
A short note on computing permutations

Pawel Gburzynski

Department of Computer Engineering

Vistula University

ul. Stokłosy 3, 02-787 Warsaw, Poland

ORCID: 0000-0002-1844-6110

Janusz Zalewski

Department of Informatics

Ignacy Mościcki State Professional College

ul. Narutowicza 9, 06-400 Ciechanów, Poland

ORCID: 0000-0002-2823-0153

Abstract—We discuss an algorithm for generating all permu-
tations of numbers between 1 and N . The algorithm is short
and efficient, yet its behavior is not obvious from the code,
mostly owing to the recursion. The discussion touches upon a
few interesting methodological issues and brings in an educational
case study in recursion.

Index Terms—algorithms, recursion, permutations, algorithm
analysis

I. INTRODUCTION

NOVEL programs for generating permutations are not in

big demand today, as the issue is deemed to have been

“settled” by the opus of D. E. Knuth [1]. The algorithm we are

about to present has been known to us since 1980, although

it has never been published, except for a brief mention in [2].

It comes with a story which is best told in a narrative less

formal than demanded by a research paper because announcing

upfront the algorithm’s purpose removes from the yarn the

essential element of suspense.

When the algorithm was first introduced to an audience of

students in an introductory programming course, it caused a

bit of confusion. During an exam, the students were asked to

guess what the program was doing, explain its flow control,

and describe the output produced, i.e., tell the ordering of

the resulting sequence of permutations. The era of portable

communication/computing gadgets (so nightmarish from the

viewpoint of a contemporary examiner) was still far ahead, so

the students were left to their own “devices.” To the one of us

who devised the exam and the question the problem seemed

non-trivial but well within the grasp of a university student

in computer science who had acquired the understanding of

recursion in programming. But it was in fact a disaster. When

two local and accomplished faculty experts in algorithm design

and analysis were subsequently shown the question, their

reflex, after a brief deliberation, was to run to the computer

terminal and see what happens. That incident left us with

a feeling that has persisted to this day, that some important

questions deserve a thought.

We introduce the algorithm as a case study in algorithm de-

sign. First, the nature of recursion employed in it is nontrivial

and educational, as it involves both categories of data (global,

local) in a manner that makes them both relevant to the work-

ings of the algorithm. The recursion is essential to the pro-

gram’s dynamics, e.g., in contrast to artificial examples where

it can be trivially eliminated (like in calculating the Fibonacci

function). While other recursive (and also optimal) algorithms

for generating permutations are known [3], they (as most of

their non-recursive relatives) assume element swapping as the

basic operation. This way, the problem immediately receives

an algebraic flavor and becomes that of transforming a given

permutation into another permutation in such a way that all

permutations are eventually mentioned in the transformation

sequence. This is not necessarily the most natural expression

of the problem from the viewpoint of a programmer. Our

algorithm, in contrast, simply generates all permutations by

making sure that all the elements are eventually permuted, i.e.,

each of them appears in all the possible slots, while giving all

the other elements every possible chance to do the same.

Second, the basic variant of the algorithm, while being

relatively easy to explain and instructional from the viewpoint

of its correctness proof, is suboptimal from the viewpoint

of performance. With some creativity, the algorithm can be

improved such that its complexity matches the best (possi-

ble) solutions to the problem. The improved version appears

more complicated (if introduced alone, it would have been

considerably more difficult to analyze); however, owing to its

descent from the basic variant, its analysis (both in term of

correctness and performance) can be naturally carried over

from the easier case. Then, we show how the algorithm can be

transformed into a function that, instead of generating all the

permutations in response to its zero-level call, can be invoked

multiple times to yield consecutive permutations on individual

demand. Overall, we believe it amounts to a case for beauty

in programming, as per the views expressed in [4].

II. THE BASIC ALGORITHM

The algorithm has the form of a recursive procedure listed

in Figure 1. It operates on three global variables:

The array will contain consecutive permutations generated

by the algorithm, and its effective size is N . We want to

express the algorithm in a simple, generally understood pro-

gramming language such that the code is (almost) immediately

runnable. It makes sense to use a Pascal lookalike because it

is convenient to have the array indexed from 1.

