
Algorithmic Handling of Time Expanded Networks

Alain Quilliot and Jose-Luis Figueroa

LIMOS Lab.

UCA, CNRS and EMSE

Clermont-Ferrand, France

Email: alain.quilliot@uca.fr

Hélène Toussaint

and Annegret Wagler

LIMOS Lab.

Clermont-Ferrand, France

Abstract—Time Expanded Networks, built by considering the
nodes of a base network over some time space, are powerful
tools for the formulation of problems involving synchronization
mechanisms. Those mechanisms may for instance be related to
the interaction between resource production and consumption
or between routing and scheduling. Still, in most cases, deriving
algorithms from those formulations is difficult, due to both the
size of resulting network structure and the fact that reducing this
size through rounding techniques tends to induce uncontrolled
error propagation. We address here this algorithmic issue, while
proposing a generic decomposition scheme which works by
first skipping the temporal dimension of the problem and next
expanding resulting projected solution into a full solution of the
problem set on the time expanded network.

I. INTRODUCTION

O
NE derives a Time Expanded Network (TE-Network)

NTIME (see [11]) from a base network N = (X,A) and

a time space TIME, by considering all the copies (x, t) of

the nodes x of N at the different instants t of TIME. Then,

an arc of NTIME is either an arc
(

(x, t), (y, t + δ)
)

which

corresponds to the time required to traverse an arc (x, y) of N
while starting from x at time t, or an arc

(

(x, t), (x, t′)
)

with

t < t′, which expresses some kind of standby in x from time

t to time t′. It may happen that the traversal time δ depends

on t. Note that the time space TIME may be either discrete

or continuous.

Time Expanded Networks are powerful modeling tools

for problems involving synchronization, between for instance

resource production and consumption or between routing and

scheduling. They are also well-fitted to deal with the time-

dependence of a network. They were introduced by Ford and

Fulkerson (see [11]) in order to cast such problems into the

network flow framework. Some time later, concerns raised

by time dependence and synchronization issues motivated the

notion of dynamic network (see [2], [16]). They next gave

rise at the beginning of the 80’s to flow over time models,

where flow values are trajectories, that means functions from

a time space TIME onto real or integer numbers. Those

functions may be subject to constraints like continuity or

differentiability, and so the flow over time framework is

well-fitted to the management of problems involving gas

or power production and distribution. Years 1990/2000 also

registered applications of these notions to evacuation planning

(see [9]). At this time, authors adapted standard algorithms

(min-cost flow and max-flow algorithms) and brought insights

about the link between TE-Networks and the flow over time

models (see [13]). They addressed complexity issues and

stated some polynomial approximation scheme (PTAS) results.

In the years 2010, authors came back to the original TE-

Network framework. They did it with the purpose of handling

multi-commodity flow models (see [1]) like those which may

derive from transportation (see [5]) and industrial scheduling

problems (see [18], [3]). They tried to take advantage of the

improvement of both computers and Mixed Integer Linear

Programming (MILP) libraries in order to directly implement

some transportation models on those libraries (see [6], [17],

[21]). They coped with the size issue by trying to adapt

standard column generation and branch and cut techniques

(see [7]), but faced difficulties as soon as the size of the

time space increased. All those contributions suggested that

the Time Expanded Network might be very efficient to deal

with scheduling/routing problems involving synchronization

(see [15], [14]) requirement or time dependence features

(see [20]) .

Actually, though the TE-Network framework is good for

modeling, it often fails in providing efficient algorithms. The

fact is not only that the size of the TE-Network NTIME

increases very fast with the size of the time space TIME,

but also that controlling this size through rounding techniques

induces strong error propagation. So our purpose here is

to bypass those difficulties by applying a Project/Expand

decomposition scheme. We first search (Project step) for

a good projected solution on the base graph N , and next

(Expand step) turn this projected solution into a full TE-

Network solution. We started addressing the Project step in a

former contribution (see [12]), while setting a Projected model

provided with Extended No-Subtour constraints enhancing its

ability to yield full feasible solutions. We are now going to

first reinforce this Projected model with constraints which

guaranty the feasibility of the Expand process, and next derive

from resulting projected solution a formal bi-level setting of

related Expand problem. We shall deal with this problem

in both an exact way and a heuristic way, by introducing a

flexible active sub-network of NTIME and tuning this sub-

network until getting a full TE-Network solution. Though

our approach is generic, we shall refer here, for the sake

of understanding and with the purpose of testing, to a 2-

commodity flow model related to the management of an item

balancing process (see [8] and [17]).

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 667–676

DOI: 10.15439/2023F6717

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 667 Thematic track: Computational Optimization



The paper is organized as follows. In Section 2, we first

present our reference TE-Network model, related to some

item balancing problem, and next the projected model which

derives from this TE-Network model. In Section 3 we set the

Expand problem, characterize its feasibility and reinforce the

projected model with constraints which ensure the feasibility

of resulting Expand problem. In Section 4 we propose a

bi-level formulation of this Expand problem and in Section

5 we present an exact MILP model together with heuristic

algorithms which deal with the Expand problem. We conclude

by providing some numerical experiments and discussing some

open questions.

II. A TE-NETWORK MODEL FOR THE ITEM RELOCATION

PROBLEM

We refer here, for the sake of understanding, to a specific

Item Balancing Problem (IBP). So, we consider here a transit

network N = (X,A), together with a Depot node (see Figure

1). Every arc is provided with a time value Tx,y and a cost

value Cx,y . Also:

• We set T = (T(x,y), (x, y) ∈ A) and C =
(C(x,y), (x, y) ∈ A). For any path π from x ∈ X to

y ∈ X , we denote by LT (π) its length in the sense of T.

