
Risk-Based Continuous Quality Control for

Software in Legal Metrology

Marko Esche, Levin Ho, Martin Nischwitz, Reinhard Meyer

Physikalisch-Technische Bundesanstalt,

Abbestraße 2-12, 10587 Berlin, Germany

Email: marko.esche@ptb.de, levin.ho@ptb.de, martin.nischwitz@ptb.de, reinhard.meyer@ptb.de

Abstract—Measuring instruments are increasingly defined by
complex software while using simple hardware sensors. For
such systems, software conformity between certified prototypes
and devices in the field is usually demonstrated using version
numbers and hashes over executable code. Legal requirements
for regulated instruments could equally be satisfied if prototype
and device in the field display identical functional behavior even
if hashes differ. Such functional identification can give instrument
manufacturers room for software patches and bugfixes without
the need for recertification. Based on the L

∗ algorithm, which is
used to learn the language which deterministic finite automata
accept, a risk-based method is proposed that realizes automatic
functional identification of software to a certain extent, thereby
enabling quality control of regularly updated measuring instru-
ments without the need for frequent manual inspections. Risk
assessment may be used to identify critical state transitions in
monitored devices, which can be used to trigger recertifications
if needed.

I. INTRODUCTION

M
ODERN communication infrastructure and the ubiq-

uitous availability of significant computation power

even in small devices like smart watches and smart sensors

allow software developers to remotely and regularly fix bugs

identified during use of an IT component in the field. The

same mechanism can also be used to deliver upgraded software

with new features to remote devices, enabling IT equipment

manufacturers to sell devices based on long-living hardware

which can be upgraded to customers’ needs through software

updates. However, this development also comes at a certain

cost: Remote update capabilities have proven to introduce

unexpected or unintended errors into otherwise stable systems

[1]. Therefore, approaches to cover this gap (without forcing

potential users of updated software to validate the complete

source code of a device) have received significant attention

in recent years [2], [3]. Such approaches enable users of

IT equipment to monitor a device’s behavior for potential

anomalies without having to check each individual update,

thus providing a high-level approach to identify software by

means of its functionality rather than by means of its bit

pattern.

Monitoring and identifying a device’s functional behaviour

becomes especially important if requirements on these devices

are mandated by legal regulations, typically involving recer-

tification of the entire system in case of modifications. One

industry sector affected by such regulations is Legal Metrology

covering all measurements conducted in the European Union

for commercial or official use. These regulated instruments

include, e.g., taximeters for taxi fare calculation, gas me-

ters for measuring gas consumption and length measuring

instruments to determine the dimensions of sold goods. Any

such instrument put on the common EU market has to be

subjected to a conformity assessment procedure according to

Annex II of the Measuring Instruments Directive 2014/32/EU

(MID) [4]. One conformity assessment body performing this

task is Germany’s national metrology institute Physikalisch-

Technische Bundesanstalt (PTB).

During conformity assessment, manufacturers have to

demonstrate that their instrument fulfills the essential require-

ments given in Annex I of the MID. During use, market

surveillance authorities across the EU monitor devices and

their usage to detect potential non-compliance. As an ex-

ample, essential requirement 8.3 states that, ”Software that

is critical for metrological characteristics shall be identified

as such and shall be secured. Software identification shall

be easily provided by the measuring instrument. Evidence

of an intervention shall be available for a reasonable period

of time.“ [4]. Not only does this entail the identifiability of

software in general, but also the possibility to detect changes

to said software and make them evident to all parties involved.

Typically, both identifiability and detection of changes are

achieved by using cryptographic hashes over the executable

code to identify specific versions of the software and to

detect unwanted modifications [5]. However, such an approach

quickly may put serious strain on conformity assessment

bodies and market surveillance authorities alike. For example,

even a recompilation of otherwise unchanged source code my

result in a different hash due to the inclusion of compile time

stamps etc. Therefore, solutions that automatically evaluate

software modifications and link them to a potential risk of

non-compliance are needed.

To this end, a novel risk-focused method for remotely

monitoring software in devices subject to legal control is

proposed here. It is envisioned that the method will be used by

market surveillance authorities and inspectors to automatically

check certified devices in the field for potential non-compliant

behavior. If a device is deemed to be in violation of legal

requirements after a software modification, the manufacturer

would then be requested to resubmit the modified software for

a complete conformity assessment procedure. The main con-

tributions of the paper are the following: The proposed method

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 451–461

DOI: 10.15439/2023F6171

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 451 Thematic track: Practical Aspects of and

Solutions for Software Engineering



constitutes a first step towards automatic remote quality control

of devices subject to legal control. It enables automatic selec-

tion of risk scenarios based on remotely obtained behavioral

data and thus also realizes functional identification of software

to a certain extent.

The remainder of the paper is structured as follows: Sec-

tion II provides some background on modelling and learning

algorithms and presents the current state of the art in quality

control for software as well as the risk assessment method

currently used in Legal Metrology in the European Union.

In Section III, the concept of modelling certain types of

measuring instruments as deterministic finite automata (DFA)

is investigated. The section also outlines which preconditions

need to be fulfilled to justify such an approach. Afterwards,

Section IV describes a novel risk-focused method of monitor-

ing evolving software in measuring instruments based on the

Active Continuous Quality Control (ACQC) approach from

[2]. The method is then experimentally tested and evaluated

in Section V. Finally, Section VI summarizes the paper and

provides suggestions regarding further work.

II. BACKGROUND AND RELATED WORK

Certain types of algorithms can be described as finite

automata. The corresponding models and how to learn the

behavior of such algorithms, which is of particular interest

during monitoring of potentially modified software, are de-

scribed in Section II-A. The methods proposed by Neubauer,

Windmüller and Steffen together with Howar and Bauer [2],

[3], which apply active automata learning to quality control for

evolving systems, are briefly described in Sections II-B and

II-C before recapitulating the previously published method of

risk assessment for measuring instruments in Legal Metrology

in Section II-D.

A. Active Automata learning

Simple state machines steered by input symbols from a

finite alphabet that trigger internal state changes can be used

to describe the behavior of certain types of algorithms such as

used in controllers for elevators, household appliances, simple

digital watches etc. [6]. From a mathematical point of view,

these state machines, also referred to as DFAs, are defined as

a 5-tuple (Q,Σ, δ, q0,K) [6] where:

1) Q is a finite nonempty set of states.