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 979–982

DOI: 10.15439/2023F5568

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 979 Thematic track: Software Engineering for

Cyber-Physical Systems



Fig. 1. The basic variant

Before F () is invoked for the first time (externally), N is

set to the requisite parameter (and henceforth appears as a

constant), the array A is initialized to zeros (for the indices

from 1 to N ), and k is set to 1.

Each call to ready() in F () marks the moment when A

contains a new permutation which can be printed out or

otherwise used. Thus, the algorithm (in its boilerplate variant

listed in Figure 1) generates all permutations, e.g., as opposed

to returning them one by one on subsequent invocations [5].

Function ready() should be viewed as the consumer of the

output produced by the algorithm. It is convenient to start the

presentation with a variant where the consumer is intertwined

with the procedure. Later we shall show how the two can be

disentangled.

Before looking into the algorithm’s behavior, let us reflect

on the author’s inspiration. An exam was being devised, most

of the questions had been written down, and the one remaining

topic to be addressed was recursion. The problem had to be

stated as briefly as possible, and it had to touch upon all the

essential aspects of data from the viewpoint of a recursive

algorithm. Thus, we needed at least one local variable and

at least one global variable (both of them relevant), and (of

course) a non-trivial recursive invocation. In this respect, the

two global variables k and A (N can be treated as a constant),

and the local variable i nicely fit the bill. Consequently, one

advantage of our algorithm is that it provides an educational

case study in recursive programming, even if its practical

significance is not transparent.

III. CORRECTNESS

Formal correctness proofs of our algorithm have been the

topic of several studies in Algorithmic Logic [6]. Here, for

the sake of brevity, we shall confine ourselves to informal

arguments. Our goal is to convince the reader that the algo-

rithm terminates and in fact generates all permutations of the

numbers from 1 to N , with each permutation appearing exactly

once.

The following snippet illustrates the way to invoke F () as

to account for the required initialization:

Note that the loop setting the array elements to zero has the

side effect of initializing k to 1. Thus, when the procedure is

called from the outside (as opposed to its recursive invocation

within itself), A is filled with zeros and k contains 1.

The global variable k is only modified in lines 9 and 11. It

is incremented just before the internal (recursive) invocation

of F () and brought back to the previous value when the

procedure returns. As it starts from 1, before the first (outer)

call to F () is made, it can be viewed as the counter of the

recursive levels going from 1 until N + 1. Note that the last

level (N + 1) is special: the function uses it to present its

result, which action is represented by the call to ready(). In

lines 7− 13, the procedure executes a loop going through all

elements of A. Those elements that contain nonzero values are

skipped, and the same value of k is consecutively inserted into

the remaining positions in the array. Then, for every possible

insertion of k, the procedure is called recursively with k

incremented by one. Everything is undone when the recursive

invocation of F () returns. Looking globally, we see that the

procedure inserts 1 in all places in A (initially, when k = 1,

all of them are empty), then, for every configuration from the

previous level, inserts 2 into all the remaining positions, and so

on, all the way until N . This is how the problem of generating

all permutations of the numbers from 1 to N is in fact defined.

The procedure just literally fulfills this prescription; thus, in a

sense, it can be viewed as the most natural (naive) solution to

the problem.

IV. THE TIME COST

Is our naive solution practical? To answer this question,

we should gauge it against the best known algorithms for

generating permutations which are known as loopless (or loop-

free) ones [5], [7]. This term is somewhat unfortunate (no

algorithm generating permutations can be truly loop-free) and

refers to the constant average cost per permutation. In other

words, the cost of generating all N ! permutations should be

bounded by c × N ! where c is some constant. Besides, a

useful procedure should be able to generate a permutation

when asked for it, i.e., one permutation at a time [1], [5], [7]–

[10], as opposed to producing them all in response to a single

invocation.

