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Abstract—Internet of things (IoT) has opened new horizons
in connecting all sorts of devices to the internet. However,
continuous demand for connectivity increases the cybersecurity
risks, rendering IoT devices more prone to cyberattacks. At
the same time, rapid advances in Deep Learning (DL)-based
algorithms provide state-of-the-art results in many classification
tasks, including classification of network traffic or system logs.
That said, deep learning algorithms are considered computation-
ally expensive as they require substantial processing and storage
capacity. Sadly, IoT devices have limited resources, making
renowned DL models hard to implement in this environment. In
this paper we present a Residual Neural Network inspired DL-
based Intrusion Detection System (IDS) that incorporates weight
pruning to make the model more compact in size and resource
consumption. Additionally, the proposed system leverages feature
selection algorithms to reduce the feature-space size. The model
was trained on the NSL-KDD dataset benchmark. Experimental
results show that the proposed system is effective, being able to
classify network traffic with an F1 score of up to 98.9% before
the pruning and an F1 score of up to 97.5% after pruning 90%
of network weights.

I. INTRODUCTION

I
NTERNET of Things (IoT) is booming in markets, driving

efforts for increasing device inter-connectivity. However,

this strive for increased connectivity poses requirements re-

lated to provision of security protocols and measures that

would secure communication between devices and build trust

in users that their data is communicated privately [1]. In order

to meet these requirements current security solutions typically

endorse defense in depth approach [2] in which the security

layers span across network perimeter, intranet and endpoint

systems. Such security mechanisms involve many attack de-

tection and prevention technologies. One of the most important

class of these technologies, namely Intrusion Detection Sys-

tems (IDS) [3], come in various flavors. Host-IDS examines

the actions of the users and compares them to decide which

actions can be considered as malevolent and which are likely

benign. On the other hand, Network-based IDS, examines

the traffic traversing through the network and compares it

with already known signatures to distinguish between normal

and malevolent flow. Though popular, these systems still face

various challenges, such as detection accuracy, high false-

alarm rates or the inability to detect zero-day attacks [4].

Machine Learning (ML) and Deep Learning (DL)-based

technologies recently enjoy numerous practical deployments,

e.g., in speech recognition, object detection, natural language

processing, etc. It is also increasingly used in the cybersecurity

domain [5][6]. Consequently, ML- and DL-based IDS gained

popularity in the recent years. In particular, they have proven

to be more robust than their predecessors, having lower

false-positive rates and higher accuracy [7]. However, this

line of research often adopted renowned image classification

algorithms [8] to the traffic classification tasks [9][10][11].

Consequently, the proposed systems tend to be computation-

ally cumbersome. Accordingly, for IoT devices, which have

limited storage and processing resources, research increasingly

focuses on replacing such burdensome algorithms with much

lighter solutions.

In this paper, we introduce a new DL-based IDS designed

around lightweight residual network [12] architectures. Our

solution is coupled with the Extra Tree classification algo-

rithm, which allows us to extract the most important features

from the dataset. This makes the proposed system compact,

while retaining high accuracy and detection rates. The small
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computational footprint of the proposed system is suitable for

inference on a CPU, instead of resource-hungry GPU accelera-

tors. Thus, our results show that attaining high accuracy while

substantially reducing the size of the model is achievable in

IDS tasks.

The following sections begin with review of the state-of-

the-art results in ML-based intrusion detection systems. Next,

we present the proposed attack detection architecture. Subse-

quently we describe the experimental setup and report obtained

results. Finally, we give conclusions from experiments and

outline future work.

II. RELATED WORK

Deep Learning-based intrusion detection systems enjoyed

rapid advances in recent years. Some researchers utilized

DL capabilities for categorical data classification, where the

task is to recognize specific attack instances. Haddad Pajouh

et al. [13] proposed a Long-Short Term Memory (LSTM)-

based IDS. First, they extracted OpCodes from the traffic and

assigned them to input vectors. Next, they leveraged Principal

Component Analysis (PCA) to extract the most significant

features from the vectors. The model was trained using Adam

optimizer [14]. Dropout layers were used to avoid overfitting.

The performance of the model was evaluated with 10-fold

Cross Validation (CV). Swarna Priya et al. [15] proposed

a DNN-based IDS that, similarly to Haddad Pajouh et al.

approach, also used PCA as a feature extractor. The system

also utilized feature scaling to normalize the input data before

feeding it to the classifier. Furthermore, they used Grey Wolf

optimization algorithm (GMO) [16] to construct a feature

hierarchy. This hierarchy provided features’ fitness values.

