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Abstract—A polynomial-size mixed integer linear program-
ming model for the Precedence-Constrained Minimum-Cost Ar-
borescence Problem with Waiting-Times was recently proposed
in the literature, that uses a smaller number of variables and
constraints compared to previously proposed polynomial-size
models. In this work, we extend this model with constraint
programming constructs to further enhance its performance. An
extensive computational study support that modern constraint
programming solvers are the best tool available at solving the
models proposed. Several improvements to state-of-the-art results
are finally reported.

Index Terms—Combinatorial Optimization; Arborescences;
Precedence-Constraints.

I. INTRODUCTION

HE Minimum-Cost Arborescence (MCA) problem in-

volves finding a directed minimum-cost spanning tree,
rooted at vertex 7, in a given input directed graph. Jack
Edmonds [1], and Yoeng-Jin Chu and Tseng-Hong Liu [2]
independently introduced the first polynomial time algorithm
for solving the problem. Gabow and Tarjan [3] improved the
running time of the algorithm by using disjoint-sets and a
special implementation of Fibonacci heaps.

Several variations of the MCA problem with different
objective function and/or constraints were introduced in the lit-
erature since its introduction. Given a finite resource associated
with each vertex in the input graph, the Resource-Constrained
Minimum-Weight Arborescence problem [4] is an NP-hard
problem which asks to find an arborescence with minimum
total cost where the sum of the costs of outgoing arcs from
each vertex is at most equal to the resource of that vertex.
Given an integer () and non-negative integer vertex demand
q; associated with each vertex, the Capacitated Minimum
Spanning Tree problem [5] is an N'P-hard problem which
asks to find a directed minimum spanning tree rooted at 7,
such that the sum of the weights of the vertices in any subtree
off the root is at most ). Given a weighted directed acyclic
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graph with each vertex having a specified color from a set
of colors, the Maximum Colorful Arborescence problem [6]
is an A'P-hard problem which asks to find an arborescence
of maximum weight, in which no color appears more than
once. Given an integer rank associated with each vertex, the
Restricted Fathers Tree problem [7] asks to find a minimum-
cost arborescence rooted at 7, such that the path between each
vertex and the root contains only vertices with same rank or
higher.

Constraint programming (CP) is paradigm for solving
combinatorial problems by representing them as constraint
satisfaction problems (CSP) [8]. A CSP is represented as a set
of variables each with a defined domain of values, and a set
of relations/constraints on the subsets of these variables. A CP
solver takes a CSP and finds an assignment to all the variables
that satisfies the constraints, and can also extend the problem
to finding optimal solutions according to an optimization
criteria. A CP solver searches the solution space systematically
using a branch-and-bound algorithm with inference techniques
which consists of propagating the information contained in
one constraint to the neighboring constraints. Such techniques
reduce the size of the solution space that needs to be explored
[9]. CP has been used to solve a wide range of problems
in the literature. Hande [10] proposed a CP model for the
Open Vehicle Routing problem with Heterogeneous Vehicle
Fleet (HFOVRP). In [10] the CP model is compared with
a mixed-integer linear programming (MILP) model of the
HFOVRP, and they showed that the CP model is effective
for providing good-quality solutions for small-sized instances
of the HFOVRP in short computational times compared to
the MILP model. Kasapidis et al. [11] presented a MILP
model and a CP model for the Multi-Resource Flexible Job-
Shop Scheduling problem with Arbitrary Precedence Graphs.
The computational experiments conducted in [11] has shown
that the CP model is more effective and achieves the best
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Fig. 1: Example of an instance solved as a PCMCA-WT. The graph on left shows the instance with its respective arc costs,
and the precedence relationship (1,3) € R marked as a dashed arrow. The graph on the right shows an optimal PCMCA-WT

solution of cost 8.

results compared to the MILP model, although more time-
consuming on some instances. Kirac et al. [12] proposed a
CP approach for solving the Team Orienteering problem with
Time Windows and Mandatory Visits, and they showed that
the CP-based approach finds 99 of the best-known solutions
and explores 64 new best-known solutions for the benchmark
instances. Kizilay et al. [13] proposed a novel CP model for the
Mixed-Blocking Permutation Flow Shop Scheduling problem
with Batch Delivery that minimizes the total tardiness and
batch cost. The results of their study has shown that due to the
complexity of the problem, the developed CP model can solve
only small-sized instances in reasonable computational time.
Montemanni and Dell’ Amico [14] proposed a CP model for
the Parallel Drone Scheduling Traveling Salesman problem,
and showed that by exploiting multi-threading computation,
the method was able to optimally solve all the instances
considered in the literature.

