
Passage Retrieval in question answering systems in

Polish language

Anna Pacanowska

Abstract—This paper describes the submissions to Task 3 of
PolEval 2022. Passage Retrieval is a problem of retrieving a
passage relevant to the given query. It is an important problem
with many practical use cases, especially in question answering.
It is very beneficial if a model is generalizable, that is effective
in various domains, even the ones it was not trained on. This
is a challenge for many state-of-the-art models. In this paper
I describe and test many different methods of approaching
this problem – from standard techniques, such as BM25 and
lemmatization to recently developed methods based on deep
learning and transformers.

I. INTRODUCTION

T
HE aim of Task 3 of PolEval 2022 was to find a tool

that retrieves the passages that contain the answer to the

given question. The tool should work well not only on the

domain it was trained on, but also other domains. The passages

and queries are in Polish. I tested and compared different

techniques and their combinations in order to find out which

one will be the most effective – from the standard statistical

approaches to advanced neural network based solutions. My

goal was to find a solution that is not only effective, but also

does not require great amount of resources to use – it should

be memory and time efficient.

The best solution consisted of two stages. In the first I

retrieved 1000 candidate passages using BM25 from Elastic-

search1 on a corpus and queries lemmatized using Morfeusz2

[3]. In the second stage I calculated different scores and joined

them using logistic regression. The scores were BM25 on

lemmatized texts (with Elasticsearch), on unlemmatized texts

and on bigrams. The rest of the scores were calculated using

miniLM [13] on the texts translated with OPUS-MT [12].

They were computed on pairs (question, passage), (gener-

ated_answer, extracted_answer), (generated_answer question,

extracted_answer passage). The answers were generated with

GPT3 [1] and extracted with DistilBERT [10]. The code is

available on GitHub2.

II. TASK

A. Description

The model’s task was to retrieve 10 passages that were most

relevant to the given question. To encourage generalizability

the data was split into three distinct domains: Wikipedia

passages, legal articles and Allegro FAQ. All training and

development data came from the first domain and the other

domains were present only in the test dataset.

1https://www.elastic.co/
2https://github.com/aniapacanowska/passage-retrieval

TABLE I
DATASET SIZES AND NUMBER OF QUESTIONS FROM EACH DOMAIN

domain questions source passages source avg length corpus size

wiki-trivia Jeden z dziesięciu Wikipedia 44 7097322

legal-questions generated from passages legal acts 153 26287

allegro-faq FAQ help articles 48 921

B. Domains

Each domain contains a separate corpus of passages and

different kinds of questions. The domains are very diverse –

the samples in each of them have unique characteristics that

influence the solution. They vary in passage length, corpus

size, question types, number of matches and other important

details (Table I).

1) wiki-trivia: The questions come from "Jeden z dziesię-

ciu" and are classical trivia questions. They have short, factoid

answers and require only common knowledge. The passages

are fragments of articles from Polish Wikipedia extracted using

WikiExtractor. The passages are quite short, but the corpus

is very large: it contains over 7 million passages. The ques-

tions were created first, and the passages were independently

matched later. That means that the answer is usually worded in

a different way. Sometimes it requires good understanding of

the text to notice the passage does in fact contain the answer.

Usually there are multiple relevant passages to each question.

2) legal-questions: The passages are Polish legal acts. The

questions were artificially generated from passages by people

– a volunteer first looked at the provision, and then generated

a question for it. This means that, unlike in wiki-trivia, the

answers are usually similarly worded and the passage contains

a direct answer. The language is quite heavy and contains

specialist vocabulary. Answering the questions requires in-

depth knowledge of Polish law, not only common knowledge.

The questions sometimes are ambiguous and make sense only

in the context of the passage they were generated from,

for example "Kto sprawuje nadzór nad Akademią?" (which

Academy?). The passages are often very long, but the corpus

is significantly smaller with about 26 thousand passages.

3) allegro-faq: The questions and passages are fragments

of FAQ and help articles from Allegro. There are a lot of ’How

to’ questions. These questions are often open-ended, there

are multiple possible responses that can be worded in many

different ways. The answers are usually specific to Allegro.