We do the same with C. For any pair of nodes (x, y) we

denote by DT (x, y) the shortest path distance from x to

y in the sense of T, and by DC(x, y) the shortest path

distance from x to y in the sense of C.

• Let U be some subset of X . We set ∂−

N (U) = {(x, y) ∈
A such that x /∈ U, y ∈ U}, ∂+

N (U) = {(x, y) ∈ A
such that x ∈ U, y /∈ U}, ∂N (U) = ∂−

N (U) ∪ ∂+
N (U),

and A(U) = {(x, y) ∈ A such that x ∈ U, y ∈ U}.

Clearly, ∂N (U) means the arcs which allow entering and

getting out of U . We simplify these notations in case U
is a singleton {x} by writing ∂−

N (x), ∂+
N (x) and ∂N (x),

instead of ∂−

N ({x}), ∂+
N ({x}) and ∂N ({x}), respectively.

Also, we denote by U \ V the difference of the sets U
and V (i.e., the set {u ∈ U such that u /∈ V }).

Then our IBP: Item Balancing Problem comes as follows:

Items are located inside the network and must be relocated,

within a time horizon {0, 1, . . . , Tmax}, by a fleet of identical

carriers with capacity Cap. We are provided with an integral

balance vector b = (bx, x ∈ X) such that
∑

x∈X bx = 0:

bx > 0 means that x is in excess and that bx items must

leave x; bx < 0 means that x is in deficit and that bx items

must arrive to x. The Item Balancing Problem (IBP) consists

in scheduling those transfers, while minimizing a hybrid cost

α ·c1+β ·c2+γ ·c3, where c1 is the number of active carriers,

c2 is their running cost in the sense of C, c3 is the time spent

by items while moving inside the carriers, and α, β, γ are

scaling coefficients. An important feature of the problem is

that we allow preemption, which means that the carriers may

exchange items, making synchronization become an issue.

Example 1 Consider the network N = (X,A) of Figure 1.

It shows two carrier routes Γ1 = (Depot, v, x, y, Depot) and

Γ2 = (Depot, w, x, z, Depot) linked together by a transfer

from Γ1 to Γ2 at node x. We check c1 = 2, c2 = 10, and

c3 = 32.

Depot

v w

x

zy

bv = 5 bw = 5

bz = −7

by = −3

1

1

1

2

2

2

1

1

Cap = 10

Tmax = 6

Ca = Ta for all a ∈ A

12

11

v x y

w x z

0 5 3 0

0 5 7 0

Depot)

Depot)

Γ1=(Depot

Γ2=(Depot

item flow

Fig. 1. The transit network N = (X,A) used in Example 1

A. A Time-expanded 2-commodity Flow Model for the IBP

Problem

In order to cast this IBP problem into the TE-Network

framework (see [8]), we first derive from the network N =
(X,A) its time expansion NTmax = (XTmax, ATmax) ac-

cording to Tmax. The node set XTmax is the set of all pairs

(x, t), x ∈ X , t ∈ {0, 1, . . . , Tmax}, augmented with two

distinguished nodes: source and sink. The arcs a ∈ ATmax,

together with their carrier cost Ĉa, and their item cost Îa,

come as follows:

• input-arcs a =
(

source, (x, 0)
)

, x ∈ X , with Îa = 0 and

Ĉa = 0;

• output-arcs a =
(

(x, Tmax), sink
)

, x ∈ X , with Îa =

Ĉa = 0;

• waiting-arcs a =
(

(x, t), (x, t + 1)
)

, x ∈ X , t ∈

{0, . . . , Tmax− 1}, with Îa = Ĉa = 0;

• active-arcs a =
(

(x, t), (y, t + T(x,y))
)

, (x, y) ∈ A, t ∈

{0, . . . , Tmax− T(x,y)}, with Îa = γ · T(x,y) and Ĉa =
β · C(x,y);

• backward-arc a = (sink, source), with Îa = 0 and Ĉa =
α.

In order to formalize our IBP problem as a 2-commodity

flow model on this network NTmax = (XTmax, ATmax), we

introduce integral 2 flow vectors H and h, both indexed on

the arc set of NTmax. The first one is going to describe

the way the carriers move inside the transit network: for

any active-arc a =
(

(x, t), (y, t + T(x,y))
)

, Ha will mean

the number of carriers which traverse the arcs (x, y) of the

transit network between time t and time t+T(x,y). The second

one will describe the moves of the items: for any active-arc

a =
(

(x, t), (y, t + T(x,y))
)

, Ha will mean the number of

items which traverse the arcs (x, y) of the transit network

between time t and time t + T(x,y). The value Ha on the

backward-arc will provide us with the number of carriers

involved into the process. The values Ha and ha on a waiting-

arc a =
(

(x, t), (x, t + 1)
)

are going to respectively provide

us with the number of carriers and items waiting on node x
between time t and time t + 1. By proceeding this way, we

get:

TE-Network IBP Model. Compute two nonnegative inte-

gral ATmax-indexed vectors H and h (for carriers and items,

respectively) such that:

668 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



• H and h satisfy flow conservation

at any node of NTmax; (E1)

• for any active-arc a =
(

(x, t), (y, t+ T(x,y))
)

:

ha ≤ Cap ·Ha ; (E2)

• for any input-arc a=
(

source, (x, 0)
)

, x ̸= Depot:
Ha = 0; ha = max(bx, 0); (E3)

• for any output-arc a =
(

(y, Tmax), sink
)

, y ̸= Depot:
Ha = 0; ha=max(−by, 0); (E4)

• the global cost Cost(H,h) =
∑

a∈ATmax

(

Ha · Ĉa+ha ·

Îa
)

is minimized.