2) Σ is a finite input alphabet.

3) δ : Q× Σ→ Q is the transition function. (1)

4) q0 ∈ Q is the initial state.

5) K ⊂ Q is the subset of accept states.

To indicate whether an arbitraty input sequence has success-

fully been processed, DFAs may contain accept states K which

then trigger an accept message if such a state is reached.

Otherwise, the output would be a reject message. It should

be noted that the set K may also be empty, implying that the

DFA does not contain any accept states triggering an accept

message. In practice, the output of an algorithm is usually

more complex than such binary feedback, requiring the exis-

tence of an output symbol from a finite output alphabet Γ. Such

more general state machines are referred to as Mealy automata,

which can be characterized as a 6-tuple (Q,Σ,Γ, δ, γ, q0) [7]

where:

1) Q is a finite nonempty set of states.

2) Σ is a finite input alphabet.

3) Γ is a finite output alphabet.

4) δ : Q× Σ→ Q is the transition function. (2)

5) γ : Q× Σ→ Γ is the output function.

6) q0 ∈ Q is the initial state.

In addition to the transition function δ, describing state

changes depending on the input symbol, these also possess

an output function γ that associates an output symbol with

each state change. Such Mealy automata were originally

conceived to represent arbitrary logic circuits and can even

mimic complex IT systems at a certain abstraction level [2].

For additional details, see Section II-B. To infer a DFA without

having to know the exact implementation, the L∗ algorithm

was developed by Dana Angluin in 1987 [8]. The algorithm

was later extended to the L∗

M
algorithm to learn properties of

the more general Mealy machines as well. Given that software

changes in measuring instruments may have unknown effects

and the instrument itself thus takes on the characteristics of

a system with unknown behavior after an update, the basics

of the L∗ shall be briefly summarized here. See the original

publication by Dana Angluin [8] for additional details of the

L∗ algorithm and the paper by Shahbaz and Groz [9] for an

extended discussion including the L∗

M
extension:

The aim of the L∗ algorithm is to determine the properties

of an unknown DFA by means of so-called membership and

equivalence queries. To this end, the L∗ learner communicates

with a teacher T . The teacher abstracts the system under test

(SUT), so that generic queries may be used by the learner to

determine the SUT’s internal DFA. If L(A) is the set of strings

a SUT A accepts, i.e., its language, and Aut (A) is the set of

all finite state machines with input alphabet Σ then the two

types of generic queries used by the learner can be defined as

follows:

• Membership queries QM : Σ∗ → {0, 1} where the

learner asks the teacher to test the SUT with a given

string x from the free monoid Σ∗ that contains all words

over Σ. If x ∈ L(A) the response of the teacher is 1,

otherwise 0.

• Equivalence queries QE : Aut (Σ) → Σ∗ ∪ {true}
where the learner L∗ asks the teacher T to perform an

equivalence test between the current learned automaton

representation A′ ∈ Aut(Σ) and the SUT A, resulting

either in a counterexample c ∈ Σ∗ or confirmation of the

equivalence.

Internally, the L∗ algorithm operates on a so-called observa-

tion table that stores results of the queries in a systematic

fashion. To this end, the learner continually performs mem-

452 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



bership queries until it has constructed an initial model A′.

Subsequently, it issues an equivalence query to the teacher,

which either confirms correspondence between A′ and A or

responds with a counterexample c ∈ Σ∗ that fulfills either

c ∈ L (A) ∧ c /∈ L (A′) or c /∈ L (A) ∧ c ∈ L (A′). The

algorithm finishes if the obtained data is sufficient to generate

a system with the same algorithmic behavior as the SUT A. To

illustrate the outcome of the L∗ algorithm, an exemplary DFA

is described in Section III together with a resulting transition

function δ in tabular form in Table I.

B. Active Continuous Quality Control (ACQC)

In [2] Windmüller, Neubauer, Steffen, Howar and Bauer

presented a novel approach for ensuring compliance of evolv-

ing complex applications through active automata learning

technology. Their goal is to supervise and control modifi-

cations of applications during their entire life cycle. This

is realized by establishing a consistent level for comparison

via adaptive behavioral abstraction. Abstraction is achieved

by means of a user-centric communication alphabet, where

elements of the alphabet may correspond to entire (complex)

use cases. One advantage of the method lies in its capability to

identify bugs by simple examination of so-called ”difference

views“ between consecutive models. The authors observe

that software testing in general is not tailored to keep up

with current, continuously evolving component-based software

systems since repeatedly updating test suites for such systems

is time-consuming and expensive. In [2] incremental active

automata learning technology (also referred to as test-based

modeling) is employed to address this issue.

To this end, daily system builds with an integrated fully

automatic testing process are used, where the testing process

is controlled by incremental active automata learning. The pro-

posed approach aims to address the following main problems:

• ”Stable abstraction“: Downward compatibility is as-

sumed, meaning users of the system should not change

the way they interact with the system. Nevertheless, the

source code etc. may change, but such modifications

should not be apparent to the user. Therefore, the chosen

abstraction mechanism is oriented on the level of use

cases to facilitate comparisons between different software

versions. Subsequently, the user-centric communication

alphabet reflects distinct activities as part of the use cases.

• ”Bridging implementation“: A mechanism of the com-

mon abstraction level must ensure that any test is sup-

ported by a correct (version-dependent) implementation

of an adapter for the symbols of the alphabet.

• ”Maximal reuse“: The central aspect of ACQC is based

on the L∗

M
learning algorithm for model inference. Based

on selected counterexamples, the algorithm infers models

from executed tests, see Section II-A. One drawback

of the approach is the computationally expensive tests

needed for the active learning process.

The authors observe that hypothesis models for new software

releases are derived at the same level of detailedness as for the

previous software release, which constitutes the main advan-

tage of ACQC over similar approaches. Since identification of

counterexamples is inherently ineffective, the derived system

description will improve over time. Obviously, a precise initial

model is needed to enable model-based testing. According to

Windmüller, Neubauer, Steffen, Howar and Bauer, derivation

of such models from source code is impractical for systems of

a certain size. Indeed, any form of use-case-level modelling is

difficult for such systems. Instead, active automata learning is

used to extract models from live systems. The learned models

then serve as the basis for regression tests. This approach will

be reused in the method to be investigated here, see Section

IV.

