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Abstract—The paper introduces a customized approach to
handle failures in IEC 61131-3 programmable controllers. The
solution assumes the utilization of a virtual machine as a runtime
environment to execute control code in an isolated manner. A for-
mal model of the runtime is presented, employing denotational
semantics. Subsequently, the model is expanded by incorporating
new procedures that enable the handling of runtime exceptions
using ST code constructs. This formal model serves as the
foundation for implementing the exception infrastructure in
the CPDev development environment. The research presented
in the paper, driven by industry demands, aims to facilitate
the development of more reliable and resilient control systems,
capable of effectively dealing with failures.

I. INTRODUCTION

P
ROGRAMMABLE Logic Controllers (PLC) and Pro-

grammable Automation Controllers (PAC) have estab-

lished their position in the modern world. Their applica-

tions are wide-ranging, including industrial production, energy,

transportation, and Internet of Things solutions. They control

processes, often using advanced algorithms, and are expected

to be reliable and operate in real-time mode.

One characteristic that allows for the flexibility of these

devices is the ability to program them, where an engineer cre-

ates their own control algorithm and places it in the controller.

From this perspective, such a controller is versatile as it can

be programmatically tailored to specific applications and its

functionality can be extended or modified when changes are

required in the controlled object.

In some controllers, programming is done using typical

languages, most commonly C/C++. However, there are stan-

dardized mechanisms and programming solutions specifically

designed for control devices. The most significant of these are

the international standards IEC 61131-3 [1] and IEC 61499

[2]. Particularly, the former has become a recognized standard

adopted by many manufacturers. It allows, among other things,

the transfer of program code between devices from different

vendors and introduces specialized programming languages

such as structured text (ST), instruction list (IL), graphical

block diagram (FBD), ladder diagram (LD), and sequential

function chart (SFC). The language structures align well with

control system programming paradigms. Hence, this article

considers a system that complies with the IEC 61131-3 stan-

dard.

The stable and predictable operation of PLC and PAC con-

trollers is a feature resulting from their applications, where er-

rors and unexpected reactions can have serious consequences.

To minimize the risk of such situations, developers employ

various solutions. The mere use of the standard’s languages

can reduce potential problems, particularly by avoiding pro-

gramming mechanisms related to manipulating pointers and

dynamic memory allocation. Another solution involves con-

structing an isolated runtime environment for user programs.

In such cases, the effects of programmer errors will not

propagate beyond that runtime, allowing the device to remain

operational and enabling controlled handling of exceptional

situations.

One concept for creating such an isolated environment is

a virtual machine [3]. In general terms, a virtual machine

(referred to as VM) is understood here as a type of processor

with its own instruction set and data types, implemented

through software on specific hardware platforms. This means

that when processing code designed for a VM, appropriate

software mechanisms execute it using the native resources of

the target platform, such as a specific CPU and memory. The

VM processes code, typically referred to as intermediate code,

which is generated by a compiler from a source program.

The concept of virtual machines has gained prominence in

information technology due to the widespread use of platforms

such as the Java Runtime Environment [4] and the .NET

Framework [5], [6].

Solutions based on virtual machines offer several important

advantages. Firstly, the source program and intermediate code

are independent of the target hardware platforms. This means

that only one compiler for the source language is required,

rather than separate cross-compilers for different platforms.

Additionally, programs are executed within secure environ-

ments with memory protection, preventing potential errors

from propagating beyond the designated boundaries.

However, there are also disadvantages to consider. Exe-

cution of intermediate code tends to be slower compared

to executing native code on the target processor. This is

because the instructions and operands of the intermediate
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language need to be decoded by software, whereas a standard

CPU utilizes hardware decoders and pipelining. Consequently,

implementing even a simple intermediate instruction requires

multiple native instructions.

When designing a virtual machine as a runtime environment

prepared to handle error and exceptional situations, several

aspects need to be taken into account. The first aspect is the

compatibility of the machine’s operation with its specification.

For this purpose, the authors have proposed a formal model

of operations performed by the virtual machine using denota-

tional semantics [7]. This model enables the implementation

of these operations in accordance with the assumptions, for

example, in languages like C/C++. In this article, the model

has been expanded to include functions related to exception

handling.