For most questions there is only one matching passage. This

is the smallest dataset with only 921 passages.

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 1281–1286

DOI: 10.15439/2023F586

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 1281 Thematic track: Challenges for Natural Language

Processing



C. Evaluation

The submissions were evaluated using NDCG@10 with

binary relevance scores. The overall score was a mean of the

NDCG@10 score for each question in the test set. For the test-

A dataset only the total score was visible – the correct answers

were not public. BM25 was the baseline solution provided by

the task’s authors.

III. METHODS

In this chapter I describe all the methods I used in the

experiments.

A. BM25

In the first experiments I tried to improve the baseline

solution by using lemmatization. Lemmatization can be used

to improve the performance of BM25 – similar technique was

used in the best solution to the Question Answering task in

2021 PolEval [7]. There are many different models capable of

lemmatizating texts. I tried four different options – Morfeusz2

[3], spaCy [2], a hybrid of these two and modified Morfeusz2.

Morfeusz2 is a dictionary-based morphological analyzer

for Polish language. SpaCy is an open-source library for

natural language processing. It features much more complex

techniques, such as state-of-the-art neural networks.

One of major distinctions between these models is how

they handle ambiguity (words with multiple possible lemmas).

Morfeusz2 is not capable of choosing the correct lemma based

on the context. In the ambiguous cases it simply provides all

possibilities. At first I tried to take all of the provided lemmas.

This may be beneficial for two reasons. There is no risk I will

lose a potential match because of choosing the wrong lemma.

The other benefit is that words in the same inflected form

always have identical set of lemmas, so they will often result

in multiple matches. That means they will be more valuable

than words in different grammatical form that have only one

matching lemma. This way the words in different forms will

still count as a match, but less than ones with exactly the same

inflection. On the other hand, it will also result in many false

matches of lemmas that are incorrect in the given context.

SpaCy on the other hand always tries to pick the correct

lemma. However, it is sometimes wrong and picks the wrong

one. It can also return words that are not valid lemmas or even

do not exist in the Polish language. Morfeusz2 never makes up

invalid words – it has a very large dictionary, but in case the

model encounters an unknown word it is returned unchanged.

The hybrid approach tries to get the advantages of both

models. It uses spaCy to pick the correct lemma from the ones

provided by Morfeusz2. If the spaCy result was not returned

by Morfeusz2, it takes the most popular lemma in the corpus.

The popularity was measured on the corpus lemmatized using

only Morfeusz2. Lastly, I wanted to check if spaCy is really

useful in the hybrid model. Perhaps simply always choosing

the most frequent lemma could work just as well.

B. Bigrams

I tested also a variation of the BM25 scoring function in

which the terms are bigrams instead of words. This might be

useful, because a bigram match is a stronger indicator that the

passage is relevant than a single word match. This is not a

sufficient method on its own, but can be useful in addition to

other scores.

C. Deep learning

The next step was to use more advanced and recent models.

Each of the following experiments consisted of two stages.

In the first stage I retrieved top 100 passages with standard

BM25 from Elasticsearch on texts lemmatized with Morfeusz2

lemmatizer (the basic approach). This was necessary, because

many of these models require a lot of computing power, so it

would not be feasible to run them on each possible pair. The

second stage was re-ranking the retrieved passages using the

selected method.

D. BERT

The first approach was to utilize BERT in a way that was

outlined in [6]. A passage and a query separated with SEP

token are encoded by a pre-trained model. The CLS vector is

passed to a simple classification layer to predict whether the

passage is relevant to the query. The model is fine-tuned on

this task. I wanted to find out whether this approach would

work well for the wiki domain and if it would be capable

of generalizing to other domains. I used HerBERT [4] as the

pre-trained Polish model.

E. Translation

Most state-of-the-art architectures for passage retrieval are

very large and training them requires a lot of time and

computing power. For this reason I decided it would be

beneficial to use a pre-trained model. However, I could not

find a good model for passage retrieval in Polish. There is

much greater choice of models for passage retrieval in English.

I used the OPUS-MT model [12] from Huggingface3 in order

to translate all of my data into English. I tested if translating

the data and using more powerful models would improve the

results.