In [2] the proposed continuous quality control approach was

validated by applying it to the Online Conference Service

used for submitting and reviewing publications at Springer

Verlag as an example with specific use cases as input symbols.

Correspondingly, each input symbol represents processes like

paper submission, reviewer selection or review submission.

With such a high-level representation, a reasonably stable

abstraction (as required above) was realized. The authors

found that the chosen high-level modelling of input and output

alphabets as abstraction of different use cases is well suited

as a quality management facility for evolving IT systems. Not

only is their method able to detect bugs, it also verifies if

functional behavior of a system remains unchanged from one

release to the next.

It should be noted, however, that the model learned by the

L∗

M
algorithm does not directly provide a link between the

known set of states Q and the derived transition function

δ. Instead, most L∗ and L∗

M
implementations assign input

symbol sequences to the states they lead to. If the binary input

0 leads from a transition from the default empty state {} to a

state A, that state will be represented by the input sequence

0. If another input symbol 0 then leads to a transition from

A to B, whereas the alternate input symbol 1 leads from A
to C, B would be represented as 00 and C as 01. From

a theoretical point of view, this corresponds to building the

equivalence classes of the automata congruence relation for

all states. It follows that an outside examiner can match the

learned transition function δ against a known reference, but

it is not guaranteed that the mapping between known states

Q and learned states Q′ is correct. This observation will be

revisited again and illustrated by a more detailed example in

Section V.

C. Risk-Based Testing via Active Continuous Quality Control

In [3] Neubauer, Windmüller and Steffen extended their

approach to active automata learning and testing by adding a

risk prioritization component. In this context, risk assessment

is used to produce alphabet models which help to control the

ACQC process to increase coverage of risk scenarios. The au-

thors explain, that today’s complex IT systems usually consist

of a combination of application servers with webinterfaces and

third-party services. Due to the resulting heterogeneous struc-

ture, the subsequent system behavior becomes increasingly

MARKO ESCHE ET AL.: RISK-BASED CONTINUOUS QUALITY CONTROL FOR SOFTWARE IN LEGAL METROLOGY 453



difficult to predict. During updates in particular, the mix of

modified functionality and upgraded third-party components

may have unintended effects. Their aim, therefore, was to

continually perform automatic quality checks while using risk

assessment to reduce the manual labor involved in regression

testing.

In this regard, platform migrations are of particular interest

since user experience may drastically change, even though

the underlying functionality was not intended to be modified.

Of course, potential risks resulting either from a platform

change or from modified functionality cannot be automatically

inferred. Therefore, the authors amended the original ACQC

approach from [2] by enabling risk analysts to identify critical

system aspects and prioritize them for error detection during

the automatic model inference and checking steps. However,

the paper [3] does not specify how risk levels are formally

determined. Since risk analysts are typically not involved in

software development itself, it becomes necessary to provide

them with an abstraction layer that can be included in the

original ACQC approach without performance loss. To this

end, Neubauer, Windmüller and Steffen used the already

abstract alphabet symbols from [2], which model different use

cases of the SUT (see Section II-B).

The authors of [3] acknowledge that there are also model-

driven approaches to risk-based testing such as the one de-

scribed by Lund, Solhaug and Ketil Stølen in [10]. The so-

called CORAS methodology offers the possibility to perform

risk assessment using well-defined software models based

on UML and the Unified Process (UP). However, CORAS

and similar approaches only address the modelling aspect

for risk assessment and are unable to monitor and perform

comparisons between subsequent models of SUTs. Neubauer,

Windmüller und Steffen also observe that it is unrealistic to

assume that the internal number of states of a system will

not change during its lifecycle. They therefore propose to

continually repeat the learning process. This will be mirrored

in the approach presented here, see Section IV.

D. Software Risk Assessment in Legal Metrology

One mandatory element of conformity assessment for mea-

suring instruments consists of carrying out and evaluating

a risk assessment for the instrument or type pattern to be

assessed. In [11] Esche, Grasso Toro and Thiel described

a method for software risk analysis particularly tailored for

the software of such systems. The method is based on ISO

27005 [12] and ISO 18045 [13] and makes use of so-called

assets, e.g., software, measurement data and parameters, and

matching security properties, i.e., integrity, authenticity and

availability, derived from the essential requirements from

Annex I of the MID. These assets include the software,

parameters and data of the instrument, but also the indication

of the result, accompanying inscriptions and stored data.

Within the frame of this paper, only the data during processing

shall be considered. For such data, the MID requires integrity,

authenticity and availability, i.e., it must be ensured that data

cannot be modified or deleted without detection and that they

replace broken seal
with forged seal

A

B C

E

Gbreak seal and write
software to internal memory

F

D

measurement value

install new software

on the taximeter

replace software of the

taximeter

write new software

modify parameters

of the taximeter

increase legally relevant

Fig. 1. Graphical representation of an attack tree that illustrates necessary
steps to manipulate the calculated fare of a taximeter during processing [14].
Child nodes must be read as OR-connected, unless they are connected by an
arc, which represents an AND-connection [11].

are traceable to a known source. In short, any inadmissible

influence on the processed data must be detectable.

The first step of a risk assessment then consists of for-

mulating certain threats that constitute an invalidation of any

security property for the assets. For example, such a formal

threat might read, ”An attacker manages to invalidate integrity

or authenticity of measurement data during processing.“ Given

the known properties of the instrument, the assessor then

identifies potential attack vectors which encompass practical

technical steps to be implemented to realize the threat. Since

such attacks tend to be made up of several steps which may

even be shared between different threats, Esche, Grasso Toro

and Thiel introduced the concept of Attack Probability Trees

(AtPT) in [11]. An AtPT can be used to divide complex

attacks into smaller subgoals by means of a tree represen-

tation, see Figure 1 for an example addressing attacks on

the calculated fare of a taximeter. The AtPT method may

be seen as an example of fault tree analysis (FTA) with an

added layer that links the method to the vulnerability analysis

from ISO 18045 enabling users of AtPTs to rank threats

by means of a formalized and well-defined risk assessment.