Another task is to supplement the languages of the IEC

61131-3 standard with additional constructs related to excep-

tion handling. This is necessary due to the lack of dedicated

solutions in the standard. Hence, there is a need to introduce

them. The authors take into account the extensions to the ST

language available in the CODESYS package but propose their

own implementation of these extensions.

II. PROGRAMMING AND RUNTIME ENVIRONMENTS

The engineering environment CPDev (Control Program

Developer) allows to program controllers according to the

IEC standard [8]. It consists of ST/IL/FBD/LD/SFC editors,

a compiler translating programs to the intermediate code [9]

and a VM-based runtime system written in C/C++ [10].

The architecture of the VM is shown in Fig. 1. It includes

the following components:

• code and data memories,

• code and data stacks,

• registers and pointers,

• instruction processing module.

The Instruction processing module fetches successive in-

structions from Code memory and executes them acquiring

values of operands either from Data or Code memory. Results

are stored directly in Data memory.

The machine does not utilize an accumulator, however it

maintains other registers. The instruction pointer, also known

as the program counter, is stored in the CodeReg register. VM

increments the CodeReg register every time after fetching an

instruction code or an operand address. The DataReg register

is used for managing the data base addresses and is set during

subprogram calls and returns, including function blocks and

functions. This allows the executed code to access variables

in different areas of the Data memory and handle multiple

instances of subprograms. When entering a subprogram, the

current values of CodeReg and DataReg are pushed onto the

Code stack and Data stack respectively. Upon returning, the

contents of these registers are popped from the stacks. This

stack mechanism enables nested function blocks. Additionally,

the machine includes the Flags register, which contains status

flags that signal errors or unusual situations such as an array

Fig. 1. Architecture of the virtual machine

index outside the valid range, an unknown instruction code,

or a cold start.

The virtual machine, as designed specifically for execution

of control programs, can handle all IEC 6131-3 data types.

The number of bytes required to store each such type in the

data memory is given in Table I.

There are two kinds of virtual machine instructions:

• functions,

• system procedures.

Examples of some functions are shown in Table II with

decreasing priority. The functions return one value each to

be written into the variable being the first operand (as said,

an accumulator does not exist in this VM) and may have up

to 15 other operands. Note that such order is different than

in Static Single Assignment of dataflow graphs used in typical

compilers [11]. Arithmetic operations are executed in limited

ranges, depending on the type. In case of integers the ranges

are (−128, 127) for SINT, (−32768, 32767) for INT, etc.

Contrary to functions, system procedures do not return val-

ues or return more than one. Table III shows typical examples.

The procedures control program flow, handle memory, call

TABLE I
DATA TYPES AND NUMBER OF BYTES

Types Bytes

BOOL, BYTE, SINT, USINT 1
INT, UINT, WORD 2
REAL, DINT, UDINT, DWORD 4
DATE, TIME, TIME_OF_DAY 4
LREAL, LINT, ULINT, LWORD 8
DAY_AND_TIME 8
STRING, WSTRING var
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TABLE II
FUNCTIONS OF THE VIRTUAL MACHINE

Mnemonic Meaning Operator

EXPT Power **
NEG Negation - (unary)
MUL Multiplication *
DIV Division /

ADD Addition + (arithm.)
SUB Subtraction - (arithm.)
CONCAT String join + (text)
GT Greater >

GE Greater or equal >=

LE Less or equal <=

LT Less <

EQ Equal =

NE Not equal <>

AND Logical and &

subprograms, etc. From the programmers’ viewpoint there is

no major difference in using functions or procedures.

TABLE III
SYSTEM PROCEDURES OF THE VIRTUAL MACHINE

Mnemonic Meaning

JMP Unconditional jump
JNZ Conditional jump
JR Unconditional relative jump
JRN Conditional relative jump
CALB Subroutine call
RETURN Return from subroutine
MEMCP Copy memory block
MCD Initialize data
FPAT Fill memory block
GARD Copy global memory to local area
GAWR Copy local memory to global area

To accommodate exception handling, the architecture of the

virtual machine needed to be expanded. The modifications

mainly revolved around the protected code stack, which will

be thoroughly explained in Section IV.