Let us start by calculating how many times F () is called

to produce all N ! permutations. We shall ignore the last-level

call (for k = N + 1) because its is special; its sole purpose

is to present a ready permutation available in A. Denoting the

980 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



number of (nontrivial) calls of the procedure by U(N), we

have:
U(N) = N × (1 + U(N − 1))
U(1) = 1

(1)

One can easily show by induction that:

U(N) = N !×
N∑

i=1

1

i!
(2)

which means that:

U(n) < (e− 1)N ! and lim
N→∞

U(N)

N !
= e (3)

V. THE ASYMPTOTICALLY OPTIMAL VARIANT

The number of invocations of F() needed to solve the

problem for a given N is of order N ! with the factor c < e−1.

If we could prevent the for loop from iterating over the nonzero

entries in A, which simply have to be skipped and ignored,

and make it proceed directly to the next free entry on every

turn, we would bring the complexity of our algorithm down to

O(N ! ). To accomplish that, in addition to the original array

A, we introduce another array acting as a representation of

the list of free entries in A available at the current level. The

new set of global declarations becomes this:

The role of A is now reduced to storing the permutation

being constructed by the procedure, while X keeps track of the

unoccupied slots in A. The initialization/invocation sequence

is replaced with this code:

The new variant of the procedure shown in Figure 2 is

named G(). We claim that it generates all permutations of

values 1, . . . , N in an asymptotically constant number of steps

per permutation, i.e., its time complexity is bounded from

above by:

T (N) = cN ! (4)

To see this notice that initially the values in X describe

the straightforward succession of indices in A where the head

points to element 1, every subsequent element of X , for

i = 1, . . . , N − 1 points to the next element (i + 1), and the

last element contains a special value (N + 1) indicating that

the list ends there. Thus, immediately after the initialization

(when k = 1) traversing the array through the links in X will

amount to going through all its elements in exactly the same

Fig. 2. The “loopless” variant

order as with the straightforward loop in F (). When a value

is inserted into A, the corresponding index in X is replaced

with its successor, which has the effect of removing the index

from the list for all the subsequent recursive calls. The index

is restored upon return from the recursive call, equivalent to

zeroing the corresponding element of A in F (). This implies

that G() carries out the same series of nonzero insertions into

A as its previous version, but the total number of instructions

associated with every invocation of G() is now constant.

VI. ONE PERMUTATION AT A TIME

The algorithm is inherently recursive which a practical

programmer may see as a disadvantage. One would prefer a

function that could be called from an external program each

time a new permutation is needed. [5], [7]. Of course, as any

recursive procedure, the algorithm can be reprogrammed in

a non-recursive manner, but one can argue that the recursive

form is its essential feature.

Modern programming languages and environments offer

tools which make the adaptation of our algorithm to a practical

usage natural and easy while retaining its essentially recursive

form. These tools, under the name of coroutines, originated

historically with Simula 67 [11], becoming useful features of

many contemporary platforms and being available in several

guises offering handy shortcuts for typical applications.

Figure 3 presents a modern-flavor coroutine-like variant of

our algorithm implemented in Python. The implementation

consists of a Python function perm(), providing the actual

callable generator, and its helper function advance() taking

care of the recursive part. The semantics of the yield opera-

tion [12] consist in suspending the execution of the current

function and returning to its caller in such a way that on a

subsequent invocation of the same function its execution will

continue from the point of the last interruption. The operation

yield fromf2 carried out by a function f1 invokes the specified

function f2 and, when that function returns via yield, carries

PAWEŁ GBURZYŃSKI, JANUSZ ZALEWSKI: A SHORT NOTE ON COMPUTING PERMUTATIONS 981



Fig. 3. A coroutine-style implementation in Python

over the effect to its original caller. Consequently, when the

original caller calls f1 again, it will continue within f2 from

the place where f2 last yielded.