In the Figure, node A, which corrsponds to the threat of

manipulating the measurement value, is divided into nodes B
and C which represent the alternatives of either manipulating

the measurement parameters or replacing the software of the

instrument. These two child nodes may be split into further

subtrees themselves. Once the tree has been established, all

leaf nodes are assigned scores for required time, needed

expertise, knowledge of the system, window of opportunity

for an attacker and necessary equipment in accordance with

the corresponding guidelines from ISO 18045 [13]. Finally

these scores are propagated up the tree as prescribed by the

rules from [11] to calculate probability of occurrence score

and impact score of the original threat represented by the

root node. The product of both, rounded to the next integer

number, then becomes the (ideally) reproducible, numerical

representation of the risk associated with the threat.

454 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



C

M

U

E

a ac

c,a,r

c

c,a

r r

r

Fig. 2. DFA representing the different states of a heat meter and the state
transitions. The heat meter states are: U for an unconfigured device, C for
a configured yet inactive device, M for a measuring device and E for a an
error state. The input alphabet consists of the symbol c for a configuration
dataset, a for an activation signal and r for a request to retrieve measurement
data from the device.

III. MODELLING MEASURING SYSTEMS AS

DETERMINISTIC FINITE AUTOMATA

In principle, finding mathematical representations, i.e., func-

tional identifications, even for simple measuring instruments

is a complex task since various physical influences need to be

taken into account and must be reflected in a corresponding

uncertainty budget [15]. Automatic detection of unwanted

behavior of complete instruments thus quickly becomes un-

feasible. Nevertheless, many commonly used instruments, e.g.,

heat meters, typically contain internal state machines which

ensure that the instrument behaves differently during instal-

lation/configuration than during permanent use. Among other

qualities, heat meters have to guarantee that the installation

point (either on supply side or return side of a heat generating

device) can only be set during configuration and that the state

cannot be reached again without physically tampering with

the device. From this example, it should be clear that state

machines within such instruments share many properties with

DFAs and can thus be used to provide a simple form of high-

level functional identification.

In the simple heat meter example, Q = {U,C,M,E}
would consist of the states U for an unconfigured device,

C for a configured yet inactive device, M for a currently

measuring device accumulating the consumed energy into a

register and E for a device in an error state. A simple input

alphabet would consist of three symbols Σ = {c, a, r} where c
represents a configuration datagram, a is the activation signal

and r is a request to read measurement data from the device.

For illustration purposes, a graphical representation of the

complete DFA is given in Figure 2. It should be noted that

the depicted DFA is only a simplistic exemplary representation

of the possible software states of a heat meter. A real device

will likely contain more states and more possible transitions.

Also, the shown DFA only addresses the software aspects

of the meter. For instance, if the permanent error state E
is reached, recovery might still be possible via a hardware

reset which is beyond the representation capabilities of the

selected model. The corresponding transition function δ, which

maps a current state to the next state given a specific input

symbol, is shown in Table I. There exist some approaches to

TABLE I
TRANSITION FUNCTION δ FOR THE HEAT METER EXAMPLE IN FIG 2.

STATE U REPRESENTS AN UNCONFIGURED DEVICE, C A CONFIGURED YET

INACTIVE DEVICE, M A MEASURING DEVICE AND E A DEVICE IN AN

ERROR STATE. c IS THE INPUT SYMBOL FOR A CONFIGURATION DATASET,
a FOR AN ACTIVATION SIGNAL AND r FOR A REQUEST TO RETRIEVE

MEASUREMENT DATA FROM THE DEVICE.

symbol

c a r

st
a
te

U C E U

C E M C

M E E M

E E E E

model both, the measuring function and the DFA of measuring

instruments, resulting in a so-called digital twin describing

an instruments behavior under arbitrary conditions. However,

these are not suitable to monitor and evaluate frequent software

changes. As stated in Section I, mechanisms are needed that

can automatically identify and evaluate software modifications.

It should be clear from the above-mentioned example for

heat meters, that some measuring instruments contain state

machines that control the interpretation of sensor data to

produce the measured quantity value.

While certain measuring instruments include internal DFAs

controlled by external input [5], such instruments usually also

produce variable output data - namely the measurement result

- either in a digital or visual representation. Therefore, such

systems fulfill the criteria of the more general Mealy automata.

Nevertheless, as illustrated by the heat meter example above,

many measuring instruments already contain simple DFAs

enabling the use of the original L∗ algorithm without having

to define additional output alphabets and resorting to the corre-

spondingly more complex L∗

M
algorithm for Mealy automata.

This approach also mirrors the fact that evaluation of software

security aspects in measuring instruments and evaluation of

the measurement functionality are usually two separate tasks

during conformity assessment of such devices. Section IV

will revisit this aspect when elaborating on a possible quality

control strategy for measuring instruments in the field.

IV. RISK-BASED CONTINUOUS QUALITY CONTROL FOR

MEASURING SYSTEMS

In [3], the authors used risk assessment to prioritize the

input alphabet for the L∗

M
algorithm applied to a Mealy

machine to ensure quick detection of potential implementation

or migration errors in evolving IT systems. In the scenario

where software is updated in measuring instruments subject to

legal control, a little more flexibility might be possible given

that mere bugfixes, which do not affect the functionality of

the instrument, should be covered by the original conformity

assessment certificate without the need to revise the certificate.

To achieve this, the focus shall not be put on the choice of the

input alphabet but rather on the state transitions δ discovered

by executing the L∗ algorithm for a new or unknown system.

A graphical representation of the automatic quality control

method proposed here may be found in Figure 3.