III. RUNTIME FORMAL MODEL

A formal model has been developed to specify the operation

of the virtual machine using denotational semantics [12], [13].

The fundamental aspects of the model were outlined in the

previous publication [14]. In this context, we now expand upon

the description of the model components. The model consists

of various domains that define the states, memory functions,

value interpreters, limited range operators, and a universal

semantic function that invokes specific functions representing

individual instructions.

The domains within the model encompass abstract data

types that represent the values processed by different com-

ponents of the virtual machine (Fig. 1). One such domain,

denoted as BasicTypes, comprises four sets that correspond

to the memory sizes of the basic data types outlined in

Table I. Another domain, named Address, specifies the size of

addresses associated with data or code memory. The domain

Memory, maps Address to OneByte. Both CodeMemory

and DataMemory are aliases for the Memory domain.

The domain Stack represents a sequence (indicated by ∗) of

Address domains, with CodeStack and DataStack serving

as aliases for specific stack types. The other domains are

defined similarly.

BasicTypes = OneByte+ TwoBytes +

+ FourBytes+ EightBytes

Address = FourBytes

Memory = Address → OneByte

CodeMemory = Memory

DataMemory = Memory

Stack = Address∗

CodeStack = Stack

DataStack = Stack

CodeReg = Address

DataReg = Address

F lags = TwoBytes

Broadly speaking, the goal of program execution is to

transition the current state of the computer into a new state.

In the context of the virtual machine, the state is represented

as a Cartesian product of various domains including memory,

stacks, registers, and flags. More specifically, the domain

denoted as State can be understood as a collection of tuples

(cm, dm, cs, ds, cr, dr, f lg), where each element corresponds

to a value within its respective domain.

State = CodeMemory ×DataMemory ×

× CodeStack ×DataStack ×

× CodeReg ×DataReg × Flags

The functions presented below model low-level operations

executed on memory, stacks and flags.

• Get data from memory

Get1BMem = (Address×Memory) → Byte

Get2BMem = (Address×Memory) → TwoBytes

Get4BMem, Get8BMem, etc. are defined similarly.

• Get address from memory

GetAddress = (Address×Memory) → Address

The function returns the value stored at the given

Address in Memory which is another Address. Since

the VM has no accumulator, it operates directly on

addresses, and the function GetAddress is essential

for the model. Address domain means TwoBytes or

FourBytes.

• Memory update

Upd1BMem = (Address×Memory ×

×OneByte) → Memory

Upd2BMem = (Address×Memory ×

× TwoBytes) → Memory

Similarly for Get4BMem, Get8BMem, etc.
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• Memory move

MemMove = (Address×Memory ×

×Address×Memory ×

×OneByte) → Memory

The source and target Addresses of code or data

Memory should be provided. The number of bytes being

moved ranges from 0 to 255 (OneByte).

• Stack functions
Push = (Stack ×Address) → Stack

Pop = Stack → (Address× Stack)

The functions execute stack operations needed by subpro-

grams. Note that Pop returns a pair, viz. Address and

new Stack.

• Flag operations

ClearF lag = (TwoBytes× TwoBytes) →

→ TwoBytes

SetF lag = (TwoBytes× TwoBytes) →

→ TwoBytes

The Flags domain is an alias to TwoBytes. The suc-

cessive TwoBytes above denote actual flags, bits to be

set or reset, and new flags.

• Value conversions
ByteToWord = OneByte → TwoBytes

WordToByte = TwoBytes → OneByte

For a value without a sign, ByteToWord places zero bits

into the more significant byte of TwoBytes, otherwise

the byte is filled with the sign bit. WordToByte reduces

the value by removing the most significant bits.

The following sample functions provide numerical inter-

pretations of OneByte, TwoBytes and two other memory

chunks.