F. miniLM

MiniLM [13] is a small model trained using knowledge

distillation with BERT-base. One of its variants was fine-

tuned on MSMARCO passage ranking dataset [5] with the

ensemble of BERT-base, BERT-large and ALBERT-large as

teacher models. This version achieved the best results for

most IR tasks according to the BEIR paper [11], which is

why miniLM was my first choice. An additional benefit is

that small number of parameters makes the inference really

efficient. MiniLM calculates a relevance score for a pair of

query and passage.

3https://huggingface.co/Helsinki-NLP/opus-mt-pl-en

1282 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE II
LIST OF ALL SCORES USED (IN DIFFERENT COMBINATIONS) WITH

LOGISTIC REGRESSION

Logistic regression features

BM25 (elasticsearch) for lemmatized texts

BM25 for unlemmatized texts

BM25 for bigrams (unlemmatized)

miniLM for (question, passage)

miniLM for (GPT3_answer question, DistillBERT_answer passage)

miniLM for (GPT3_answer, DistillBERT_answer)

miniLM for (chatGPT_answer question, DistillBERT_answerpassage)

miniLM for (chatGPT_answer, DistillBERT_answer)

G. Answer generation

There are two types of question answering models: ex-

tractive, which extract the answer from the given passage

and generative, which generate the answer based only on the

model’s knowledge. Similarity between the answer generated

by a generative model and the answer extracted from given

passage could help miniLM decide whether the passage is

relevant. If these answers are the same or similar it can be a

good indicator that the passage is relevant. It can be misleading

as well – the answer from either model may be incorrect

or the same only by accident. I tested two variants. In the

first I concatenated the generated and extracted answers to

the beginning of the question and the passage, respectively. In

the second I calculated the relevance score only between the

answers.

As the extractive model I used DistilBERT [10], which is

a distilled version of BERT. I tested two different generative

models, both based on GPT: GPT-3 and chatGPT (based on

GPT-3.5). These models are not open source – it was necessary

to use the API provided by OpenAI to connect with them. Even

if they were available I would not be able to run them locally

as they are too large.

H. Ensamble

The last idea to improve the results was to gather the scores

from multiple methods instead of relying on a single model.

The test dataset is very different from the train set, so the

function combining the scores had to be simple. I decided to

use logistic regression.

IV. EXPERIMENTS

A. BM25 with lemmatization

These experiments were conducted with the use of Elas-

ticsearch. I created and indexed a lemmatized corpus of

passages with each lemmatizer (Morfeusz2, spaCy, hybrid

and Morfeusz2-freq). Next I lemmatized the questions and

retrieved the most relevant passages using Elasticsearch. The

results on the dev dataset are shown in the Table III.

Lemmatizing the texts significantly improved the results.

The impact considerably depended on the chosen model. The

score with Morfeusz2 and spaCy was similar, with spaCy

slightly higher. Morfeusz2 is even 20 times faster (on CPU)

than spaCy, which makes it much easier to use. This is because

TABLE III
DIFFERENT LEMMATIZATION METHODS (DEV DATASET)

method NDCG@10

no lemmatization 18.62
spaCy 21.41

Morfeusz2 21.15
hybrid 24.47

Morfeusz2-freq 25.24

Morfeusz2 is dictionary-based and spaCy is a complex neural

network.

The hybrid approach clearly outperformed both models.

Morfeusz2 almost always provides the correct lemma, but

usually together with a few incorrect ones. SpaCy on the other

hand sometimes returns incorrect or even invalid lemmas. The

hybrid approach eliminates both these issues – Morfeusz2 is

used to check if the spaCy lemma is valid. If it is not, the

most popular lemma gets chosen.

Surprisingly, the last technique turned out to be the best.

The lemma was picked solely based on its frequency in the

corpus lemmatized with Morfeusz2. That means spaCy was

not necessary at all in the hybrid approach – the alternative

method of choosing the correct lemma worked even better.

All methods have problems with proper names (such as

surnames or places). There are too many of them for any model

to know, so they are not properly lemmatized. For example,

the lemmas from texts ’Bilbo Baggins’ and ’Bilba Bagginsa’

will be different.