MARKO ESCHE ET AL.: RISK-BASED CONTINUOUS QUALITY CONTROL FOR SOFTWARE IN LEGAL METROLOGY 455



As discussed in Section II-D, performing and evaluating

a software risk assessment has become an integral part of

conformity assessment for most measuring instruments in

the EU. During such an assessment, the risks assigned to

individual threats or their subgoals can be used to derive a

list of critical state transitions that the evaluator deems to be

in violation or facilitate violation of the essential requirements

from the MID, see top-left corner of Figure 3. If necessary,

the numerical risk scores for individual threats described in

Section II-D could be used to rank new state transitions

according to their risk level. In the heat meter example from

Section III, one such critical transition would be reverting

from measurement state M back to the configuration state C,

potentially leading to modified measurement parameters while

a device is in use. The conformity assessment procedure could

also be used to perform an initial execution of the L∗ algorithm

in a known environment. The initially discovered transition

function δ and the known remaining elements of the DFA shall

together be referred to as the model Mold. Continuous repeated

learning of the DFA (right-hand side of Figure 3) will produce

potentially modified models Mnew which can be compared

against the previously learned and accepted model taking into

account the identified list of critical state transitions. As long

as no critical transition is identified, the learning loop could

be repeated indefinitely to ensure that the system still operates

within certified functional limits. The updated model represen-

tation also allows human evaluators to graphically identify the

recent software changes and determine their potential effect.

Of course, model comparison only allows inspection of the

internal DFAs of measuring instruments, neglecting to address

the measurement function itself. However, this approach is also

used in many conformity assessment bodies in the EU where

software examination (focussed on the IT security of examined

prototypes) and metrological examination of the measurement

functionality itself (addressing measurement uncertainty, re-

producibility etc.) are two separate tasks usually conducted

by two separate examiners. Therefore, it appears justifiable to

monitor changes to the protection and security measures, e.g.,

the order of transitions within internal DFAs, separately from

the measurement function itself.

If a critical modification is detected (if-then-statement in

the lower right corner of Figure 3), a manual intervention

is needed. In order to revert to a certified state, conformity

assessment for such a modified instrument must be repeated. If

problems are identified with the modified instrument during re-

assessment, potential corrective actions regarding improper use

of non-conformant measuring instruments may be required.

The workflow of the procedure will be illustrated by a detailed

example in Section V. Depending on the complexity of the

automaton, learning its representation can be computationally

expensive. Since measuring instruments usually possess rather

simple DFAs and devices like taximeters are usually inactive

for longer periods on a daily basis, applying the L∗ algorithm

to such instruments still appears feasible.

It should be noted that neither L∗ nor L∗

M
work in actual

black-box scenarios. Instead, they require the existence of a

learning
initial DFA

assessment
new conformity

through risk
prioritization
state transition

assessment

initial software
development

learning
regular DFA

N

N

modification
detected?

modification
critical?

Y

Y

comparison

Mnew

Mold

Mold ←Mnew

Fig. 3. Anticipated workflow of the risk-based testing approach. The initially
learned model Mold is continually compared with newly learned models Mnew,
unless the comparison between both models identifies a critical state transition.

teacher T who has full access to the SUT and can answer

membership and equivalence queries accordingly, see Section

II-A. To this end, it is envisioned that such a teacher T might

be developed by the instrument manufacturer and evaluated

during initial conformity assessment. Subsequently, the teacher

T could then act as a test interface for market surveillance and

inspectors, enabling them to continually monitor individual de-

vice in the field remotely until the need for manual intervention

arises.

V. EXEMPLARY EVALUATION

To illustrate the usage of the proposed risk-based ACQC

workflow for measuring instruments, a real-world exemplary

instrument will be examined in detail in Section V-A, followed

by an investigation into different types of new state transitions

in Section V-B and a discussion regarding discovery of un-

known states in Section V-C. An analysis of the example that

also identifies open issues of the approach will be provided in

Section V-D.

A. Taximeter as a complex DFA

A taximeter (as defined in Annex IX of the MID [4]) is

a ”device [that] measures duration, calculates distance on the

basis of a signal delivered by the distance signal generator.

Additionally, it calculates and displays the fare to be paid for a

trip on the basis of the calculated distance and/or the measured

duration of the trip.“ Therefore, the sensor is not part of this

type of measuring instrument and it solely performs processing

operations on the received digital distance data. This makes

456 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE II
TRANSITION FUNCTION δ FOR THE TAXIMETER EXAMPLE IN FIG 4. STATE

F REPRESENTS A FREE VEHICLE WITH NO PASSENGER, O AN OCCUPIED

VEHICLE AND M AN ONGOING MEASUREMENT. I REPRESENTS

RETRIEVAL OF FISCAL DATA AND U A SOFTWARE UPDATE. SYMBOL s

SIGNIFIES THE START OF A MEASUREMENT, e SIGNIFIES EXITING A STATE,
i INITIALIZES A FISCAL REVIEW AND u CORRESPONDS TO A SOFTWARE

UPDATE PACKAGE.

symbol

s e u i

st
a
te

F O F U I

O M F O I

M M F M M

I I F U I

U U F U U

taximeters especially suitable as a test case for the proposed

method, see Section III.

Since taxis have frequently changing customers, they usu-

ally possess DFAs that mirror the process of a customer

entering and leaving a vehicle as well as the starting and

stopping of the measurement itself. Subsequently, said DFAs

contain a state F that represents a free vehicle, whereas

the DFA enters the state O to signal that the taxi is now

occupied. This could either be triggered through a button

on the device or by means of a seat contact. For the sake

of a simple example, it shall be assumed that the price per

travelled kilometer is fixed. It should be noted, however, that

some EU member states have complex tariff structures that

take current time, number of passengers etc. into account.

If the occupied vehicle starts travelling, the internal DFA

then enters the measuring state M . To leave the state, the

customer must first pay the price, after which the driver pushes

the corresponding button to exit the measurement state. In

addition, most taximeters also possess an option to retrieve

fiscal data, such as the overall total of calculated fares and the

complete travelled distance. Both are needed to perform tax

audits for taxi companies. The corresponding fiscal inspection

state I can be entered if no measurement is running and it

should not be possible to start a measurement from this state.

Finally, some taximeters possess a functionality to perform

software updates. This functionality shall be represented by

a state U . A use case oriented input alphatbet would then

consist of the symbol s to start a measurement or transition

from the free state F to the occupied state O. The symbol

e correspondingly signals the exiting of the current state and

return to the default free state F . Input symbols i for fiscal

inspection and u for a software update indicate the command

to either perform an inspection or trigger a remote update.