BoolOf = OneByte → BOOL

FromBool = BOOL → OneByte

IntOf = TwoBytes → INT

FromInt = INT → TwoBytes

DIntOf = FourBytes → DINT

FromDInt = DINT → FourBytes

LIntOf = EightBytes → LINT

FromLInt = LINT → EightBytes

Other types are interpreted analogously.

The numeric identifiers of VM instructions consist of the

identifier of a group ig and the identifier it of a particular

data type or procedure. In this way type-specific instructions

or procedures may be selected. For some functions it also

indicates the number of inputs.

To collectively represent the concept of decoding a group

and type, followed by the execution of a specific instruction,

a universal function U has been defined. The algorithm of the

function U is presented in Fig. 2. It is assumed that the code

register cr initially points to the group identifier ig in code

START

ig := Get1BMem(cr, cm)
cr

1
 := cr ⊕ 1

it := Get1BMem(cr
1
, cm)

cr
2
 := cr

1
 ⊕ 1

Get group identifier

Get type identifier

ig = 04

ig = 1C

S
el

ec
ti

o
n

 o
f 

pr
o

p
er

 g
ro

u
p

it = 02

it = 09

it = 00

it = 16

...

...

...

C[[DIV:INT:r:op1:op2]]
(cm, dm, cs, ds, cr

2
, dr, flg)

C[[DIV:REAL:r:op1:op2]]
(cm, dm, cs, ds, cr

2
, dr, flg)

C[[JMP:clbl]]
(cm, dm, cs, ds, cr

2
, dr, flg)

C[[CALB:inst:clbl]]
(cm, dm, cs, ds, cr

2
, dr, flg)

S
el

ec
ti
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n

 o
f 
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o

p
er

 t
yp

e

T

T

T

T

T

T

F

F

F

F

F

F

STOP

(cm, dm, cs, ds, cr
2
, dr

SetFlag(flg, FAULT))

Faulty 
instruction

Fig. 2. Algorithm of the universal function U

memory cm. The algorithm starts by fetching ig (one byte)

and incrementing cr to cr1. Then it is acquired and the

code register incremented to cr2. At this moment the state of

the VM is described by the tuple (cm, dm, cs, ds, cr2, dr, f lg)
involving memories, stacks, registers and flags. For instance,

for ig=04 and it=02 the DIV function is called with the

two operands op1, op2 of type INT, whereas it=09 means

operands of type REAL. The last group ig=1C consists of

system procedures, including JMP and CALB.

The semantics of the DIV function for INT-type operands

is shown in Listing 1. The function divides two operands of

type INT, sv denotes the value of the division. The result of a

function execution is stored in the location labeled by the first

operand, here denoted by r. The updated data memory is the

second element of s1 as the result of invoking Upd2BMem.

The number stored at raddr is given by FromInt(sv).

The procedure GAWR presented in Listing 2 is used in

algorithms involving arrays. This procedure copies elements

of an array in local memory to an array in global memory.

The arrays may contain elements of any type, including arrays

and structures. There are four operands, source src and

destination dst labels, size of the elements, and array index

idx. The values size and idx are addresses to data of type

WORD. Since the operand dst refers to global memory, its
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Listing 1 The semantic equation of the DIV function

C〚DIV:INT:r:op1:op2〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg) := s

r := GetAddress(cr, cm)

raddr := dr ⊕ r

cr1 := cr ⊕AddressSize

op1 := GetAddress(cr1, cm)

op1addr := dr ⊕ op1

cr2 := cr1 ⊕AddressSize

op2 := GetAddress(cr2, cm)

op2addr := dr ⊕ op2

cr3 := cr2 ⊕AddressSize

sv := IntOf(Get2BMem(op1addr, dm))÷

÷ IntOf(Get2BMem(op2addr, dm))

s1 := (cm,Upd2BMem(raddr, dm,

FromInt(sv)), cs, ds, cr3, dr, flg)

s1

value dst is a direct address (zero dr). The resultaddr is the

sum of address dst and the product of idxval and sizeval.