McDermott et al. [17] proposed a Bidirectional LSTM-based

IDS. Word embeddings were used to embed the captured

packets’ content in a vector space suitable for the model.

Subsequently, they used word embeddings to establish a

dictionary of tokenized words. Sigmoid function, Mean Ab-

solute Error (MSE) and Adam were selected as the activation

function, loss function and optimizer, respectively. Zhang et.

al [18] proposed a Deep-Belief Network (DBN)-based IDS

that employed an improved genetic algorithm. The algorithm

incorporated improved crossover and elite retention strategies

to prevent the loss of the best individuals. The proposed

system was trained and evaluated on the NSL-KDD dataset.

Another DBN-based IDS was proposed by Tama et al. [19].

The system incorporated a grid search strategy to select the

most significant input features. Evaluation was carried out

on three datasets, namely, UNSW-NB15 [20], CIDDS-001

[21], and GPRS [22] using 10-folds cross validation, Repeated

Cross-Validation (RepCV) [23] and data sub-sampling. Their

model was able to maintain the same detection rate after sub-

sampling. Overfitting was prevented with L1 and L2 regula-

tions and an adaptive learning rate. Muna et al. [24] proposed a

Deep Autoencoder to reduce the features dimensionality. Their

system also encompassed a deep feed-forward Neural Network

to detect and classify traffic. It was trained and evaluated on the

NSL-KDD dataset. Latif et al. [25] emphasized the importance

of providing lightweight DL-based IDS solutions. To this

end, they proposed an intrusion detection algorithm employing

random neural networks, in which the Poisson distribution was

used to estimate the probability of the signals that made the

neurons either active or inhibited. The proposed system was

evaluated on the DS2OS dataset [26]. Shone et al. [27] pro-

posed a Non-Symmetric Deep Auto-Encoder for unsupervised

feature learning. The system employed Random Forest [28] to

classify the traffic between benign and malevolent. Both NSL-

KDD and KDD Cup ‘99 datasets were used in training and

evaluation. Min et al. [29] proposed a system which uses an en-

semble of byte-level word embeddings and text convolutional

neural networks. Skip-Gram algorithms was used to create

the byte-level word embeddings. Text convolutional neural

networks were constructed from one-dimensional convolutions

that extracted word-based features. Similarly to Shone et

al., Random Forest was chosen as a classifier. The system

was trained and evaluated on the ISCX2012 dataset [30].

Zhou et al. [31] proposed Deep Feature Embedding Learning

method that reduces input features’ dimensionality, thereby

decreasing the time needed to train the model. They trained

and evaluated their model on the NSL-KDD and UNSW-NB15

datasets. Leaky ReLU was chosen as the activation function

for the hidden layers, while Sigmoid function was used as

an activation function in the classification layer. Additionally,

Dropout was used to avoid overfitting.

Other researchers choose to use deep learning for binary

classification, where the goal is to distinguish attack signatures

from normal traffic, irrespective of specific attack classes. Diro

et al. [32] proposed a DL-based IDS trained in a distributed

optimization scheme which involved fog nodes, i.e. mini-

clouds implemented as edge devices in the cloud [33]. To

avoid overfitting, the parameters were collected in the fog

coordinator, which was responsible for their updating and

distribution for subsequent epochs. Diro et al. [32] evalu-

ated their system on the NSL-KDD dataset [34]. Similarly,

Abeshu et al. [35] proposed a novel DL-based IDS that takes

its parameters from the master fog node, while performing

system fine-tuning on the worker nodes. Again, NSL-KDD

was chosen as training and evaluation dataset. Almiani et al.

[36] proposed an RNN-based IDS. Their system employed

data oversampling to balance the minority classes, a modified

back-propagation algorithm, and the min-max normalization.

Kasongo et al. [37] proposed a feed-forward Neural Network-

based IDS that was coupled with a wrapper-based feature

extraction unit. The wrapper used the Extra Tree algorithm

to classify and specify which features are most significant.