The Precedence-Constrained Minimum-Cost Arborescence
(PCMCA) problem is an NP-hard problem [15] that was first
introduced by Dell’Amico et al. [16]. The PCMCA problem
is an extension to the MCA problem, in which precedence
constraints must be satisfied as follows. Given a set R of
ordered pairs of vertices, then for each precedence relationship
(s,t) € R, a path in the solution which covers both s and ¢,
must visit vertex s before visiting vertex ¢. The objective is
to find an arborescence of minimum total cost satisfying the
precedence constraints. The PCMCA problem has applications
in the design of commodity distribution networks where cer-
tain paths are not allowed in the network due to logistical
constraints [16]. Several MILP models of the problem were
proposed in [15], [16], [17].

The Precedence-Constrained Minimum-Cost Arborescence
Problem with Waiting-Times (PCMCA-WT) is an NP-hard
problem that was recently introduced by Chou et al. [15].
The PCMCA-WT is a variation on the PCMCA problem
characterized by the following differences. Given arc costs
indicating the time required to traverse an arc, suppose there
is a flow which starts at the root vertex r, that must reach every

vertex in an arborescence 1. For each precedence relationship
(s,t) € R, the flow must enter vertex s at the same time step,
or before entering vertex ¢, which means that the flow can stop
at any vertex and wait. The waiting time at vertex ¢ is defined
as the difference between the time at which the flow enters s
and the time at which the flow reaches ¢. The objective of the
problem is to find an arborescence 7' of minimum total cost,
plus total waiting times, where the flow never enters s after
entering ¢ for all (s,t) € R. Several MILP models for solving
the problem were proposed in [15].

The PCMCA-WT problem can be formally defined as
follows. Given a directed graph G = (V, A, R,r), where
V = {1,...,n} is the set of vertices, A C V x V is the
set of arcs, R C V' x V is the set of precedence relationships,
and r € V is the root of the arborescence. Let c;; be a cost
associated with each arc (i,7) € A which represents the time
required for the flow to travel from vertex ¢ to vertex j. Let
d; be the time step at which the flow enters vertex j € V, and
let w; be the waiting time at vertex j € V. The objective of
the problem is to find an arborescence 1" rooted at vertex r,
that has a minimum total cost plus total waiting time, where
the flow never enters ¢ before entering s for all (s,t) € R (i.e.
d; > dg for all (s,t) € R).

Figure 1 presents an example of an instance solved as
a PCMCA-WT. The instance graph (left graph) shows the
precedence relationship (1,3) € R marked as a dashed arrow,
while the solution graph (right graph) shows an optimal
solution of that instance, with the corresponding d; and w;
value written next to each vertex. The graph on the right shows
an optimal PCMCA-WT solution of cost 8 (sum of all the arcs
cost plus total waiting time at each vertex), with a resulting
waiting time of value 1 at vertex 3, since dy = 4, while d3 = 3
and (1,3) € R.

The rest of this paper is organized as follows. Section II
introduces the MILP model used in this study. Section III in-
troduces a CP model that extends the MILP model introduced
in Section II by introducing redundant constraints for a subset
of the original inequalities and describing them in terms of
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CP constructs, in order to further exploit the capabilities of
the CP solver. Section IV summarizes computational results,
while some conclusions are outlined in Section V.

II. A MIXED INTEGER LINEAR PROGRAMMING MODEL

A polynomial-size MILP model for the PCMCA-WT was
recently proposed by Dell’Amico et al. [18]. The model
extends a classical formulation for the MCA problem [19],
through the addition of precedence-enforcing constraints. The
precedence-enforcing constraints detect a precedence violating
path by propagating a value along all the paths of the solution
starting from ¢ for all (s,t) € R [16], [17].