Listing 2 The semantic equation of the GAWR procedure

C〚GAWR:dst:src:size:idx〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg) := s

dst := GetAddress(cr, cm)

cr1 := cr ⊕AddressSize

src := GetAddress(cr1, cm)

srcaddr := dr ⊕ src

cr2 := cr1 ⊕AddressSize

size := GetAddress(cr2, cm)

sizeaddr := dr ⊕ size

sizeval := WordOf(Get2BMem(

sizeaddr, dm))

cr3 := cr2 ⊕AddressSize

idx := GetAddress(cr3, cm)

idxaddr := dr ⊕ idx

idxval := WordOf(Get2BMem(

idxaddr, dm))

cr4 := cr3 ⊕AddressSize

resultaddr := dst⊕ idxval ⊗ sizeval

um := MemMove(dm, resultaddr, dm,

srcaddr, sizeval)

s1 := (cm, um, cs, ds, cr4, dr, f lg)

s1

It is important to note that the equations provided for the

DIV and GAWR procedures do not account for erroneous

operands, such as a divisor equal to zero or an array index out

of bounds. Consequently, to address these failures and prevent

unpredictable behavior, the model had to be extended with an

exception mechanism.

IV. ADDING EXCEPTION HANDLING

Exceptions have been introduced to replace a sequence

of nested if-else instructions when performing compound

operations that may fail under certain circumstances. The

complex branching of algorithm paths, depicted in Figure

3, can be challenging to analyze and distinguish between

the normal execution path and the path taken to handle

failures. To address this issue, some programming languages

have introduced a try-catch construct, which separates

the algorithm’s main path (protected code) from the failure

handling path. This approach allows programmers to focus

on the operations that the algorithm needs to perform, while

storing the failure handling logic in a separate section of the

code.

When a failure occurs, it is reported through an exception,

which can take various forms, ranging from a simple value

like a number or string to a specifically designed object.

The presence of an exception terminates the execution of

the remaining instructions within the protected code. Sub-

sequently, the processing of the first catch clause begins,

but only if it matches the type of the exception object. If the

exception does not match the type of the first catch clause,

the subsequent catch clauses will be checked for a match. If

no further catch clauses are found, the execution switches

to the surrounding try-catch construct. However, if such

a construct is not present, the execution is terminated with an

unhandled exception state, preventing further execution.

Therefore, the revised code based on Figure 3 would re-

semble the examples provided in the code snippet shown in

Listing 3. However, it is important to note that such code may

overlook certain critical tasks that must be performed even if

an exception occurs. To address this concern, the try-catch

construct has been enhanced with an additional clause called

finally. The finally clause contains the code that is

always executed when the control exits the protected section

of code, irrespective of whether a matched exception occurs,

an unhandled exception is encountered, or no exception occurs

at all.

The IEC 61131-3:2013 standard does not include constructs

for writing code in an exception-style manner. However,

certain manufacturers offer their own extensions to the ST

language to support such functionality. For instance, the

CODESYS development environment provides the following

keywords to indicate protected code:

• __TRY – beginning of the protected code,

• __CATCH – point where failure path of code begins,

• __FINALLY – beginning of mandatory code executed

always,

• __ENDTRY – end of the protected code.
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if(oper1())  

  if(oper2()) 

    if(oper3()) 

     if(oper4()) 

        return success(); 

     else return error("oper4"); 

    else return error("oper3"); 

  else return error("oper2"); 

else return error("oper1"); 

oper1()

oper2()

oper3()

oper4()

error("oper1")

error("oper2")

error("oper3")

error("oper4") success()

Fig. 3. An example of nested if commands and their block diagram

Listing 3 The try-catch approach

try {

oper1();

oper2();

oper3();

oper4();

return success;

} catch(Exception1 e1) { ...

} catch(Exception2 e2) { ...

}

In our solution, it was decided to use keywords from

CODESYS for exception handling for greater compatibility.

In addition to the above keywords, __THROW keyword for

throwing user-defined exceptions as in the general purpose

programming languages (e.g. C++, Java, C#) is added.