Constraints (E1) express the circulation of carriers and

items. Constraints (E2) mean that any item move is supported

by some carrier. Constraints (E3) and (E4) characterize initial

and final states: carriers start and end at Depot, while any

node ends as neutral.

Example 2: Fig. 2 shows the TEN NTmax =
(XTmax, ATmax) deriving from network N = (X,A)
of Fig. 1 and Tmax = 6. It turns the solution of

Example 1 into a full solution (H, h). Tour Γ1

gives rise to a path {source, (Depot, 0), (v, 1), (x, 3),
(y, 4), (Depot, 5), (Depot, 6), sink}. Tour Γ2 gives

rise to a path {source, (Depot, 0), (w, 1), (x, 2),
(x, 3), (z, 5), (Depot, 6), sink}. The value of h on the

arc (x, 2), (x, 3) shows the way the 5 items transported by

carrier 2 wait on node x before splitting themselves along the

arc (x, y) and (x, z).

(a) (b)

2

source

Depot
0

Depot
1

Depot
2

Depot
3

Depot
4

Depot
5

Depot
6

v
0

v
1

v
2

v
3

v
4

v
5

v
6

w
0

w
1

w
2

w
3

w
4

w
5

w
6

x
0

x
1

x
2

x
3

x
4

x
5

x
6

y
0

y
1

y
2

y
3

y
4

y
5

y
6

z
0

z
1

z
2

z
3

z
4

z
5

z
6

sink

2

1
1

1

1

1

1 1

1

1

2

Carrier 1

Carrier 2

Input-arc

Output-arc

Items

Backward-arc

10

source

5 5

5 5

5

5

5

3
7

3

3 7

3
7

Depot
0

Depot
1

Depot
2

Depot
3

Depot
4

Depot
5

Depot
6

v
0

v
1

v
2

v
3

v
4

v
5

v
6

w
0

w
1

w
2

w
3

w
4

w
5

w
6

x
0

x
1

x
2

x
3

x
4

x
5

x
6

y
0

y
1

y
2

y
3

y
4

y
5

y
6

z
0

z
1

z
2

z
3

z
4

z
5

z
6

sink

1

Fig. 2. The routes and schedules as a TE-Network 2-commodity flow: (a)
Carrier flow vector H. (b) Item flow vector h.

As it is formulated, we understand that this TE-Network

IBP Model is going to be difficult to handle. Its size grows

fast with value Tmax. We might try to control this size by

rounding the values t. For instance, instead of measuring the

time in minutes, we could try to round it to 15 minutes

packages. But if traversing an arc requires 3 minutes, then

rounding will mean either canceling this traversal time, or

multiplying it by 5. In both case, we guess that the propagation

of resulting errors will be difficult to manage. So we are

going to implement a Project and Expand scheme, which

means that we are going to first skip the temporal dimension

of our problem (Project step) and restrict ourselves to the

identification of the arcs followed by the carriers and the items,

and next perform an Expand step in order to schedule those

arcs and get a full solution of our problem.

B. The Projected IBP Model

Given a feasible solution (H, h ) of above TE-Network

IBP Model. We define the projection F of H on the network

N by setting, for any arc (x, y) of N :

F(x,y) =
Tmax
∑

t=0

H(x,t),(y,t+T(x,y)).

We define the same way the projection f of h. Clearly, the

meaning of those projected vectors is that we want to simplify

our problem while skipping its temporal dimension. They

are going to provide us with a kind of signature of the

routes followed respectively by the carriers and the items on

the transit network, without taking care neither of the order

according to which they run along the arcs of this transit

network nor of the timestamps telling when they do it. Of

course, we expect that computing those projected vectors F

and f will be easier than computing F and f. In order to perform

this computation, we must characterize those vectors.

We see that F and f must be such that:

• F satisfies flow conservation at any vertex of X; (E5.1)

• for any node x of N :
∑

a∈∂
+
N
(x) fa −

∑

a∈∂
−

N
(x) fa = bx ; (E5.2)

• for any arc a of N : fa ≤ Cap · Fa; (E6)

According to this, carrier riding cost c2 and item riding time

c3 come as follows:

• carrier riding cost c2 = β ·
(
∑

a∈A Ca · Fa

)

; (E7.1)

• items riding time c3 = γ ·
(
∑

a∈A Ta · fa
)

. (E7.2)

Still, this formulation is not enough in order to efficiently

characterize F and f. First, (E5.1)-(E7.2) fail in estimating

the carrier number c1 = H(sink, source). In order to make

our projected model provide a good estimation of the carrier

number, we proceed as follows:

Approximating the carrier number: We first notice as in

[12] that the quantity
∑

a∈A Ta ·Fa means the global time that

carriers spend running inside N , waiting times being excluded.

Since the whole process must last no more than Tmax time

units, it requires at least

⌈

(

∑

a∈A
Ta·Fa

)

Tmax

⌉

carriers. Thus, (F,

f) should minimize the projected cost:

PCost(F, f) = α ·

(

∑

a∈A
Ta·Fa

)

Tmax

+ β ·
(
∑

a∈A Ca · Fa

)

+ γ ·
(
∑

a∈A Ta · fa
)

.