The corresponding graphical representation of the complete

DFA may be found in Figure 4. The corresponding transition

function δ, which maps a current state to the next state given

a specific input symbol, is shown in Table II. As indicated in

Section II-D, all measuring instruments must be subjected to a

risk assessment as part of the necessary conformity assessment

procedure before putting such instruments on the common

OF

U

e

u

i

e
M

is,u,i
e

s

e
ue

s

s,u,i

I

s,i

u

Fig. 4. DFA representing the different states of a taximeter and the state
transitions. The taximeter states are F for a free vehicle with no passenger,
O for an occupied vehicle, M for an ongoing measurement, I for retrieval
of fiscal data and U for a software update. The input alphabet consists of the
symbol s to start a measurement, e to exit a state, i to initialize fiscal review
and u for a software update package. In the original model of the DFA shown
here, the instrument will always return to the default state F after completing
a software update in state U .

European market. Figure 1 shows the attack probability tree as

one outcome of the risk assessment procedure for a taximeter’s

software. When comparing the attack probability tree with the

example described above, it should become clear that child

node B (modification of a taximeter’s parameters) cannot be

linked to the transition function δ in Table II since there is

no corresponding state that enables parameter changes. Child

node C (replacing the software of a taximeter), however, could

be enabled by inadmissible transitions to and from the update

state U . In fact, node E (installing new software) addresses

specifically the functionality behind the update state. In this

context, one should keep in mind that breaking and replacing

of the seal (represented by child nodes F and G) do not

necessarily have to address physical hardware seals. So-called

electronic seals realized as protected logbooks are equally

common in Legal Metrology [5]. Subsequently, all additional

transitions to and from the update state U (represented by

the detected state su in Table III) would be classified as

critical during conformity assessment since such transitions

could interfere with normal processing of updates and damage

the continuous audit trail of logged software modifications.

TABLE III
TRANSITION FUNCTION δ OBTAINED BY L∗ ALGORITHM FOR THE

ORIGINAL TAXIMETER EXAMPLE FROM FIGURE 4. STATES ARE GIVEN IN

THE REPRESENTATION OBTAINED BY THE ALGORITHM, E.G., ssu,
TOGETHER WITH THEIR CLEARTEXT REPRESENTATION, E.G., M .

symbol

s e u i

st
a
te

s/F ss s su si

ss/O sss s ss si

sss/M sss s sss sss

si/I si s su si

su/U su s su su

MARKO ESCHE ET AL.: RISK-BASED CONTINUOUS QUALITY CONTROL FOR SOFTWARE IN LEGAL METROLOGY 457



OF

U

e

u

i

e
M

is,u,i

s

e
ue

s

s,u,i

I

u

i

s,e

Fig. 5. DFA representing the different states of a taximeter and the state
transitions after addition of an non-critical state change from fiscal inspection
I to the free state F (dashed arrow). While originally only the input symbol
e for exiting triggered that change, symbol s now has the same effect. In the
orignal example, symbol s had no effect on the automaton when in state I .

As explained in Section II-B the L∗ algorithm produces

a transition function δ that references the internal states of

the examined DFA by their corresponding input sequences.

To improve readability of the example, the first column of

Table III contains both the cleartext representation of the

states as well as their representations obtained by the learning

algorithm, which correspond to the symbol sequences needed

to transition to a certain state. Since s is the first symbol

tested by thevused algorithm, it denotes the default state F also

with that symbol. Consequently, all other state representations

start with that symbol, too. Section V-C will address how

representation variations may affect the interpretation of the

algorithm output and how this effect can be mitigated.

B. Non-critical and critical state changes

To test the proposed automatic detection method, the DFA

of the taximeter shall now be modified by adding another

transition from state I for fiscal inspection to the free state

F triggered by the input symbol s (originally only triggered

by symbol e), see Figure 5. Although this transition no longer

matches the original assignment linked to that input symbol,

it does not constitute a critical modification from the point

of view of conformity assessment. Following the learning

cycle proposed in Figure 3, the L∗ algorithm is applied to

the modified DFA resulting in a new version of the transition

function δ, see Table IV. As can be seen from the table,

the state representation obtained by the L∗ algorithm remains

the same, e.g., state M is still represented by the input

symbol sequence sss. The only difference between the original

transition function (see Table III) and the updated version

in Table IV may be found in the row for transitions from

state si/I , where the input symbol s now triggers a return

to state s/F . Since an added transition to this state was

deemed uncritical during conformity assessment, monitoring

of the system can be continued without the need for human

intervention.

TABLE IV
TRANSITION FUNCTION δ OBTAINED BY APPLICATION OF THE L∗

ALGORITHM TO THE TAXIMETER EXAMPLE FROM FIGURE 5 WITH A

MODIFICATION THAT ENABLES A SECOND TRANSITION FROM I TO F . THE

CORRESPONDING NEW STATE TRANSITION IS UNDERLINED.

symbol

s e u i

st
a
te

s/F ss s su si

ss/O sss s ss si

sss/M sss s sss sss

si/I s s su si

su/U su s su su

OF

U

e

u

e
M

i

s

e
ue

s

I

s,i

u

i e s,i

u,i

s

Fig. 6. DFA representing the different states of a taximeter and the state
transitions after addition of a critical state change directly from the update state
U to the measurement M (dashed arrow) if the input symbol s is received.

As a second test case, the original taximeter DFA shall now

be modified by adding a state change between update state

U and measurement state M , see Figure 6. Such a transition

was deemed critical during initial assessment of the measuring

instrument and should trigger an automatic response. The

corresponding function δ learned after application of the L∗

algorithm to the modified example is given in Table V. Again,

the linking between cleartext names of the states and the rep-

resentations found by the algorithm appears to be unchanged.