A different version of the model that contains a smaller
number of variables and constraints was also proposed in [18].
The reduction is achieved by exploiting the special property
of the PCMCA-WT, that is for any precedence relationship
(s,t) € R, the flow must enter vertex ¢ at the same time step
or after entering vertex s. This implies that it is possible to
remove a precedence relationship (s,¢) € R when the input
graph does not contain a zero-cost path that starts from ¢ and
ends in s. The reduced model for the PCMCA-WT proposed
n [18] is summarized as follows. For further details the reader
can refer to [18].

Let x;; be a variable associated with every arc (i,j) € A
such that z;; = 1 if (¢,j) € T, and O otherwise. Let y; be
a variable associated with every vertex ¢ € V that indicates
the order in which vertex ¢ is visited on the path connecting
vertex ¢ to the root r. Let u§ be a variable associated with
every vertex j € V, and vertex t € V where ¢ is part of a
precedence relationship (i.e. 3(s,t) € R). Let d; be the time
at which the flow enters vertex j € V, and let w; be the
waiting time before the flow enters vertex j. Let P;; C A be
a simple directed path that starts from ¢ and ends at j, and
let ¢(Pij) = >_(; jyep Cij be the cost of that path. For each
seV,let Vs ={t € V\{r}|3(s,t) € R,c(Ps) = 0}. The
PCMCA-WT can be formulated as the following MILP model.

minimize Z CijTij + Zwi €))
(i,j)€A eV
sti Y wy=1 Vie V\{r} ()
(i,j)€A
yi —y; + 1 <n(l — i) V(i,j)eA:j#r (3)
ul =0 Vis,t) eR:teV, (4)
ul =1 vteVy (5
uf—uf —xi; > —1 V(s,t) e R:t eV, (i,j) €A (6)
d.=0 (N
Wy, = 3)
dj >di — M+ (M + cij)xs5 V(i,5) €A (9)
w; >d; —d; — M+ (M — ¢ij)x;; Y(i,j) € A (10)
dy > ds Y(s,t) € R (11)
zi; € {0,1} V(i,j)e A (12)
y; >0 VieV (13)

VteVs,jeV (14)
vieV (15)

The set of constraints (2) impose that every vertex excluding
the root must have exactly one parent. Constraints (3) are
the subtour elimination constraints, which enforce that any
feasible solution is acyclic. The set of constraints (2) and (3)
guarantee that any feasible solution is an arborescence rooted
at vertex r € V. Constraints (4) and (5) fix the values of
u! and u! to 0 and 1 respectively, for all (s,t) € R, Where
t € V. Constraints (6) impose that if x;; = 1 then ut > u
(see Figure 2 for further explanation). Constraint (7) sets the
time step at which the flow enters the root to 0. Constraint (8)
sets the waiting time at the root 7 to be equal to 0. Constraints
(9) impose that when arc (7,j) € A is selected to be part of
the solution, then the flow enters vertex j at a time step that is
greater than or equal to the time step at which the flow enters
vertex ¢ plus ¢;;. Constraints (10) enforce that the waiting time
at vertex j is greater than or equal to the difference between
the time at which the flow enters vertex j and the time at which
the flow enters vertex i plus c¢;;. Constraints (11) enforce that
the time at which the flow enters vertex ¢ is greater than or
equal to the time at which the flow enters vertex s for all
(s,t) € R. Finally, constraints (12)-(15) define the domain of
the variables, and M is an upper bound on the value of an
optimal solution.

(4) s ul =1
ul =1 uf >1 ub>1  (6) »ul >0
@111—109612—1/\30%2 Q

~

Fig. 2: An example on how a precedence relationship (s,t) €
R can be enforced by propagating the value of u! along every
path starting from ¢, and if the solution contains a path from
t to s, then we are propagating a value of one to vertex s
and imposing that u! > 1. However, we enforce u! = 0,
and therefore the solution violates the precedence relationship

(s,t) € R.