Next, we notice that constraints (E5.1) and (E5.2) do not

forbid subtours. In order to forbid subtours, we proceed in an

augmented way:

The Extended No-Subtour Constraint: Given a subset

U ⊂ X \{Depot}. The time that carriers spend moving at the

border or inside U , is equal to
∑

a∈∂N (U)∪A(U) Ta · Fa. For

each carrier q, this time cannot exceed Tmax. If Q denotes

the number of carriers involved into an IBP solution, then

ALAIN QUILLIOT: ALGORITHMIC HANDLING OF TIME EXPANDED NETWORKS 669



we see that Q · Tmax ≥
∑

a∈∂N (U)∪A(U) Ta · Fa. Since
∑

a∈∂
−

N
(U) Fa ≥ Q, we deduce that the following Extended

No-Subtour inequality should hold:

Tmax ·

(

∑

a∈∂
−

N
(U) Fa

)

≥
∑

a∈∂N (U)∪A(U) Ta · Fa. (E8)

This leads us to set the following projected problem about

the search for F and f:

PIBP: Projected Item Balancing Problem

{Compute on the network N = (X,A) two nonnegative

integral vectors A-indexed F and f such that:

• F satisfies flow conservation at any node of X; (E5.1)

• for any node x ∈ X ,
∑

a∈∂
−

N
(x) fa−

∑

a∈∂
+
N
(x) fa = bx;

(E5.2)

• for any arc a ∈ A, fa ≤ Cap · Fa; (E6)

• for any U ⊆ X \ {Depot}: Tmax ·
(

∑

a∈∂
−

N
(U) Fa

)

≥
∑

a∈∂N (U)∪A(U) Ta · Fa; (E8)

• Minimize PCost(F, f)= α ·

∑

a∈A
Ta·Fa

Tmax
+

β ·
(
∑

a∈A Ca · Fa

)

+ γ ·
(
∑

a∈A Ta · fa
)

. (E9)}

We proved in [12], that the Extended No-Subtour constraints

may be separated in polynomial time. A consequence is that

this projected problem may be efficiently solved while using

a MILP library and implementing a Branch and Cut process.

III. THE EXPAND ISSUE

So we come now to the Expand step. That means that we

suppose that we have been computing (F, f) as above and

that we want to derive (H, h) in a satisfactory way. First,

we notice that, in many cases, there will not exist (H, h)

whose projection is equal to (F, f). Figure 3 shows that a

PIBP solution (F, f) may not be the projection of any feasible

IBP TE-Network solution (H, h): The carrier must follow

the route (Depot, y, x, z, y,Depot) and will never be able to

transport that way any item from z to x.

Depot

y
x z

by = 0
bx = −1 bz = 1

F f

1 0

1 11 1

1 0 1 0

Fig. 3. A solution of PIBP which cannot be expanded.

So we must put some flexibility while setting our Expand

issue. Namely, we should set it as follows: How can we derive

from (F, f) a good full IBP solution (H, h)? In a more generic

way, how can we efficiently deal with a TE-Network model

while applying the following resolution scheme?

Project/Expand Decomposition Scheme.

1) Solve a projected version of the problem which skips

the temporal dimension.

2) Turn (expand) resulting solution (F, f) into a “good”

solution (H, h) of the original problem, while restricting

ourselves to a reduced representation of related TE-

Network.

One feels that there are several ways to interpret above

expand part of the process. Intuition would suggest to search

for (H, h) such that (F, f) is the projection of (H, h). Such a

setting is NP-Hard (see [8]). But the true problem is that both

above example and numerical experiments show that such a

setting is too strong and most often does not admit any feasible

solution. So what we decide in the present case is to formalize

step 2 while only requiring f to be the projection of h. So we

set the Expand problem as follows:

Expand Problem EXPAND(f). {Compute a feasible IBP

solution (H, h) such that:

• The projection of h on the transit network N is equal to

f ;

• The cost value Cost(H, h) is the smallest possible.}

This Expand problem is difficult. One may check that EX-

PAND(f) contains both the TSP: Traveling Salesman Problem

and the standard Pick up and Delivery problem. It is far

more general, since we may by no way identify the arcs

which support f with requests and must take care of the

precedence relations implicitly related to those arcs. Above

example of Figure 3 shows that part of our problem consists

in determining in which order the arcs supporting f must be

visited.

Before going further towards the design of algorithmic solu-

tion for this Expand problem, we must address the issue related

to its feasibility: Can we characterize the conditions which

will make this Expand problem admit a feasible solution?

The answer is positive, and checking it is going to provide

us with a reinforcement of the Projected model of Section II,

that means with a way to compute (F, f) which will guaranty

this feasibility.

Checking the Feasibility of EXPAND(f): Enhancing the

PIBP model.

We just told that a too strong setting of the Expand issue could

lead to unfeasible situations. So a natural question comes about

the feasibility of above EXPAND(f problem. In order to deal

with it, let us introduce the following notion of feasible path.

A feasible path is a path that an item may follow while moving

from an excess node to a deficit one, taking into account that

the carrier which transports it must be able to move from the

Depot node to the start-node of this path and next from the

end-node of this path until the Depot node, within the time

horizon {0, 1, . . . , Tmax}. Clearly, flow vector f should be such

that all items may follow feasible paths. We formalize this by

saying that:

• A feasible path of N is any path π from x ∈ X+ to y ∈
X− whose length LT (π) in the sense of the time is such

that: DT (Depot, x) +LT (π) +DT (y,Depot) ≤ Tmax.