To accommodate these language constructs, several changes

need to be made to the denotational model of the vir-

tual machine. Firstly, the State tuple needs to be ex-

panded to include two additional components: ProtStack

and ExcObj. ProtStack represents a stack (Kleene closure)

of ProtEntry tuples, which consist of four addresses. To

modify the ProtStack, the following functions are intro-

duced: PushProt, PopProt, and PeekProt. The PushProt

function adds an item to the stack, PopProt removes an item

from the stack, and PeekProt returns a copy of the topmost

item without modifying the stack. ExcObj is an Address

that indicates the location where the exception object has been

stored. Since an Address always refers to a memory location,

a new flag, EXCOBJ, needs to be introduced in the Flags

mask to indicate the presence of the exception object.

TABLE IV
SYSTEM PROCEDURES FOR EXCEPTIONS

Name Operand Type

PHPRS
excAddr :gclabel

finAddr :gclabel

contAddr :gclabel

RAISE excObj :gdlabel

MEXCT
excTyp :rdlabel

nxtm :gclabel

POPRS — —

CEXCF — —

State = CodeMemory ×DataMemory ×

× CodeStack ×DataStack × CodeReg ×

×DataReg × Flags× ProtStack × ExcObj

ProtStack = ProtEntry∗

ProtEntry = Address×Address×Address×Address

PushProt = (ProtStack × ProtEntry) → ProtStack

PopProt = ProtStack → (ProtEntry × ProtStack)

PeekProt = ProtStack → ProtEntry

In order to handle the __TRY, __CATCH, __FINALLY,

__ENDTRY keywords, as well as the additional __THROW,

new system procedures are required. These procedures are

listed in Table IV.

When encountering the __TRY instruction, the ST language

compiler should generate the system procedure PHPRS. The

purpose of this procedure is to store the current DPTR context,

the address of the first __CATCH instruction, the address of the

__FINALLY instruction, and the address of the __ENDTRY

instruction on the ProtStack. The corresponding denotational

model of PHPRS is presented below.
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C〚PHPRS:ea:fa:ca〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg, ps, eo) := s

dptrCtx := dr

excAddr := GetAddress(cr, cm)

cr1 := cr ⊕AddressSize

finAddr := GetAddress(cr1, cm)

cr2 := cr1 ⊕AddressSize

contAddr := GetAddress(cr2, cm)

cr3 := cr2 ⊕AddressSize

se := (dptrCtx, excAddr, finAddr, contAddr)

ps1 := PushProt(ps, se)

s1 := (cm, dm, cs, ds, cr3, dr, f lg, ps1, eo)

s1

When the ST compiler encounters the __CATCH statement,

it should generate the system procedure MEXCT. The purpose

of this procedure is to detect whether the exception type

(excTyp operand) matches the current exception. If the

exception type matches, the following instructions will be

processed and the exception state will be cleared with a jump

to the __FINALLY statement. If the exception type does not

match, a jump to the next __CATCH statement is performed.

If there are no further __CATCH statements, a jump to the

__FINALLY keyword is executed. This behavior can be

represented using the following denotational equation:

C〚MEXT:exct:nxtm〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg, ps, eo) := s

exct := GetAddress(cr, cm)

cr1 := cr ⊕AddressSize

nxtm := GetAddress(cr1, cm)

cr2 := cr1 ⊕AddressSize

dext := Get4BMem(dm, dr ⊕ exct⊕ typeOffset)

sext := Get4BMem(dm, eo⊕ typeOffset)

dcr := match sext = dext with

| true → cr2

| false → match nxtm = −1 with

| true → stk := PeekProt(ps)

(dct, ctch, fin, efn) := stk

fin

| false → nxtm

end

end

s1 := (cm, dm, cs, ds, dcr, dr, f lg, ps, eo)

s1

After the last statement of __CATCH, the compiler should

generate the system procedure CEXCF, which marks the end

of exception handling. The denotational model of CEXCF can

be defined as follows:

C〚CEXCF〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg, ps, eo) := s

stk := PeekProt(ps)

(dct, ctch, fin, efn) := stk

flg1 := ClearF lag(flg, F_EXCPT )

s1 := (cm, dm, cs, ds, fin, dr, flg1, ps, 0)

s1

No special action is needed when the compiler encounters

the __FINALLY statement. However, an action is required

when the compiler encounters __ENDTRY in the ST input. In

this case, the compiler should emit the POPRS system proce-

dure, which can be represented by the following denotational

model:

C〚POPRS〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg, ps, eo) := s

tf := SetF lag(flg, F_EXCPT )

(dcr, ddr, nstk) := match tf = flg with

| true → (ent, stk) := PopProt(ps)

(dct, ctch, fin, efn) := ent

(ctch, dct, stk)

| false → (ent, stk) := PopProt(ps)

(cr, dr, stk)

end

s1 := (cm, dm, cs, ds, dcr, ddr, flg, nstk, eo)

s1

If a programmer wishes to throw their own exception in ST

code, they can use the __THROW keyword. In this case, the

ST compiler should emit the RAISE system procedure with

the exception object. The denotational model of RAISE can

be represented as follows:

C〚RAISE:excObj〛 = λs.

(cm, dm, cs, ds, cr, dr, f lg, ps, eo) := s

excObj := GetAddress(cr, cm)

eo1 := dr ⊕ excObj

flg1 := SetF lag(flg, F_EXCPT )

stk := PeekProt(ps)

(dr1, ctch, fin, efn) := stk

s1 := (cm, dm, cs, ds, ctch, dr1, f lg1, ps, eo1)

s1

V. IMPLEMENTATION IN CPDEV

An exception is reported in the CPDev virtual machine

either automatically or manually. The call is invoked internally,

when a system exception condition is met during the program
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execution. It may be also invoked by the programmer by

calling the RAISE system procedure to manually trigger the

failure path. The automatically generated system exceptions

are reported when on of the runtime errors occurs. Selected

system exceptions are listed in Table V.

TABLE V
SELECTED SYSTEM EXCEPTIONS

Type Description

Division by zero Invalid DIV instruction parameter

Modulo by zero Invalid MOD instruction operand

Bad array index Index array access out of bounds

Bad format Invalid string format during parsing to numeric
types (STRING_TO_INT, STRING_TO_WORD,
STRING_TO_REAL, etc.)

Cycle overflow Program execution exceeded the declared cycle time

The corresponding operations performed by th VM have

been extended with exception reporting. For example, the

semantic description of the DIV function from Listing 1 should

be extended which checking for zero divisor as follows:

divisor := IntOf(Get2BMem(op2addr, dm))

match divisor with

| 0 → excObj := (cr3, DIV _BY _ZERO_EXC)

C〚RAISE:op〛(cm, dm, cs, ds,

cr3, dr, flg, ps, excObj)

| _ → sv := IntOf(Get2BMem(op1addr,

dm))÷ divisor

s1 := (cm,Upd2BMem(raddr, dm,

FromInt(sv)), cs, ds, cr3, dr, f lg, ps, eo)

s1

end

Listing 4 shows the DIV instruction utilizing a C macro for

division of several numeric types. The function IG_DIV_04

implements the division for all relevant data types (group),

thus avoiding repetitions of rather similar code. The function

calls the parameterized macrodefinition DIV_TYPE which

is common for all types. The value of an operand of a

particular TYPE is determined in DIV_TYPE by the function

TYPE##Of with given sizeof(TYPE). The code calls an

internal function WM_RaiseException in the case when

the second operand (divisor) is zero. The division result

cmp updates the INT value at raddr (Upd2BMemData

also increments the code register). The function IG_DIV_04

recognizes a particular type as the second nibble (half byte)

of the type identifier it by masking it & 0x0F. Note that

case and break are hidden for switch in the DIV_TYPE

definition.

Listing 5 contains a simplified implementation of the

GAWR procedure (Sec. III). The check is made if the pa-

rameter corresponding to the array index is less than zero. If

so, the system exception is raised (EX_ARRAY _IDX).