We can easily see that advance() is basically a straightfor-

ward rewrite of G() in Python, except that: 1) the function

yields with the value of array A whenever G() would produce

a complete new permutation; 2) the yield has to be carried over

recursively, so the recursive call is appropriately replaced with

a yield from.

The following code illustrates the usage of the generator:

In a serious project, the generator would be encapsulated

into a structure isolating the namespace of its global variables.

VII. FINAL COMMENTS

One intriguing feature of our algorithm is the apparent

difficulty to see its function at first sight and the wrong

intuitions that it tends to connote for a first-time viewer,

if presented without the spoiler. Our discussions, involving

students as well as experts, have raised these questions:

1) Why can the designer of a few-line program (devised

for educational purposes and with no malicious inten-

tions) see things much clearer than a competent reader

subsequently looking at the same piece?

2) How to best convey the “obvious” idea behind the design

that, ideally, should be present there, in the very code,

plain for everyone to see?

3) How to prevent misunderstandings and misrepresenta-

tions of the ideas implanted into programs by their

designers? In other words, how to ensure that programs

are correct?

4) How to think about programs, so the right and correct

ideas can materialize and find their way into the code in

a manner that will make them transparent, so they can be

seen and comprehended when the code is scrutinized?

The design of procedure F () began with a simple narrative:

“I am going to generate all permutations of the values from

1 to N by inserting 1 into all possible places, and then, for

every such insertion, inserting 2 into all places that still remain

unoccupied, and so on, continuing doing so until all the values

have been inserted.” This sentence seems to explain everything

there is to see about the algorithm. It can also be viewed as

the most straightforward plain-language specification of the

problem and, at the same time, rather precisely explains the

programmer’s intention. According to the paradigm of literate

programming [13], it should thus be incorporated into the

procedure’s code and become its integral component. Viewed

in this light, F () merely follows its simple specification to the

letter. Considering that its efficiency is not worse than that of

the most refined solutions known in the area, our algorithm

should probably be viewed as the most natural solution to the

problem of generating all permutations.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle

2: Generating All Tuples and Permutations (Art of Computer Program-

ming). Addison-Wesley Professional, 2005.
[2] L. Banachowski, A. Kreczmar, and W. Rytter, Analysis of Algorithms

and Data Structures. Addison-Wesley Longman Publishing Co., Inc.,
1991.

[3] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge
University Press, 2009.

[4] A. Oram and G. Wilson, Beautiful code: Leading programmers explain

how they think. O’Reilly Media, Inc, 2007.
[5] G. Ehrlich, “Loopless algorithms for generating permutations, combi-

nations, and other combinatorial configurations,” Journal of the ACM,
vol. 20, no. 3, pp. 500–513, 1973.

[6] G. Mirkowska and A. Salwicki, Algorithmic

Logic. PWN, Warszawa, 1987. [Online]. Available:
http://lem12.uksw.edu.pl/wiki/Algorithmic Logic

[7] N. Dershowitz, “A simplified loop-free algorithm for generating per-
mutations,” BIT Numerical Mathematics, vol. 15, no. 2, pp. 158–164,
1975.

[8] C. W. Ko and F. Ruskey, “Generating permulations of a bag by
interchanges,” Information Processing Letters, vol. 41, no. 5, pp. 263–
269, 1992.

[9] D. R. van Baronaigien and F. Ruskey, “Generating permutations with
given ups and downs,” Discrete Applied Mathematics, vol. 36, no. 1, pp.
57–65, 1992.

[10] S. Effler and F. Ruskey, “A CAT algorithm for generating permutations
with a fixed number of inversions,” Information Processing Letters,
vol. 86, no. 2, pp. 107–112, 2003.

[11] O.-J. Dahl and K. Nygaard, “Simula,” in Encyclopedia of Computer

Science. Wiley, 2003, pp. 1576–1578.
[12] D. Beazley and B. K. Jones, Python cookbook: Recipes for mastering

Python 3. ”O’Reilly Media, Inc.”, 2013.
[13] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,

no. 2, pp. 97–111, 1984.

982 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