We denote by fπ related {0, 1} flow vector and by ΠFP

the set of feasible paths.

• Vector f is feasible-path-decomposable iff it can be writ-

ten: f =
∑

π∈ΠFP λπ fπ , with λπ ≥ 0.

Since any item in node x ∈ X+ must be transported to

some vertex y ∈ X− along a feasible path, we get that

f must feasible-path-decomposable. But checking that f is

670 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



feasible-path-decomposable is just a matter of solving a

rational linear program, and characterizing the feasibility of

this linear program may be done by using Duality Theory.

More precisely, we define a Path Feasibility vector as any

ΠFP -indexed vector w = (wπ, π ∈ ΠFP ) such that:

For any feasible path π, we have
∑

a∈π wa ≥ 0.

This allows to state:

Theorem 1: EXPAND(f) is feasible iff, for any Path

Feasibility vector w, we have:
∑

a∈A fa · wa ≥ 0.

Sketch of the Proof: Linear Programming Duality makes

that (E10) holds iff f is feasible-path-decomposable. This

property is clearly necessary in order to allow the existence

of H and h. We get sufficiency by considering such a decom-

position of f and assigning to any item its own feasible path

and a carrier which transports it along this feasible path. We

explicitly build this way flow vectors H and h. EndProof

So we reinforce our PIBP model by imposing vector f to

be feasible-path-decomposable:

For any Path Feasibility vector w:
∑

a∈A fa ·wa ≥ 0. (E10)

Theorem 2: (E10) can be separated in polynomial time.

Sketch of the Proof: Every time we are provided with a

flow vector f (rational or integral) we search for a feasible-path

decomposition of f. This means solving some linear program

with respect to some current collection Λ of feasible paths.

In case of failure, then we apply duality and generate another

feasible path, until we succeed or we get a Path Feasibility

vector which contradicts (E10). The time-polynomiality of

this separation process derives from the time-polynomiality

of Rational Linear Programming. EndProof

It comes that the PIBP model reinforced by (E10) may be

efficiently handled through Branch-and-Cut.

IV. A BI-LEVEL DECOMPOSITION SCHEME FOR THE

EXPAND PROBLEM

The purpose of this section is to show the way the Expand

problem man be decomposed in a way which will allow

us in next section V to implement both exact and heuristic

algorithms. The main idea behind this decomposition scheme

is that the quality of final solution (H, h) is mostly determined

by the way items are routed. Intuitively, that means that we

should first expand flow vector f, and next try to cover it by

a carrier flow H according to the following 2-step approach:

1st step: Expand item flow f into an item flow h on

the TE-Network NTmax, while relying on a specific

Split(N , f) network. This network is going to split those

arcs and nodes of network N which are supporting f (in

practice, it will mean few arcs and nodes) according to

item packages likely to be carried by the same carriers.

This will allow us to make appear the feasible paths

followed by the items when moving from an excess node

to a deficit nodes. Providing ad hoc time values to the

nodes exploded this way will yield item flow vector h.

2nd step: Once h has been fixed, extend h into a good

(best) solution IBP (H, h), while solving a Min-Cost

Flow problem on the active part of a specific Carrier(N ,

f) network. Network Carrier(N , f) is going to extend

above mentioned network Split(N , f) in order to make

appear the possible moves performed by the carriers.

Related active part will be made of the arcs which are

consistent with the time values related to vector h.

Linking 1st step and 2nd step: The quality of the resulting

solution deeply depends not only on the route followed by the

items, but also on the time values of the vertices related to h in

NTmax. We shall delay, as long as possible, the instantiation

of those time values while relying on a flexibility device which

will take the form of a collection Λ of arcs common to both

Split(N , f) and Carrier(N , f). This device will identify the

moves that carriers and items are allowed to perform when

switching from an arc of N supporting items to another one.

This arc collection Λ will become the master object of a bi-

level Split/Carrier decomposition scheme.

A. The Networks Split(N , f) and Carrier(N , f)

The Network Split(N , f).

The purpose of the network Split(N , f) is to help us in

describing the way items traverse any vertex x of the network

N , and so the trajectories followed by the items when moving

from the excess nodes to the deficit ones. So we build it while

relying on the arcs of network N which support non null f

and exploding the nodes involved into those arcs in order to

make appear the routes followed by the items.

Nodes of Split(N , f): With any arc a = (x, y) ∈ A

such that fa ≥ 1, we associate
⌈

fa
Cap

⌉

copy-arcs am,m =

1, . . . ,
⌈

fa
Cap

⌉

, with respective origin p = (x, a,m,+) and re-

spective destination q = (y, a,m,−). We denote by Copy(a)
the set of those arcs am,m = 1, . . . ,

⌈

fa
Cap

⌉

. At the same

time we create those copy-arcs, we also create copy-nodes

p = (x, a,m,+) and q = (y, a,m,−), which respectively

correspond to the carriers who leave x with a non-null load

and to the carriers who arrive into y with a non-null load.

Resulting node set X∗ becomes the node set of Split(N , f).

We denote by Copy(A) the set of all those copy-arcs. For any

node p = (y, a,m, ε) of X∗, we set x(p) = y and ε(p) = ε.

Also, for any node y of N , we set:

• X∗(y) = {p ∈ X∗ such that x(p) = y};

• X∗Plus(y) = {p ∈ X∗ such that x(p) = y
and ε(p) = +};

• X∗Minus(y) = {p ∈ X∗ such that x(p) = y
and ε(p) = −}.