The proposed system was trained and evaluated on the NSL-

KDD dataset. Devan et al. [38] proposed an XGboost DL-

based IDS composed of three main steps, namely, input feature

normalization, feature selection using a classifier based on a

collection of decision trees that derive the significant features,

and final classification. Their system also leveraged neural

networks with ReLU and Softmax activation functions for

the hidden and classification layers, respectively. Nagisetty

et al. [39] proposed a DL-based IDS that incorporated three

1144 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



DL architectures: Multi Layer Perceptrons (MLP), CNNs,

and an Autoencoders. The proposed system was trained and

evaluated on two datasets, namely, UNSW-NB15 and NSL-

KDD99. The system employed Root Mean Square Root Error

(RMSE) as the cost function. DNN was used mainly to sort

the features and create a feature hierarchy. Zhihan et al.

[40] proposed a hierarchical Supporting Vector Machine-based

IDS. In addition, a stacked autoencoder was used to denoise

the data. The system was evaluated on the NSL-KDD dataset.

In this paper we will benchmark our results with the papers

that focus on the binary classification task. To this end, we

will evaluate our algorithm with respect to the metrics that

they have discussed in their papers as our goal is to see if our

pruned networks could compete with the state-of-the-art.

III. PROPOSED ARCHITECTURE

In order to protect devices from attacks, while preserving

processing and storage resources, we propose an Intrusion

Detection System based on pruned residual neural networks

[12]. The proposed system is trained in several steps. First,

input data is pre-processed, including encoding of symbolic

features. The data is then fed to an Extra Tree Classifier [41],

which selects the most important features from the feature set.

In the next step, the data is normalized and used to train the

proposed classification model. Finally, the model is pruned in

fine-tuning steps, which minimizes its size and the inference

cost.

We evaluate the final model with respect to precision,

recall and F1 score both before and after network pruning.

Evaluation is carried on the NSL-KDD dataset.

A. NSL-KDD Dataset

The NSL-KDD dataset is the successor of the KDD’99 [42]

dataset, which was introduced by DARPA in 1998. The dataset

was firstly proposed by Tavallaee et al. [43] and is composed

of 4 different attack classes, namely, Denial of Service (DoS),

Probe, User-to-root (U2R), and Remote-to-Local (R2L). In

DoS attacks the computing or network resources are ex-

hausted, making the attacked system unable to serve the user's

requests. Signatures of a DoS attack in the NSL-KDD dataset

would be, e.g., the Src_byte and the Wrong_fragment

features. Probe attacks are mostly used for surveillance, in

order to to gain information on the potential victim system.

The relevant signatures for probe attacks in the NSL-KDD

dataset are the Src_bytes and the Duration features.

User-to-root attacks attempt to grant superuser privileges to

the attacker. One way of doing this is accessing the user's

system via a normal account and then attempting to escalade

privileges by exploiting a vulnerability. Relevant signatures

for U2R attacks with respect to the NSL-KDD dataset are,

e.g., Num_file_creations and Num_shells features.

In Remote-to-Local attacks the attacker attempts to gain access

of the user's system via a remote machine. Relevant signatures

for R2L attacks in the NSL-KDD dataset are, e.g., Duration,

Service and Num_failed_logins features.

TABLE I: NSL-KDD traffic statistics.

NSL-KDD

Attack Type KDDtrain+ KDDTest

1 DOS 45926 7458

2 Probe 11655 2421

3 R2L 995 2754

4 U2R 52 200

5 Normal 67345 9711

Total 125973 22544

The NSL-KDD dataset encompasses two subsets, namely,

the KDDtrain+ and KDDtest. In standard classification setup,

the proposed system should assign the signatures into four

major categories, namely, DOS, Probe, R2L, U2R, and

Normal traffic. Table I reports datasets statistics for these

categories. Note that DOS, Probe, R2L, U2R and normal

traffic makes 36.45%, 9.25%, 0.78%, 0.04% and 45.52% of the

dataset instances, respectively. In binary classification setup

the proposed system should be able to classify the traffic into

two classes, namely, attack and non-attack. Note that classes

in this case are balanced, with attack and non-attack traffic

making 46.5% and 53.5% of the dataset, respectively.

The NSL-KDD consists of a total of 41 features that comes

in four main categories: (a) intrinsic features that can be

extracted from the packet’s headers, (b) content features which

reflect the data content of the packets, (c) time-based features

which reflect the connection rates with the hosts, and finally

(d) the host-based features. It is also worth mentioning that

the KDDtrain+ subset has 3 categorical features, namely:

• Protocol Type which consists of 3 categories,

• Services which consists of 70 categories,

• Flag which consists of 11 main categories.

These features require preprocessing into one-hot encoding

before they can be used in the subsequent steps.