III. A NEwW CONSTRAINT PROGRAMMING MODEL

The CP solver used in this study, CP-SAT [20] is a solver
that utilizes integer programming techniques (linear relaxation,
presolve, cuts, and branching heuristics) to enhance its perfor-
mance [21] and has recently been shown to successfully deal
with different combinatorial optimization problems [22], [23].
Furthermore, the computational results in Section IV show
that for the model considered in this work, the CP solver
outperforms the MILP solver on a subset of the instances con-
sidered in terms of achieved average optimality gap, solution
time, and the quality of the solutions obtained. Therefore, we
introduce a CP model in this section that extend the MILP
model introduced in Section II by adding the set of constraints
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(3) and (6) formulated as logical constraints, and merging the
two sets of constraints (9) and (10) into one set of logical
constraints. By doing so, we further exploit the capabilities
of the CP solver. Since the CP solver used utilizes integer
programming techniques, it is beneficial to include both the
logical and linear form of the constraints in the model, so
that when the logical constraint is not enforced by the SAT
solver (i.e. the logical constraint is not included in the model
by the solver), their equivalent linear constraint is included in
the program when computing its linear relaxation.

Using a set of implication constraints which enforce the
implied constraint when the value of the variable is true, the
MILP model introduced in Section II can be extended using
the following set of constraints.

Ty = Y=y +1 V(i,j)eA:j#r (16)
T = uz > ul VieVy,j e V\{r} (17)
Tiy; = dj =d; + wj + Cij5 V(Z,]) cA (18

Constraints (16) are the subtour elimination constraints
modelling the nonlinear relationship y; = (y; + 1)x;;. Con-
straints (17) are the precedence-enforcing constraints modeling
the nonlinear relationship u§ > ulz;;. Constraints (18) com-
bine the two constraints (9) and (10) into a single equality
constraint that model the nonlinear relationship (d; — d; —
w; — ¢i5)x;; = 0. Note that variables d; and w; are defined as
integers (compared to the MILP model), since a CP solver only
accepts integer variables and coefficients. This means that c;;
for all (¢, j) € A should be integer or to be discretized before
solving the model. The value of ¢;; can be discretized by
multiplying every c;; by a constant k, and then considering
only the integer part of the result. In order to compute the
correct solution cost, the objective function value should be
divided by k. A higher k£ value leads to higher numerical
precision, whereas a low k value leads to a lower numerical
precision and thus faster execution. Therefore, a k value which
balances the two factors should be considered. In this study
we only consider instances with integer coefficients. However,
the interested reader can refer to [14] where the authors show
how changing the k£ value can affect the computation time.

IV. EXPERIMENTAL RESULTS

The computational experiments are based on the bench-
mark instances of TSPLIB [24], SOPLIB [25], [26], and
COMPILERS [27], originally proposed for the Sequential
Ordering Problem (SOP) [28], [29], [30]. The benchmark
instances are the same instances previously adopted in [15],
[18] for the PCMCA-WT with the following characteristics.
The benchmark sets contain a total of 116 instances (81 open
instances) ranging in size between 9 and 700 vertices, with
an average of 248 vertices. Finally, all instances have integer
coefficients (i.e. the weight of the arcs of the cost graph is
integer). All the experiments are performed on an Intel Xeon
Platinum 8375C processor with 8 cores running at 2.9 GHz
with 16 GB of RAM. For all instances an upper bound on
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the value of the optimal solution (i.e. M), is set to the value
of the solution cost of solving the instance as a SOP, using a
nearest neighbor algorithm [27]. This is a valid upper bound
for the cost of the optimal solution of the PCMCA-WT, being
a feasible solution for the SOP a simple directed path that
includes all the vertices of the graph, such that ¢ never precede
sforall (s,t) € R. This implies that d; > d, for all (s,t) € R,
with a waiting time equal to zero at each vertex by definition.

The computational results are generated using two solvers:
a MILP Solver and a CP Solver. The MILP Solver is CPLEX
v12.8 [31], and is run with 8 thread standard B&C algorithm,
with the two parameters NodeSelect and MIP emphasis are set
to BestBound and MIPEmphasisOptimality respectively. The
CP Solver is Google OR-Tools [20] v9.5 CP-SAT solver, and
is run with its default parameters with all 8 threads available
are allocated for the solver. A time limit of 1 hour is set on the
computation time of both solvers. For the rest of this section
we will be referring to the MILP model introduced in Section
II as BM (Basic Model), while the CP model introduced in
Section III will be referred to as RM (Reinforced Model).