B. Deep learning

In the following experiments I tested approaches based on

deep learning and transformers. The passages to be re-ranked

were fetched using Elasticsearch on a corpus lemmatized with

Morfeusz2 (basic approach). I worked with the Huggingface

library [14]. The submissions are collected in the Table IV. I

did not calculate the results of all models on the dev dataset,

because it would unnecessarily take a lot of time and resources.

Test-B data appeared in the last two weeks, so I tried only the

models that did well on test-A.

The submissions were evaluated on the PolEval website.

The other scores in this section were calculated with my script.

There are slight differences (around 0.5) that are a result of

different behavior on questions where the correct passage is

repeated.

In the following sections I describe in detail all of the

methods I used.

C. BERT re-ranking

The first method to re-rank the passages was to fine-tune a

BERT model (3 in Table IV). The input consisted of a question

(sentence A) and a passage (sentence B). On top of BERT

there was a simple classification layer (BertForSequenceClas-

sification head), which was trained to predict whether the

input pair is relevant based on the CLS vector. I fine-tuned

the HerBERT-base model on the train dataset for one epoch.

The model did better than the previous methods on the dev

ANNA PACANOWSKA: PASSAGE RETRIEVAL IN QUESTION ANSWERING SYSTEMS IN POLISH LANGUAGE 1283



TABLE IV
SUBMISSIONS SENT TO POLEVAL. SIZE: NUMBER OF PASSAGES TO

RE-RANK, COMBINATION: METHOD OF JOINING THE SCORES FROM

DIFFERENT MODELS, LR-DEV: LOGISTIC REGRESSION TRAINED ON THE

DEV DATASET, LR-DEV: LOGISTIC REGRESSION TRAINED ON THE TRAIN

DATASET

Methods NDCG@10

id models combination size dev test-A test-B

1 Baseline (from PolEval) - - - 50.76 -
2 BM25 (k=1.0, b=0.5) - - 19.59 48.82 -
3 BERT - 100 24.5 17.03 -
4 miniLM - 100 31.36 58.19 -
5 miniLM lr-train 100 31.97 59.76 -
6 miniLM lr-dev 100 - 60.17 51.55
7 miniLM, GPT3 lr-dev 100 - 60.97 52.15
8 miniLM, GPT3, chatGPT lr-dev 100 - 56.18 48.69
9 miniLM, GPT3 neural network 100 - 53.64 -

10 miniLM, GPT3 - 100 - 58.45 -
11 miniLM, GPT3 lr-dev 1000 - 62.51 54.23

12 miniLM, GPT3 (selected) lr-dev 1000 - - 54.15
13 miniLM, GPT3, chatGPT lr-dev 1000 - - 51.82
14 miniLM lr-dev 1000 - - 53.20

dataset, but the results on the test dataset dropped three times

compared to baseline. The model learned well for the wiki

domain, but was completely unprepared for the legal and

allegro datasets. It would suggest that this technique of BERT

re-ranking generalizes very poorly to other domains.

D. Translation

For the next experiments I had to translate the data to be able

to use the models trained in English. The maximum length of

the input for OPUS-MT model is 512 tokens. There are many

longer passages in the datasets (especially in the legal corpus),

so they had to be split. I tried to avoid splitting the sentences

– passing only a fragment of a sentence might confuse the

translator. However, I noticed that OPUS-MT does not work

well for long texts – even if they fit in the limit. It often

translates only some fragment of the input and leaves out

the rest. This was not problematic for Wikipedia passages,

which are usually short, but started to be noticeable for longer

texts. So I split the passages into even smaller pieces (at

most 0.3*512) and translated each separately. Then I joined

all translated fragments.

E. miniLM

The first model I tested on the translated data was miniLM4

with 6 layers fine-tuned on MSMARCO. Again, there were

some problems with passages that were too long to fit into

the model (the input can be at most 512 tokens). I split the

passages into overlapping smaller pieces. Each fragment starts

in the middle of the previous one – that way I want to avoid

a situation where part of the answer is in one fragment and

the rest is in the other. The fragments are at most 0.7*512

words to take into account that some words translate into

multiple tokens. When ranking the passage, its score is the

maximum of its fragments’ scores. Re-ranking based on the

scores computed by miniLM made a significant improvement

over the baseline (4 in Table IV).