B. Data Preprocessing

In this work we focus on a binary classification task,

i.e., distinguishing normal network traffic from attacks. We

therefore convert the provided labels into attack and non-

attack classes before selecting the important features. Next, we

remove data duplicates and rows that contain null values. The

KDDtrain+ subset consists of both numerical and categorical

data. We normalize the numerical features via z-scores:

Z =
x− µ

σ
(1)

where x represent the current instance of the feature while

µ and σ represent the mean and the standard deviation of

the feature respectively. The categorical features, on the other

hand, are encoded in one-hot vectors.

In the next step we use Extra Tree classifier with 100

estimators (trees) to identify the most significant features.

Specifically, we use the Gini coefficients [44] returned by the

Extra Tree classifiers to select the most prominent features.

Importantly, for one-hot-encoded features, the feature is re-

tained if the Extra Tree classifier selects any of its dimensions
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according to the Gini coefficient. After a series of features

selection iterations, the features listed in Table II were used

to train the neural network for the binary classification task.

TABLE II: Features selected by the Extra Tree classifier.

Index NSL-KDD Features Index NSL-KDD Features

1 count 12 protocol_type
2 same_srv_rate 13 logged_in
3 dst_host_count 14 rerror_rate
4 dst_host_same_srv_rate 15 same_srv_rate
5 dst_host_serror_rate 16 serror_rate
6 dst_host_same_src_port_rate 17 service
7 dst_host_same_srv_rate 18 flag
8 dst_host_rerror_rate 19 src_bytes
9 dst_host_srv_count 20 srv_rerror_rate
10 dst_host_srv_diff_host_rate 21 srv_serror_rate
11 dst_host_srv_serror_rate 22 dst_host_srv_rerror_rate

C. Pruning

We use pruning to reduce the overall size of the trained

neural model. There are several pruning strategies that can be

used to this effect:

• The classical approach in which the model is firstly

trained with all parameters and then subset of the

trained parameters is removed during additional fine-

tuning epochs.

• Pruning at initialization, where parameters are pruned

before the model is trained [45].

• Pruning during the main training run.

Furthermore, pruning can carried out globally, i.e., across the

whole model, or locally, i.e., in each network layer [46].

In this work we use global, magnitude-based pruning which

employs fine-tuning epochs after the main training run, during

which weights with low magnitudes are gradually set to zero.

IV. EXPERIMENTAL SETUP

Table III summarizes the hyper-parameters used in the

experiments. These training hyperparameters were selected

with few trial training runs. We evaluate variants of this

architecture with varying widths. In particular, we vary the

number of neurons inside the residual blocks while keeping

a fixed network width of the skip-connection nodes. Further-

more, batch normalization layers [47] are used to improve the

training. This architecture proved to work well, while saving

on the number of model parameters. Each constructed model

was run five times with different random seeds.

We also carried out evaluation of pruned variants of

our models. To this end, a 20 epoch fine-tuning run with

magnitude-based pruning was done. For each network instance

the sparsity schedule started with 85% initial sparsity and

increased with each iteration, until it reached a final sparsity

of 90% by the end of the last fine-tuning epoch. For the

performance numbers we report mean and variance of training

time, test accuracy, precision, recall and F1 score:

Precision =
TP

TP + FP
(2)

TABLE III: List of training hyper-parameters.

Models width 1024, 256, 32, 8

Activation function ReLU [48]

Optimizer Stochastic Gradient Descend (SGD)
with Nesterov accelerated gradient =
0.9 [49]

Loss function Binary Cross Entropy [50]

Learning rate 0.1

Decay for unpruned models 1e-6

Decay for pruned models Polynomial Decay

Batch size 120

Number of epochs (for
both pruned and unpruned
networks)

20

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + FN + TN + FP
(4)

F1− Score = 2×
Precision×Recall

Precision+Recall
(5)

where TP is the true-positive count, FP is the false-

positive count, TN is the true-negative count and FN is the

false-negative count. Due to the substantial pruning rate, the

sparse models of the same width tended to have the same

performance across random seeds. Consequently, the variance

estimates are not meaningful in this case and we don’t report

them.

V. RESULTS

The proposed models were trained using the Google Collab

environment. Table IV reports the results for unpruned net-

works. The model with the highest width achieved 98.96%

accuracy, 99.39% precision, 98.38% recall and 98.91% F1

score. Note that this is the most computationally expensive

of our models. That said, the model with quarter the width

preformed equally well up to the variance across random

seeds. The remaining two models performed slightly worse,

with F1 score around 0.6% below that of the larger models.