Tables I, IT and III show the complete results of each model
and solving method, where we report the following. For each
instance, columns Name and Size report the name and size
of the instance. Column p(R) reports the density of arcs in
the set of precedence relationships computed as %.
Column Best-Known reports the best-known bounds on the
optimal solution for each instance as [LB,UDB], where LB
is the lower bound on the optimal solution, and UB is the
best-known solution. The best-known solutions are obtained
from the results appeared in [18], generated using the same
computational setup and configuration used in this study.
For each model solved with the corresponding solver, we
report the following columns. Columns LB and UB report
the lower/upper bound on the optimal solution achieved by
the corresponding solving method of that model. Column
Gap reports the optimality gap computed as UB;J;BLB. Column
Branches reports the number of branches created in the search-
decision tree, and is only reported when the models are solved
with the CP Solver. Finally, column Time [s] reports the
solution time in seconds and is only reported for the instances
that are solved optimally within the time limit. In the tables,
bold numbers indicate that a new best-known lower/upper
bound is found.

A. Multi-threading Computation

The performance of CP solvers can often be greatly im-
proved by the use of multi-threading computation, usually
more than MILP solvers due to the different approaches used
to solve the mathematical model. In this section, we assess the
effect of multi-threading on the performance of the CP Solver
and MILP Solver at solving the model introduced in Section II.
The four instances ft53.1, prob.42, ESC78, and jpeg.4753.54
were selected as both solvers are able to optimally solve those
instances within the time limit using 8 threads.

Figure 3 reports the time required to optimally solve the
different instances considered using a number of threads
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Fig. 3: Time required by the MILP Solver and CP Solver to optimally solve different instances with different number of
threads. A time of 60 minutes reported means that the respective solver was not able to optimally solve the instance within

the time limit.

between 1 and 8. In the figure, a time of 60 minuets reported
means that the respective solver was not able to optimally
solve the instance within the time limit of one hour.

The results reported in Figure 3 show that the CP Solver
substantially benefits from the use of multi-threading compu-
tation. Furthermore, the results show that the CP Solver is
not able to optimally solve three out of four instances within
the time limit when less than four threads are allocated for the
solver. However, when allocating four or more threads, the CP
Solver is able to optimally solve those instances. Furthermore,
a drastic change in performance can be observed between four
and five threads, reaching a speedup up to 93.5%. On the other
hand, the MILP Solver does not seem to benefit as much from
multi-threading for the instances considered, possibly due to
the overhead of task distribution, and the waiting time incurred
by the variety of methods run in parallel. Furthermore, we
can notice less consistent gain when increasing the number of
threads used by the MILP Solver compared to the CP Solver. It
should be noted that the differences between the two solvers
might be less extreme when more challenging instances are
considered, but this is difficult to investigate as most instances
are hard to solve optimally, even with longer computational
time limit (hours) is allowed, and with eight threads allocated

for the solvers.

In conclusion, the CP Solver appears to greatly benefit from
multi-threading computation; therefore, all the experiments
reported in this section were run on eight cores.

B. Analysis of the Results

In this section, we first compare and discuss the results
achieved by the MILP and CP Solvers by solving the model
BM. We then compare and discuss the results achieved by the
CP Solver by solving the models BM and RM.

TABLE IV: Summary of the results achieved by solving the
model BM with the MILP Solver and CP Solver.

MILP Solver CP Solver
Average optimality gap 0.340 0.301
Average solution time 297.6 89.7
New best-known lower bounds 0 9
New best-known upper bounds 0 19
New optimal solution 0 1

Table IV summarizes the results of solving the model BM
by the MILP Solver and CP Solver, where we report the fol-
lowing. The Average optimality gap is computed with respect
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to all the instances where both solvers find a feasible/optimal
solution before reaching the time limit when solving the
model BM. The Average solution time is computed on all
the instances that are solved optimally by the both solvers.
The New best-known lower bounds and New best-known upper
bounds rows report the number of instances where solving the
model by each solver resulted in an improved lower or upper
bound. Finally, New optimal solution row reports the number
of instances where an optimal solution is found for an instance
that was previously open, by each solver.

Considering the model BM, the MILP Solver achieves an
average optimality gap of 0.340 across all the instances, but
fails to solve a single instance (marked bold in the table)
as it runs out of memory while solving the linear relaxation
of the model. On the other hand, the CP Solver achieves an
average optimality gap of 0.301 (a 11.5% improvement) when
excluding the instance that is not solved by the MILP Solver,
and an average optimality gap of 0.298 (a 12.4% improvement)
across all the instances. By further inspecting the results, we
notice that the CP Solver achieves a smaller average optimality
gap within the time limit for instances with density less than
0.85 and size smaller than 400.