4https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

F. Logistic regression

I tried to join the results from the models I tested so far.

This way I could aggregate the information stored in different

scores. The features I considered were:

• BM25 (elasticsearch) for lemmatized texts

• BM25 for unlemmatized texts

• BM25 for bigrams (unlemmatized)

• miniLM score

I used the logistic regression model from sklearn library [8]

and trained it on the train dataset (5). This resulted in a

small, but noticeable improvement. Surprisingly, even larger

improvement (on the test dataset) was achieved by training

on the dev dataset instead (6). It might be because the train

dataset is over 7 times larger and logistic regression started

overfitting to the wiki-trivia domain.

In the next experiments I continued to use logistic regression

and simply added new scores as additional features.

G. Answer generation

The next step was to use the question answering models.

I generated an answer for each question using a generative

model and extracted the answer from each (question, passage)

pair using an extractive model. I did not want to exceed the

free quota of the generative models, so the answers were

generated only for the dev and test datasets. I was able

to fit all my requests into the free trial. I calculated the

miniLM score for each pair (’generated_answer question’,

’extracted_answer passage’) as well as just (generated answer,

extracted answer). These results were then added as additional

features to the logistic regression (trained on the dev dataset).

As the extractive model I used DistilBERT5 fine-tuned on the

SQuAD dataset [9].

1) GPT3: The first generative model I tried was GPT3 –

specifically gpt3-davinci, which is described in the documenta-

tion as the ’most capable’. I used the API provided by OpenAI.

Each prompt was based on the question translated into English.

Normally, the answers given by the model are quite elab-

orate and if it does not have the requested information, the

answer is ’unknown’. I wanted the answers to be concise

and informative – even if the model had no information, I

wanted it to guess the answer. I decided the short answers are

better, because they do not contain unnecessary descriptions

which could confuse miniLM. This also significantly reduced

the cost of each query, because the responses are priced by

the number of tokens. The guessed answers, even if incorrect,

still might contain some useful information, such as the type

of the answer (a number, a name etc.). I modified the prompts

in order to get the desired results. To each question I added

"Shortest answer. NOT unknown.". Temperature was set to a

low value of 0.1. This way the model would usually get the

true answer if it had enough knowledge, but was able to guess

if necessary.

5https://huggingface.co/distilbert-base-cased-distilled-squad

1284 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Adding these answers to the dataset and calculating the

scores as described above resulted in another small improve-

ment (7 in Table IV). By inspecting the answers I noticed that

they are usually correct for wiki-trivia questions, but often

wrong for questions from other domains. This makes sense,

because the wiki questions are based on common knowledge.

Other domains require specific knowledge of Polish law or the

policies of Allegro. The questions can be open-ended, which

also makes it more difficult to guess the correct answer.

2) ChatGPT: I tried also the new chatGPT model. This time

the questions could be in Polish as well as in English because

this model is multilingual. I decided to use the Polish ones

because chatGPT is likely better in translation than OPUS-

MT that I used until now. However, it can have a downside –

the translations might be inconsistent. The same expression

in Polish could be translated differently in the answer by

chatGPT than in the passage by OPUS-MT.

As before, I wanted to receive a concise answer in English.

Interesting thing is that unlike GPT3, chatGPT almost never

answers ’unknown’. It is guessing even without the suggestion

in the prompt I had to add before. For the system prompt I

left the default "You are a helpful assistant". To the questions

in the legal domain I added "W Polsce" and in allegro domain

"W allegro" in hopes it would help the model answer correctly.

I finished each user prompt with "Shortest answer in english".

Surprisingly, it turned out that this addition not only did not

improve the results, but in fact made them much worse (8).

H. Combining scores

I compared a few different methods of combining the scores

I gathered so far. The method should be quite simple to avoid

overfitting to only wiki domain. I tried training a simple two

layer neural network for classification. This turned out to be

much worse than logistic regression (9). Ranking only by

miniLM score with GPT3 answers also gave considerably

worse results (10).

