is internally

consistent, concise, and semi-formal - the specification mimics

those written in natural language.

It is worth noting that the paper only introduces a textual

concrete syntax. However, other syntaxes may be introduced,

especially graphical ones.

In the future, the authors intend to extend the proposed

notation with tool support. They also work on graphical

concrete syntax and bidirectional transformations between

concrete syntaxes. Of course, the usability of the language

needs to be validated by external users, first in academia and

then in industry.

REFERENCES

[1] S. Liu, J. Sun, Y. Liu, Y. Zhang, B. Wadhwa, J. Dong, and X. Wang,
“Automatic early defects detection use case documents,” in Proc. 29th

ACM/IEEE international conference on Automated software engineer-

ing, 2014, pp. 785–790.
[2] S. Adolph, P. Bramble, and A. Pols, Patterns for Effective UseCases.

Addison-Wesley Professional, 2003.
[3] A. Cockburn, Writing Effective Use-Cases. Addison-Wesley, 2000.
[4] G. Overgaard and G. Palmkvist, Use-cases: Patterns and Blueprints.

Addison-Wesley, 2005.

BOGUMIŁA HNATKOWSKA, PIOTR ZABAWA: A REUSABILITY-ORIENTED USE-CASE MODEL SPECIFICATION LANGUAGE 575



[5] S. Diev, “Use cases modelling and software estimation: applying use
case points,” ACM SIGSOFT Software Engineering Notes, vol. 31, no. 6,
pp. 1–4, 2006.

[6] M. Śmiałek, J. Bojarski, W. Nowakowski, A. Ambroziewicz, and
T. Straszak, “Complementary use case scenario representations based
on domain vocabularies,” in Proc. MODELS’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 544–558.

[7] M. Śmiałek, A. Ambroziewicz, and P. R, “Pattern library for use-case-
based application logic reuse,” in Proc. Databases and Information

Systems. Communications in Computer and Information Science, vol.
838. Cham: Springer, 2018, pp. 90–105.

[8] S. Iqbal, I. Al-Azzoni, A. G, and K. HU, “Extending uml use
case diagrams to represent non-interactive functional requirements,” e-

Informatica Software Engineering Journal, vol. 14, no. 1, pp. 97–115,
2020.

[9] S. Mustafiz, J. Kienzle, and H. Vangheluwe, “Model transformation of
dependability-focused requirements models,” in Proc. ICSE Workshop

on Modeling in Software Engineering, 2009, pp. 50–55.

[10] I. Santos, R. Andrade, and P. Santos Neto, “Templates for textual use
cases of software product lines: results from a systematic mapping study
and a controlled experiment,” Journal of Software Engineering Research

and Development, vol. 3:5, 2015.

[11] M. Ochodek, K. Koronowski, A. Matysiak, P. Miklosik, and S. Kopczyn-
ska, “Sketching use-case scenarios based on use-case goals and patterns,”
Software Engineering: Challenges and Solutions. Advances in Intelligent

Systems and Computing, vol. 504, pp. 17–30, 2017.
[12] D. Rosenberg and S. Kendall, Applying Use Case Driven Object Mod-

eling with UML: an Annotated e-Commerce Example, 1st ed. Boston:
Addison-Wesley, 2001.

[13] T. Yue, L. Briand, and Y. Labiche, “A systematic review of transfor-
mation approaches between user requirements and analysis models,”
Requirements Eng, vol. 16, pp. 75–99, 2011.

[14] “CaseCompete,” Tech. Rep. [Online]. Available: https://casecomplete.
com

[15] “Enterprise architect,” Tech. Rep. [Online]. Available: https://www.
sparxsystems.com

[16] J. Thakur and A. Gupta, “Automatic generation of sequence diagram
from use case specification,” in Proc. 7th India Software Engineering

Conference. Association for Computing Machinery, New York, NY,
USA, 2014, pp. 1–6.

[17] S. Cook, C. Bock, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and
D. Tolbert, “Unified modeling language (UML) version 2.5.1,” Object
Management Group (OMG), Standard, Dec. 2017. [Online]. Available:
https://www.omg.org/spec/UML/2.5.1

[18] B. Hnatkowska and P. Zabawa, “Use-case flow (UCF) case-studies,”
Repository, 2023. [Online]. Available: https://github.com/bhnatkowska/
UCF

576 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