For a total of 27 instances that are optimally solved by
both solvers, the MILP Solver has an average solution time of
297.6 seconds, while the CP Solver has an average solution
time of 89.7 seconds (a 69.9% improvement). We should note
that the CP Solver generally finds the optimal solution in less
time compared to the MILP Solver on small to medium sized
instances.

Finally, out of a total of 81 open instances, the CP Solver is
able to find an improved lower bound for 9 instances (11.1%),
an improved upper bound for 19 instances (23.5%), and finds
the optimal solution of one instance that was previously open.
On the other hand, the MILP Solver is not able to improve the
best-known solution of any instance. Based on the experiments
performed on the model BM presented in Section II, we can
conclude that the CP Solver has an overall better performance
at solving the given MILP model.

TABLE V: Summary of the results achieved by solving each
model with the CP Solver.

BM RM
Average optimality gap 0.298  0.287
Average solution time 146.9 99.4
New best-known lower bounds 9 4
New best-known upper bounds 19 27
New optimal solution 1 1

The rest of this section discusses the results achieved by the
CP Solver by solving the two models BM and RM. The results
are summarized in Table V where we report the following.
The average optimality gap reports the Average optimality gap
of all the instances where the solver finds a feasible/optimal
solution before reaching the time limit by solving both models.
The Average solution time reports the average solution time
in seconds of all the instances that are solved optimally by

the solver when solving both models. The New best-known
lower bounds and New best-known upper bounds rows report
the number of instances where solving each model resulted in
an improved lower/upper bound. Finally, New optimal solution
report the number of instances where an optimal solution is
found for an instance that was previously open.

In terms of achieved average optimality gap, the CP Solver
achieves an average optimality gap of 0.287 (a 3.7% improve-
ment) when solving the model RM, compared to solving the
model BM. Furthermore, for a total of 36 instances that are
solved optimally when solving both models, the CP Solver
generates 57.9% less branches in the search-decision tree when
solving the model RM compared to solving the model BM. By
further inspecting the results, we notice that the CP Solver
achieves a smaller average optimality gap within the time
limit when solving the model RM for instances with density
less than 0.89 and size less than 500, which means that the
CP Solver performs better on a larger subset of the instances
compared to solving the model BM.

For a total of 36 instances that are solved optimaly by
the CP Solver when solving both models, the CP Solver has
an average solution time of 146.9 seconds when solving the
model BM, and an average solution time of 99.4 seconds (a
32.4% improvement) when solving the model RM.

Finally, out of a total of 81 open instances, when solving
the model BM the CP Solver finds an improved lower bound
for 9 instances (11.1%), an improved upper bound for 19
instances (23.5%), and finds the optimal solution for one
instances that was previously open. On the other hand, when
solving the model RM the CP Solver finds an improved
lower bound for 4 instances (4.9%), an improved upper bound
for 27 instances (33.3%), and finds the optimal solution for
the same instance that was previously open. Based on the
computational experiments and the improvements in the results
achieved by the CP Solver when solving the model RM, we can
conclude that duplicating the constraints can indeed improve
the performance of the solver for the given model.

V. CONCLUSIONS

The computational experiments has shown that the CP
Solver outperforms the MILP Solver at solving instances with
sizes up to 500 with precedence relationships density that is
less than 0.89. Furthermore, the CP Solver achieves a smaller
average optimality gap and solution time compared to the
MILP Solver. By adding constraint programming constructs
to the MILP model, we were able to further exploit the
capabilities of the CP Solver, and improve its performance
at solving the instances. In terms of solution quality, and out
of a total of 81 open instances, the CP Solver was able to find
the optimal solution to an instance that was previously open,
provide new best-known lower bounds for 13 instances, and
establish new best-known solution for 46 instances. Based on
the computational experiments performed, we have shown that
the CP Solver performs better on average for the given models.
Furthermore, duplicating constraints by defining them in their
linear form and logical form further pushes the performance
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of the CP Solver. Future work will consider investigating new
valid constraints/inequalities for the PCMCA-WT that can be
used within a constraint programming paradigm to further
utilize its potential.
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