I. Bigger data

Sometimes the relevant passages are not included in the top

100 retrieved using BM25. The number of relevant passages

found in the different positions in the ranking created using

BM25 scores can be found in the Table V. The results were

calculated using the training dataset and different lemmatizers.

The passages that fall outside of the top 100 will of course

never be found by the re-ranker. On the other hand, adding

a lot of new possible passages can result in false positives.

I repeated some of the previous experiments on the top

1000 passages (retrieved by Elasticsearch with Morfeusz2, as

before). In every case the outcome was considerably better. Re-

ranking top 1000 passages with miniLM and GPT3 combined

with logistic regression resulted in the best score I was able

to achieve (11).

The main downside of this solution is a much larger

computational cost. The most expensive task is translation,

which was a problem especially for wiki domain that has

the largest corpus. Another problem was that Elasticsearch

TABLE V
NUMBER OF RELEVANT PASSAGES IN DIFFERENT RANKING FRAGMENTS

lemmatization :10 11:100 101:1000 1001:10000 10001:

none 2918 2755 2648 2078 4049
spaCy 3447 3476 2930 2023 2572

Morfeusz2 3385 3341 3044 2181 2497
hybrid 3952 3841 3064 1897 1694

Morfeusz2-freq 4073 3863 3091 1839 1582

sometimes retrieves less passages than requested when the

corpus is small compared to the requested size. It is especially

visible for allegro-faq, where there are only 921 passages, but

Elasticsearch often retrieves even less. This happened for the

top 100 as well, but rarely.

I tried to simplify the re-ranking method and pass only

the features that seemed most important: unlemmatized BM25

score, bigrams BM25 score, miniLM score and miniLM score

on pairs concatenated with answers. This turned out to be only

minimally worse than providing all scores (12).

J. Incorrect answers

In this section I analyze the incorrect answers given by

the best model. The data is far too large to fully analyze it

manually, so these are only some observations. The model

always provides exactly 10 passages even though the number

of correct ones is smaller. This means that retrieving a passage

without the answer is not an error as long as it is lower in the

ranking than the relevant passages. The incorrect passages are

often relevant to the topic, but do not contain the answer to the

given question. Sometimes the passage describes something

similar, but not the same – for example the results for the

question about the host of the show ’Zrób to sam’ talk about

the hosts of shows such as ’Sam tego nie rób’.

There are also some errors in the annotations. Some pas-

sages that were correctly retrieved by the model were not

marked as relevant. There were also cases in which the

annotated passage did not contain the answer. Other times it

did have the answer, but without the necessary context. For

example for the question "In which book Adam Mickiewicz

describes Jankiel’s concert?", one of the annotated passages

says only that Jankiel is a character in "Pan Tadeusz" movie

– does not mention the concert or the book’s author. This

does not happen only in the allegro domain because there the

passages were verified manually. However, I think that despite

these problems the datasets are still useful in measuring the

performance of the models.

K. PolEval results

The final results are in the Table VI. My models clearly

outperformed the baseline. The score of my best model is

around the middle between the basic BM25 and the best

solution of PolEval 2022.

After the contest ended, the answers for the test datasets

were published. I compared the performance of my best model

and the baseline on different domains (Table VII). It turned out

that wiki domain was clearly the most difficult. The first reason

ANNA PACANOWSKA: PASSAGE RETRIEVAL IN QUESTION ANSWERING SYSTEMS IN POLISH LANGUAGE 1285



TABLE VI
FINAL RESULTS

model test-A test-B

baseline BM25 (Elasticsearch) 50.38 38.84
my best model 62.51 54.23

PolEval best solution 75.40 69.36

TABLE VII
SCORES ON DIFFERENT DOMAINS

test-A test-B

model wiki legal allegro wiki legal allegro

baseline BM25 (Elasticsearch) 19.76 81.10 49.16 18.45 80.32 48.05
my best model 38.27 77.70 69.96 37.11 79.00 67.92

for that is a very large corpus (over 7 million passages). The

other can be that the passages and the questions were created

independently and matched later, so the answers are often

indirect or differently worded. The score on allegro domain

was much better, probably because of a very small number of

possible passages (only 921). On both of these domains my

model was much better than BM25. The legal domain was

definitely the easiest. I believe it is because the questions were

generated based on the passages, so the wording was usually

very similar. Additionally, the questions often contained some

unique words that pointed to a certain passage. It is the

only domain where the new solution was slightly worse. The

differences between the domains explain the lower score on

test-B, where the majority of passages came from the wiki

domain.