Arcs of Split(N , f): We complete the arc collection
{

am,

a = (x, y), such that fa ≥ 1, m = 1, . . . ,
⌈

fa
Cap

⌉}

by

middle-arcs which, for any node x of N , connect copy-nodes

(x, a,m,−) (with a arriving into x), m = 1, . . . ,
⌈

fa
Cap

⌉

to

copy-nodes (x, a′,m′,+) (with a′ starting from x) m′ =
1, . . . ,

⌈

fa
Cap

⌉

. We denote by Middle the set of all middle-

arcs created that way, and, for any node x of N , we denote by

Middle(x) the set of all middle-arcs u whose origin may be

written (x, a,m,−). Middle(x) defines a complete bipartite

ALAIN QUILLIOT: ALGORITHMIC HANDLING OF TIME EXPANDED NETWORKS 671



graph on the nodes of X∗(x). For any vertex p = (x, a,m,+),
we denote by MiddleIn(p) the set of middle-arcs u with

destination p, and for any vertex q = (x, a,m,−), we denote

by MiddleOut(q) the set of middle-arcs u with origin q. We

also set:

• CopyIn(y) =
{a ∈ Copy(A) with destination in X∗Minus(y)};

• CopyOut(y) =
{a ∈ Copy(A) with origin in X∗Plus(y)}.

We denote by Split(N , f) the resulting network, that one

may check to be acyclic. This construction is illustrated in

Figure 4.

A

C

B

D

6

4 7

a1 a2

a3

f values

Cap = 5

(A, a1, 1,+) (B, a2, 1,+) (B, a2, 2,+)

(C, a1, 1,−) (C, a2, 1,−) (C, a2, 2,−)

(C, a3, 1,+) (C, a3, 2,+)

(D, a3, 2,−) (D, a3, 1,−)

a1
1

a1
2

a2
2

a1
3

a2
3

copy arcs

middle -arcs

(a) (b)

Fig. 4. Building the Split(N , f) Network

The network Carrier(N , f).

This network is going to help us in computing the carrier

routes, in such a way that those carrier routes cover the item

routes. So, it will contain exactly the same nodes as the

network Split(N , f), but two additional nodes source and sink.

Its arcs will express all the ways a carrier may move from an

arc supporting items to another one while following a shortest

path in N i the sense of vector C. Depending on the time

values assigned to its nodes, those arcs will be allowed or

not to support non null carriers flow values. It comes that this

network will behave as a flexible reduced version of NTmax.

Nodes of Carrier(N , f): They are all nodes of Split(N ,

f), augmented with two nodes source and sink. We denote

by V (Carrier) the node set of Carrier(N , f).

Arcs of Carrier(N , f): They are the arcs of Split(N , f)

augmented with:

• one back arc u = (sink, source), provided with cost

Qu = α;

• any in arc u =
(

source, p = (x, a,m,+)
)

, p ∈ X∗,

provided with a cost Qu equal to the cost of a time-

minimal path (in the sense of cost matrix C) from Depot
to x;

• any out arc u = (p = (x, a,m,−), sink), p ∈ X∗,

provided with a cost Qu equal to the cost of a time-

minimal path from x to Depot;
• any transverse arc u =

(

p = (x, a,m,−), q =
(y, a′,m′,+)

)

, with p, q ∈ X∗, provided with a cost Qu

equal to the cost of a time-minimal path from x to y.

We denote by A(Carrier) the arc set of the network

Carrier(N , f).

B. The Split/Carrier Decomposition Scheme

The way item flow values fa, a ∈ ∂−

N (x) arriving into a

node x distribute themselves into values fa′ , a′ ∈ ∂+
N (x) leav-

ing x while moving through x, is going to be described by two

integral vectors z =
(

zu, u =
(

(x, a,m,−), (x, a′,m′,+)
)

∈
Middle

)

, and z∗ =
(

z∗am , am ∈ Copy(A)
)

. Those two

vectors will provide us with an expanded vector h once we

assign time values tp to the nodes p of the Split(N , f). On

the other side, the routes followed by the carriers are going

to be described by a {0, 1}-valued flow vector Z defined on

the arcs of the network Carrier(N , f). In order to link those

vectors z, z∗, t, and Z together we need a mediator object.

This mediator object is going to be here a collection Λ of

arcs in A(Carrier), providing us with the transverse arcs

and the middle arcs supporting the item and carrier moves. It

will induce the following constraints:

• on the time vector t = (tp, p ∈ V (Carrier)): for every

arc (p, q) in Λ, tq ≥ tp +DT (x(p), x(q)), which means

that any carrier or item move along an arc of the network

Carrier(N , f) requires a time at least equal to the length

of the path in N which is related to such an arc;

• on the z vector: for every middle-arc u = (p, q) which is

not in Λ, zu = 0;

• on the flow vector Z representing the carrier routes on

the network Carrier(N , f): for every transverse arc u =
(p, q) which is not in Λ, Zu = 0.

More precisely, once Λ has been determined, we get that

vector t must satisfy the following linear constraint system

CTIME(Λ), with underlying totally unimodular constraint ma-

trix.