However, as can be seen from Table V, the transition function

δ now also reflects the intended additional transition from the

TABLE V
TRANSITION FUNCTION δ OBTAINED BY APPLICATION OF THE L∗

ALGORITHM TO THE TAXIMETER EXAMPLE FROM FIGURE 6 WITH A

MODIFICATION THAT ALLOWS SWITCHING TO MEASUREMENT STATE M

IMMEDIATELY AFTER A SOFTWARE UPDATE (REPRESENTED BY STATE U ).

symbol

s e u i

st
a
te

s/F ss s su si

ss/O sss s ss si

sss/M sss s sss sss

si/I si s su si

su/U sss s su su

458 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



OF

U

e

u

e
M

is,u,i
e

s

e
u

s

s,u,i

I

s,i

u

e,i

Fig. 7. DFA representing the different states of a taximeter and the state
transitions after removing a state transition from free state F to the fiscal
inspection state I (dotted arrow). Instead, the DFA remains in state F if an
input symbol i is received in that state.

update state U (represented by the symbol sequence su in

the table) to the measurement state M (represented by the

symbol sequence sss). Since any additional transition to and

from the update state was classified as critical during the

original risk assessment (see Section V-A), the algorithm now

issues a warning that triggers a repetition of the conformity as-

sessment procedure to check whether the modified instrument

still complies with legal regulations. As part of the repeated

assessment, the risk analysis would also be performed and

evaluated again. During this step, the classification of critical

state changes might have a different outcome because of addi-

tional information not available during original assessment. If

the modified software were deemed acceptable, the proposed

quality assurance algorithm would be supplied with a new list

of critical state changes and the L∗ algorithm would be started

again. If not, manual withdrawal of all affected taximeters in

the field would become necessary.

C. Necessary discovery of state correspondences

As indicated in Sections II-B and V-A, the state represen-

tations by their corresponding input symbol sequences within

the transition function δ obtained by the L∗ algorithm depend

on the order in which states are discovered. To illustrate

this fact, a modified version of the original taximeter DFA

shall be used, where the state transition from free state F
to the fiscal inspection state I has been removed, see Figure

7. The corresponding state transitions identified by the L∗

algorithm may be found in Table VI. Due to the different

order of state discovery, the fiscal inspection state I is now

no longer referenced as si but rather as ssi in the table.

Since such an assignment of a different label could potentially

affect more than one state, it becomes necessary to add a

matching step to the comparison step between consecutive

learned models Mold,Mnew included in the proposed workflow

in Figure 3. For the sake of simplicity, the matching step shall

consist of checking all possible assignments between cleartext

TABLE VI
TRANSITION FUNCTION δ OBTAINED BY APPLICATION OF THE L∗

ALGORITHM TO THE TAXIMETER EXAMPLE FROM FIGURE 7 AFTER

DELETING ONE OF THE ORIGINAL STATE TRANSITIONS FROM F TO I .

symbol

s e u i

st
a
te

s/F ss s su s

ss/O sss s ss ssi

sss/M sss s sss sss

ssi/I ssi s ss ssi

su/U su s su su

representations of DFA states and corresponding symbolic

state representations from Table II. The one assignment that

minimizes the number of new or modified state transitions

compared to the original DFA shall then be assumed to be

correct and the identified transitions shall be evaluated against

the list of critical state changes from the risk assessment. If

there is more than one assignment that minimizes the number

of new or modified state transitions, the state assignment is

no longer unambiguous and the modification will be assumed

to be critical by default. This approach will only fail under

two conditions: If the overall number of discovered states

does not match the original DFA or if sufficiently many state

changes have been implemented by the manufacturer so that

the learned transition function matches the original one, even

if the underlying functionality is different. Both cases will be

revisited in Section V-D.

D. Analysis of the Example

When comparing the transition functions obtained by the

L∗ algorithm for the non-critical and critical modifications

of the taximeter DFA (see Tables IV and V respectively),

it can be seen that the proposed risk-based quality control

approach can effectively identify and deal with both types of

modifications. Manual intervention as the result of a detected

assumed critical change will likely be able to assess the actual

impact of the modifications and ensure compliance of all

serial devices in the field. The monitoring approach might

fail, however, if several state transitions are modified or added

iteratively so that they are only examined individually by

the L∗ algorithm. Even if the combination of modifications

or additions produces effects that are in violation of legal

requirements, the current implementation would not be able

to detect these effects. However, this scenario is implicitly

already covered by today’s practice of performing periodic

reverifications of measuring instruments in use. As outlined

in Section IV, the manufacturer of the measuring instrument

would need to implement a teacher in the form of a test

interface for the proposed approach to work. Of course, it

cannot be guaranteed that such an interface actually interacts

with the internal DFA of the measuring instrument. Instead, a

dummy DFA could be implemented to hide software modifi-

cations from the automatic quality checker. During the above-

mentioned reverifications, however, it would be possible to

also practically check whether the implemented teacher T

MARKO ESCHE ET AL.: RISK-BASED CONTINUOUS QUALITY CONTROL FOR SOFTWARE IN LEGAL METROLOGY 459



correctly abstracts the measuring instrument’s DFA for the

external Learner L∗, thereby mitigating such a threat. As

illustrated in the example in Section V-C, reproducibility

of the L∗ algorithm’s output depends on the context-based

interpretation of learned state labels. The proposed brute-

force matching algorithm to identify correspondences between

cleartext state representations and learned state identifiers has

several shortcomings which shall be addressed here:

• While a brute-force approach, matching all DFA states

against all possible representations, is guaranteed to find

one or more optimal matches, the approach might become

computationally complex if large DFAs are monitored.

Breadth-first search algorithms should be able to provide

quicker solutions without missing any transition modifi-

cations.

• As discussed in Section V-C, the number of discovered

states does not necessarily have to match the number

of states in the original DFA, even after application of

the DFA minimization algorithm. In such a case, the

currently investigated approach would always classify the

modification as critical, even if a state has been removed

that is not legally regulated.

• It is theoretically possible to implement sufficiently many

state changes simultaneously that cannot be detected

because the learned transition function δ contains the

same number of states and matching state transitions as

the original transition function.

It should be noted again that the current approach only

focuses on simple state transitions within DFAs while the

behavior of more complex instruments than heat meters or

taximeters will likely be better characterized by the more gen-

eral Mealy automata, see Section III. Using Mealy automata

would enable checking of input and ouput behavior of such

systems, thus ensuring a wider range of useful application

scenarios. Investigation into an approach using the adapted

L∗

M
algorithm will, therefore, form the basis for further

work. Similarly, machine learning algorithms such as the one

described by Yan, Tang, Luo, Fu, and Zhang in [16] are

already able to perform anomaly detection for complex IT

systems. Due to the similarities between such systems and

measuring instruments, similar approaches might also be able

to model and monitor the software of measuring instruments

to some extent, while potentially bridging the gap between

automata models and mathematical models for measurements

themselves. Once more elaborate quality control approaches

for software in measuring instruments are available and have

proven their reliability, it might be possible to replace manda-

tory periodic reverifications with risk-based reverifications

based on the detected behavior of individual devices. If proven

useful, such quality control approaches could be added as an

acceptable solution for dealing with software modifications

in the currently established technical interpretation of the

MID, namely the WELMEC 7.2 Software Guide [5]. Such an

acceptable solution could facilitate the uptake of the method

and harmonize the approach across the EU if needed.