These models were, however, much more computationally

efficient, with the training time stabilizing below width equal

to 32 units. Our results also shows that the variance across

the training runs is low for all models, which shows that the

performance is not highly affected by the initial seeds.

Results for the pruned networks are reported in Table V. The

F1 score of the model with 1024-unit width dropped by about

1.5% after pruning, with performance decrease manifesting

mostly in model's recall. For the pruned model with quarter

the width, the performance metrics were about 0.5% below

those of the larger pruned model and up to 2% below the

unpruned network. The two smallest models scored the lowest

after pruning, with an F1 score approximately 2% below larger

pruned networks. Overall, our results shows that even with

aggressive pruning and small initiated models residual fully-

connected networks perform well in this task, with precision

recall and F1 score above 95%.
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TABLE IV: Performance metrics for unpruned models.

Model Training Time(sec) Accuracy Precision Recall F1 Score

1024 360.6±35.7 98.96±0.03% 99.39±0.10% 98.38±0.11% 98.91±0.07%

256 155.4±6.5 98.91±0.05% 99.44±0.02% 98.22±0.08% 98.82±0.05%

32 72.9±7.1 98.38±0.07% 81.07±0.16% 97.45±0.23% 98.25±0.08%

8 73.7±8.5 98.38±0.07% 99.07±0.16% 97.45±0.23% 98.25±0.08%

TABLE V: Performance metrics for pruned models.

Model
Training
Time(sec)

Accuracy Precision Recall F1 Score

1024 471.3 97.67% 99.42% 95.59% 97.46%

256 217.9 97.31% 99.22% 95.01% 97.07%

32 118.6 95.82% 95.91% 95.13% 95.52%

8 119.3 95.82% 95.91% 95.13% 95.52%

TABLE VI: Performance metrics reported in related work.

Reference Accuracy Precision Recall F1 Score

[32] 99.20% 99.02% 99.27% 99.14%

[35] 99.20% - 99.27% -

[36] 92.42% 90.20% - 92.29%

[37] 99.37% - 92% -

[38] 97.60% 97% 97% 97%

[39] 98.96% - - 92.28%

[40] 97.83% - - -

Our un-
pruned
1024

model

98.96±0.03% 99.39±0.10% 98.38±0.11% 98.91±0.07%

Our
pruned

32
model

95.82% 95.91% 95.13% 95.52%

To benchmark our results against the state of the art, we

selected peer-reviewed papers which addressed the binary

classification task with respect to the same NSL-KDD dataset.

Some of these papers reported all the metrics mentioned

earlier, while others took into consideration only a subset of

them. Comparison between the benchmarks and our results is

summarized in in table VI.

Comparing with the state-of-the-art for this benchmark

dataset in binary classification setup, we observe that all of

the proposed unpruned networks give competitive or better

precision in detecting attacks (Table VI). More precisely, the

models with 1024 and 256 widths achieved better accuracy

compared to [36] [38] [39] [40], recall compared to [37]

[38] and F1 score compared to [36] [38] [39]. The pruned

models achieved slightly lower results, but still maintained

strong performance while requiring only 10% of the initial

parameters.

VI. CONCLUSIONS AND FUTURE WORK

Proliferation of IoT devices is making a huge impact on the

communication sector. The increased interconnectivity comes

not only with new business opportunities, but also increases se-

curity risks related to prevalence of network vulnerabilities and

persistent cyberattack threats. Conventional IDS and firewalls

deployed to counter cyber-threats are often inadequate for IoT

environments, e.g., due to high false-positive rates or large

resource requirements. In this paper we proposed an ML-based

IDS that employs residual MLP networks and demonstrated

that it provides strong results with respect to the precision

and recall of attack detection, even when implemented with

relatively small networks. We also demonstrated that it retains

most of its accuracy after pruning of as much as 90% of its

parameters.

In our future work we intend to extend this line of re-

search with novel and promising neural architectures, e.g.,

transformer models. These models excel at text embedding

and classification. We therefore intend to explore their ability

to classify network and system logs. We also intend to ex-

plore more pruning strategies, e.g., unit-based pruning which

removes entire neurons, rather than individual weights. Such

pruning strategies may result in lower computational footprint,

while still maintaining strong attack detection performance.
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