CTIME(Λ) constraint system on t = (tp, p ∈ X∗ ∪
{source, sink}):

• tsource = 0; (E11)

• tsink ≤ Tmax; (E12)

• For any in arc u =
(

source, p = (x, a,m,+)
)

, p ∈ X∗:

tp ≥ DT (Depot, x); (E13)

• For any out arc u =
(

p = (x, a,m,+), sink
)

, p ∈ X∗:

Tmax ≥ DT (x,Depot); (E13-1)

• For any copy arc u =
(

p = (x, a,m,+), q =
(y, a,m,−)

)

, a = (x, y) ∈ A such that fa ̸= 0:

tq ≥ tp +DT (x, y); (E13-2)

• For any arc (p, q) in Λ:

tq ≥ tp +DT (x(p), x(q)). (E13-3)

As for vectors (z, z∗), they must express the way items move

from any arc a support of f in N and with destination x to

another one with origin x. More precisely:

• z is going to express, for any node x of network N ,

the way items arriving along a copy-arc am into a copy-

node q = (y, a,m,−) are going to distribute themselves

among the copy-arcs a′m
′

leaving x. Clearly, the feasibil-

ity of this distribution process will impose Λ to contain

enough arcs of Middle(x).

672 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



• z∗ is going to express, for any arc a of network N , the

way item flow values fa distribute themselves among the

copy-arcs related to a.

This yields the following linear constraint system Split(N ,

f, Λ), with underlying totally unimodular matrix and whose

feasibility depends on Λ:

Split(N , f, Λ) constraint system on vectors z, z∗:

• For any copy-arc am: z∗am ≤ Cap. (E14)

• For any copy-node q = (y, a,m,−):
z∗am ≤

∑

u∈MiddleOut(q) zu. (E15)

• For any copy-node p = (x, a,m,+):
z∗am ≥

∑

u∈MiddleIn(p) zu. (E16)

• For any node x of N :
∑

v∈CopyIn(x) z
∗

u =
∑

u∈Middle(x) zu +max(−bx, 0). (E17)

• For any node x of N :
∑

v∈CopyOut(x) z
∗

u =
∑

u∈Middle(x) zu +max(bx, 0). (E18)

• For any middle-arc u /∈ Λ: zu = 0. (E19)

Finally, the flow vector Z with indexation on the arcs of

Carrier(N , f) and which is going to provide us with the arcs

and paths followed by the carriers, should be a solution of the

following Min-Cost Flow model Carrier(N , f, Λ).

Carrier(N , f, Λ) constraint system on vector Z:

• Z satisfies flow conservation. (E20)

• For any arc u in Copy(A): Zu = 1. (E21)

• For any transverse or middle arc u /∈ Λ: Zu = 0. (E22)

• Cost value
∑

u∈A(Covering) QuZu is minimal. (E23)

We may now reformulate the Expand Problem as the

following bilevel ([19]) setting.

Split/Carrier Reformulation of the Expand Problem.

Compute Λ ⊆ A(Carrier) restricted to middle and transverse

arcs, such that:

• CTIME(Λ) admits a feasible solution;

• Split(N , f, Λ) admits a feasible solution (z, z∗);

• The optimal value
∑

u∈A(Carrier) QuZu of Carrier(N ,

f, Λ) is minimal.

It may happens that above Split/Carrier model does not

admit any feasible solution, while the Expand Problem is

feasible. In such a case, we say that f is Split/Carrier

{inconsistent. Figure 5 displays an example of such a situ-

ation:path A,B,C,D is not a feasible path and so f must be

decomposed into 2 feasible paths, while the Split(N , f, Λ)

model would allow only 1 feasible path. However, numerical

experiments will show that it happens very scarcely.

Still, we may state:

Theorem 4.1: Any feasible solution of above Split/Carrier

model is a feasible solution of EXPAND(f), with same cost.

Sketch of the Proof: It comes through an algorithmic

construction of (H, h) from arc collection Λ. Time vector

t obtained through resolution of CTIME(Λ) allows us to

embed the nodes of the network Carrier(N , f) into the time

expanded network NTmax = (XTmax, ATmax). Then we

derive h from a solution (z, z∗) of Split(N , f, Λ) and we

derive H from a solution Z of Carrier(N , f, Λ). EndProof

Depot

C B

D A

f values

arc time values

Tmax = 10

Cap = 5

2

5

3

3

3 3

3

2

2

2

Fig. 5. Split/Carrier Inconsistent Flow Vector f)

V. ALGORITHMIC HANDLING THE Split/Carrier

DECOMPOSITION SCHEME

The Split/Carrier decomposition scheme involves, as its

master object, a collection Λ of arcs of the Carrier(N ,

f) network. Constraints of Split(N , f, Λ) are transportation

constraints set on a bipartite graph. Carrier(N , f, Λ) is a Min-

Cost Flow model while CTIME(Λ) is about the computation

of the largest path in an acyclic graph ([4]). It comes that those

3 sub-problems may be viewed as easy and that we may rely

either on Carrier(N , f, Λ) duality or on the largest paths which

arise from the resolution of CTIME(Λ) in order to drive the

master object Λ. We are going to describe here the ways we

implemented this idea.

A. An Exact MILP Resolution

We turn previous Split/Carrier decomposition scheme into

an Expand(N , f) MILP model. We do it by considering

vectors Z, z, z∗ and t as in above Section IV, introducing

an additional vector XΛ with indexation on the middle and

transverse arcs of the Carrier(N, f) network, and merging

the programs CTIME(Λ), Split(N , f, Λ and Carrier(N , f, Λ)

into a unique one, according to the following modifications:

• (E13-3) is replaced by: For any transverse or middle arc

u = (p, q): tq ≥ tp +DT (x(p), x(q)).
• (E19) is replaced by: For anymiddle arc u: zu ≤ XΛ

u .