VI. SUMMARY

In this paper, a new risk-based quality control approach

for measuring instruments in legal metrology was proposed

as a high-level attempt to realize functional identification for

software of such systems. The approach is based on work

published in [2] as well as [3] and uses the L∗ algorithm

to monitor changes in the DFAs of measuring instruments

in the field. To this end, the outcome of the mandatory risk

assessment procedure for regulated measuring instruments is

used to identify critical state transitions to be checked if

software changes occur. Based on an example for a DFA in a

taximeter, the approach was evaluated regarding the detection

of non-critical and critical state changes, even in light of vary-

ing conditions like modified state representations. To mitigate

potential effects of varying state representations, a brute-force

matching algorithm was added to the proposed method that can

effectively reduce the number of falsely identified critical state

transitions. This proof of concept has shown that automatic

quality control of measuring instruments is indeed possible if

the SUT fulfills certain preconditions, such as a clear separa-

tion between measurement function and internal DFA. Manual

intervention in case of doubt and periodic reverifications are

still necessary to cover all eventualities. While the method

requires instrument manufacturers to implement a test interface

in their devices, they would benefit from the possiblity of

issuing bugfixes to their software without having to go through

conformity assessment by default. Similarly, conformity as-

sessment bodies would have to check said interfaces initially,

but would benefit when updates are deemed to be in line

with the originally certified instrument functionality, thus

avoiding repetition of software examinations. Finally, market

surveillance authorities and inspectors in Legal Metrology

could use the data provided by the L∗ algorithm to assess

modifications in devices in the field to a certain extent without

the need to be on site. It is envisioned that the approach

would work in any industry sector where software systems

are used whose compliance with specific requirements must be

checked by external authorities in the field. Further work will

focus on validating the current approach with additional, more

realistic practical test cases (also outside legal metrology)

and optimizing the matching algorithm between learned and

known state representations. Extending the approach from

DFAs to more general Mealy automata will hopefully pave

the way towards an actual functional identication mechanism

for software in measuring instruments since it would also

encompass the output language of devices in the field rather

than simply monitor state transitions.

REFERENCES

[1] M. Jang, Linux Patch Management: Keeping Linux Systems Up To Date,
1st ed. Prentice Hall, Jan. 2006. ISBN 978-0132366755

[2] S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer,
“Active continuous quality control,” in Proceedings of the International

Symposium on Component-Based Software Engineering. ACM, Jun.
2013. doi: 10.1145/2465449.2465469 pp. 111–120.

460 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



[3] J. Neubauer, S. Windmüller, and B. Steffen, “Risk-based testing via
active continuous quality control,” International Journal on Software

Tools for Technology Transfer, vol. 16, pp. 569–591, 2014. doi:
10.1007/s10009-014-0321-6

[4] EC, “Directive 2014/32/EU of the European Parliament and of the
Council of 26 February 2014 on the harmonisation of the laws of
the Member States relating to the making available on the market
of measuring instruments,” European Union, Council of the European
Union; European Parliament, Directive, February 2014.

[5] “WELMEC 7.2 Software Guide,” European cooperation in legal metrol-
ogy, WELMEC Secretariat, Braunschweig, Standard, Mar. 2022.

[6] M. Sipser, Introduction to the theory of computation, 2nd ed. Boston,
Massachusetts: Thomson, 2006. ISBN 0-534-95097-3

[7] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell

System Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955. doi:
10.1002/j.1538-7305.1955.tb03788.x

[8] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, no. 2, pp. 87–106, 1987. doi:
10.1016/0890-5401(87)90052-6

[9] M. Shahbaz and R. Groz, “Inferring mealy machines,” in FM 2009:

Formal Methods, A. Cavalcanti and D. R. Dams, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-
05089-3_14. ISBN 978-3-642-05089-3 pp. 207–222.

[10] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis

- The CORAS Approach. 0314 Oslo, Norway: Springer, 2011. ISBN
978-3-642-12323-8

[11] M. Esche, F. Grasso Toro, and F. Thiel, “Representation of attacker
motivation in software risk assessment using attack probability trees,”
in Proceedings of the Federated Conference on Computer Science and

Information Systems, Prague, Czech Republic, September 2017. doi:
10.15439/2017F112 pp. 763–771.

[12] ISO/IEC, “ISO/IEC 27005:2011(e) Information technology - Security
techniques - Information security risk management,” International Or-
ganization for Standardization, Geneva, CH, Standard, June 2011.

[13] ——, “ISO/IEC 18045:2008 Common Methodology for Information
Technology Security Evaluation,” International Organization for Stan-
dardization, Geneva, CH, Standard, September 2008, Version 3.1 Revi-
sion 4.

[14] M. Esche and F. Grasso Toro, “Developing defense strategies from attack
probability trees in software risk assessment,” in Proceedings of the

Conference on Computer Science and Information Systems, 2020. doi:
10.15439/2020F21 pp. 527–536.

[15] “Guide to the expression of uncertainty in measurement - part 6: De-
veloping and using measurement models,” Joint Committee for Guides
in Metrology (JCGM), BIPM, Sèvres Cedex FRANCE, techreport, Mar.
2020.

[16] S. Yan, B. Tang, J. Luo, X. Fu, and X. Zhang, “Unsupervised anomaly
detection with variational auto-encoder and local outliers factor for kpis,”
in 2021 IEEE Intl. Conf. on Parallel & Distributed Processing with

Applications, Big Data & Cloud Computing, Sustainable Computing &

Communications, Social Computing & Networking. IEEE, 2021, pp.
476–483.

MARKO ESCHE ET AL.: RISK-BASED CONTINUOUS QUALITY CONTROL FOR SOFTWARE IN LEGAL METROLOGY 461