V. CONCLUSIONS

In this article I have explored various methods of passage

retrieval, both traditional statistical approaches as well as

recent models based on transformers.

The standard statistical methods, such as BM25 are a good

starting point. They can be improved by means such as

lemmatization. The choice of the lemmatizer largely impacts

the performance. These methods don’t have a problem with

generalizability, because they are independent of the domain.

Deep learning approaches are definitely more capable, but it

comes at the cost of a much higher computational complexity.

The most optimal way to use them is together with less accu-

rate, but faster statistical methods. A good approach is to fetch

a subset of passages with BM25 and then re-rank it with an

advanced model, such as miniLM. Retrieving more passages

to re-rank improves the results, but significantly increases

the necessary resources, so it is important to find a balance.

Knowledge distillation is an incredibly useful technique to

reduce the computational cost of using a model. Translation

is a good method when there are no models pre-trained in

the correct language. It can be a great alternative to training

a model from scratch, especially with limited resources.

Question answering is another good way to boost the

results. Generative models are powerful, but expensive to use.

However, they need to be used only once per question, unlike

other methods that need to calculate a score for each pair of

passage and query. It is important to choose the right model

– GPT3 answers helped the re-ranking, but chatGPT did the

opposite. Crafting a good prompt matters as well.

The best result was achieved by joining different techniques

using logistic regression. Even a model that is less accurate

on its own can still be useful to increase the score of a better

model.

VI. NOTE

This paper is taken from my master’s thesis written under

the direction of dr Paweł Rychlikowski at the University of

Wrocław.

REFERENCES

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877–1901,
2020.

[2] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane
Boyd. spaCy: Industrial-strength Natural Language Processing in
Python. 2020.

[3] Witold Kieraś and Marcin Woliński. Morfeusz 2 – analizator i generator
fleksyjny dla języka polskiego. Język Polski, XCVII(1):75–83, 2017.

[4] Robert Mroczkowski, Piotr Rybak, Alina Wróblewska, and Ireneusz
Gawlik. HerBERT: Efficiently pretrained transformer-based language
model for Polish. In Proceedings of the 8th Workshop on Balto-Slavic

Natural Language Processing, pages 1–10, Kiyv, Ukraine, April 2021.
Association for Computational Linguistics.

[5] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary,
Rangan Majumder, and Li Deng. MS MARCO: A human-generated
MAchine reading COmprehension dataset, 2017.

[6] Rodrigo Frassetto Nogueira and Kyunghyun Cho. Passage re-ranking
with BERT. CoRR, abs/1901.04085, 2019.

[7] Maciej Ogrodniczuk and Łukasz Kobyliński, editors. Proceedings of the

PolEval 2021 Workshop, Warsaw, Poland, 2021. Institute of Computer
Science, Polish Academy of Sciences. pg. 123-140.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.
[9] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

SQuAD: 100,000+ questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, pages 2383–2392, Austin, Texas, November 2016.
Association for Computational Linguistics.

[10] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

[11] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava,
and Iryna Gurevych. BEIR: A heterogeneous benchmark for zero-shot
evaluation of information retrieval models. In Thirty-fifth Conference on

Neural Information Processing Systems Datasets and Benchmarks Track

(Round 2), 2021.
[12] Jörg Tiedemann and Santhosh Thottingal. OPUS-MT – building open

translation services for the world. In Proceedings of the 22nd Annual

Conference of the European Association for Machine Translation, pages
479–480, Lisboa, Portugal, November 2020. European Association for
Machine Translation. https://aclanthology.org/2020.eamt-1.61.

[13] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming
Zhou. MiniLM: Deep self-attention distillation for task-agnostic com-
pression of pre-trained transformers. Advances in Neural Information

Processing Systems, 33:5776–5788, 2020.
[14] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement

Delangue, Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing, 10 2020.

1286 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