In the case of an exception, the virtual machine examines the

ProtStack. If the stack is empty, no __TRY...__CATCH

Listing 4 Implementation of the DIV instruction

#define DIV_TYPE(TYPE) \

case IT_DIV_##TYPE & 0x000F: \

{ \

TYPE sv = 0; \

ADDRESS raddr = \

dataReg + GetCodeAddress(); \

ADDRESS op1addr = \

dataReg + GetCodeAddress(); \

ADDRESS op2addr = \

dataReg + GetCodeAddress(); \

TYPE op1 = TYPE ## Of(GetMemData(op1addr, \

sizeof(TYPE))); \

TYPE op2 = TYPE##Of(GetMemData(op2addr, \

sizeof(TYPE))); \

if (op2 == 0) \

WM_RaiseException(EX_DIV0); \

else { \

sv = op1 / op2;\

UpdMemData(raddr, From##TYPE(sv), \

sizeof(sv)); } \

} \

break;

void IG_DIV_04(BYTE it)

{

switch (it & 0x0F)

{

DIV_TYPE(SINT)

DIV_TYPE(INT)

DIV_TYPE(DINT)

DIV_TYPE(LINT)

DIV_TYPE(BYTE)

DIV_TYPE(WORD)

DIV_TYPE(DWORD)

DIV_TYPE(LWORD)

DIV_TYPE(REAL)

DIV_TYPE(LREAL)

default: /* unknown code */

flag |= FAULT;

}

return;

}

block has been defined by the programmer. In such a case, the

system may perform one of the predefined actions:

• stop execution and go into a fail-safe state (set outputs

to safe values)

• perform a cold start of the controller

• perform a warm start

• restart the program cycle.

Listing 6 contains a simple ST code using the exception-

related keywords. The program includes a declaration of an

array BA indexed from 0 to 10. The protected code between
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Listing 5 Implementation of the GAWR instruction

case VMF_GAWR & 0xFF:

{

ADDRESS src = GetCodeAddress();

ADDRESS dst = GetCodeAddress();

INT idx = getINT(GetCodeAddress());

BYTE size = getBYTE(GetCodeAddress());

if (idx < 0)

WM_RaiseException(EX_ARRAY_IDX);

else

memcpy(dst+idx*size, src, size);

}

break;

Listing 6 Exception handling in ST code

PROGRAM WORKER

VAR

BA : ARRAY[0..10] OF INT;

AI : INT;

RES, VALUE, SCALE : REAL;

DIV_EX : DIV_BY_ZERO_EXCEPTION;

OTHER_EX : ANY_EXCEPTION;

END_VAR

__TRY

BA[AI] := BA[AI] + 1;

RES := VALUE / SCALE;

__CATCH(DIV_EX)

SCALE := 1;

DIV_EX.ACTION := RESTART_CYCLE;

__CATCH(OTHER_EX)

OTHER_EX.ACTION := TERMINATE;

__ENDTRY

END_PROGRAM

__TRY and __CATCH increases the array element at the index

pointed by the value of the variable AI. In case of a division

by zero exception during the operation, the failure path from

__CATCH(DIV_EX) is executed. If any other exception

occurs, the next failure path from __CATCH(OTHER_EX)

is taken. The exception block restores the AI value to the

acceptable value of 0 and instructs the virtual machine to

restart the program cycle.

An exception is usually an unexpected behavior, so CPDev

IDE provides a set of tools to debug such situations. Fig-

Fig. 4. Debugging exceptions in CPDev IDE

ure 4 shows the CPDev Integrated Environment (IDE) running

a program in a simulation mode. As one may observe, the

exception has occured due to the fact, that the variable AI

(array index) has been set to 11, so outside the array bounds.

The environment allows to break the execution to examine the

cause, to terminate the program completely or to continue with

the default action for an exception.

VI. FINAL REMARKS

The introduction of exceptions into the control environment

based on a virtual machine was driven by industry demands.

The presented concepts from a programmer’s perspective

resemble solutions available in high-level object oriented pro-

gramming languages like C# or Java. However, in this case,

the solution needs to be applied to embedded controllers with

limited resources and performance.

To address this, the proposed mechanism for exception

handling was designed to minimize the extra operations per-

formed by the CPU. The requirement for additional memory to

accommodate the ProtStack is relatively easy to fulfill, even

for small devices. It is anticipated that incorporating exception

infrastructure supported by a formal model will facilitate the

development of more robust and reliable control solutions.
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