• (E20) is replaced by: For any transverse or middle arc u:

Zu ≤ XΛ
u .

B. A Greedy Dual Carrier Algorithm

This algorithm works in a greedy way, while making

increase the arc collection Λ. We first initialize Λ in such a

way that the constraint system Split(N , f, Λ) admits a solution.

We do it by removing constraint (E19), and defining Λ as the

set of middle arcs which support non null z values. Then, at

every iteration of the main loop of the greedy process, we are

provided with some current arc collection Λ, and we use a

feasible solution t of CTIME(Λ) in order to set a version of

the min-cost flow model which replace (E22) by:

ALAIN QUILLIOT: ALGORITHMIC HANDLING OF TIME EXPANDED NETWORKS 673



For any (transverse or middle) arc (p, q) such that:

tq < tp +DT (x(p), x(q)), we have Zu = 0. (E32-1)

This may be summarized as follows:

• 1st step: Solve the Split(N , f, Λ) while considering

only constraints (E14)-(E18). Derive vectors z∗ and z

and ℓ, and initialize Λ with the arcs of the network

Carrier(N, f) which support z∗ and z.

• 2nd step: While Not Stop do:

1) Get a feasible solution t of CTIME(Λ;

2) Solve the Carrier(N , f, Λ) Min-Cost Flow model

modified by replacing (E22) by (E22-1);

3) Search for an arc (p, q) whose insertion into

Λ makes related dual solution become infeasi-

ble and maintains the feasibility of CTIME(Λ). If

Success(Search) then insert this arc into Λ else

Stop.

C. A Greedy Path Concatenate Algorithm

Once again, we make the collection Λ increase, while

using the CTIME(Λ) constraint system in order to deduce,

at any iteration of the main loop, which arc (p, q), with

p = (x1, a1,m1,−) and q = (x2, a2,m2,+) has to be inserted

in Λ.

Fig. 6. Concatenating 2 carrier paths γ1 and γ2)

More specifically, we first solve Split(N ,f, Λ) obtained

while removing constraint (E19) and initialize collection Λ
with the middle arcs which support non null z values. Then

we compute some feasible solution t of CTIME(Λ), set Λ(t)

= {(p, q) ∈ A(Carrier) : tq ≥ tp + DT (x(p, x(q)))}, and

solve the Carrier(N , f, Λ(t)) Min-Cost Flow problem. This

provides us with an initial solution H, as well as with a

collection Γ of paths that the carriers follows between the

first time they load some item and the last time they unload

an item.

Next we proceed iteratively, while trying at every iteration

to concatenate two paths γ1 and γ2 of Γ into a unique one as

in ([10]), so that a same carrier can follow those two paths

and go back to Depot without violating the time horizon

constraint (see Figure 6). We do it, while relying on constraint

propagation, in such a way that resulting path is the shortest

possible in the C sense.

More precisely, we proceed in two steps:

• Initialization: Solve Split(N , f, Λ) with Λ = ∅ and derive

vectors z, z∗ which will remain unchanged during all

the process. Initialize Λ with the arcs of Carrier(N , f)

which correspond to non-zero z values. Compute some

feasible solution t of CTIME(Λ), set Λ(t) = {(p, q) ∈
A(Carrier) : tq ≥ tp + DT (x(p, x(q)))}, and solve

resulting Carrier(N , f, Λ(t)) Min-Cost Flow problem.

Derive an initial solution H, as well as a collection Γ
of paths that the carriers follow between the first time

they load some item and the last time they unload an

item. Propagate current constraints of CTIME(Λ) and get,

for any node p = (z, a,m, ε) ∈ X∗ a time window

[Infp, Supp], with Supp ≥ Tmax − DT (x,Depot) and

Infp ≤ DT (Depot, x).
• Main Loop: It works as follows:

1) Denote by StartCarrier the set of all nodes p1 =
(x1, a1,m1,+) which are the start nodes of the

paths of current collection Γ and by EndCarrier
the set of all nodes p2 = (x2, a2,m2,−) which are

the end node of the paths of current collection Γ.

2) Select p2 = (x2, a2,m2,−) ∈ EndCarrier and

p1 = (x1, a1,m1,+) ∈ StartCarrier such that

Infp2
+Tmax−Supp1

does not exceed Tmax, which

also means Infp2 ≤ Supp1 , and such that Supp1 −
Infp2 is largest possible. If Fail(Select) then Stop
else keep on with 3) and 4).

3) Insert arc (p2, p1) into Λ. Update the time windows

induced by the constraint system CTIME(Λ) and

compute some feasible solution t of CTIME(Λ).

4) Set Λ(t) = {(p, q) ∈ A(Carrier) : tq ≥ tp +
DT (x(p, x(q)))} and solve the Carrier(N , f, Λ(t))

Min-Cost Flow problem. Update accordingly the

best solution H ever found.

Stop occurs at instruction 2), when it is not possible to

find a new arc (p1, p2) to insert into collection Λ.

D. Numerical Tests

According to this, we perform several numerical experi-

ments, whose purpose is 3-sided:

1) Evaluating the error induced by the projection step, that

means the gap between the value of the projected PIBP

model and the value of the full TE-Network model.

2) Evaluating the error induced by the 2-step Project and

Expand process, with respect to a theoretical value

which would be obtained by solving in an exact way

the full TE-Network IBP model.

3) Evaluating the ability of both heuristics Dual Carrier

and Path Concatenate to compute in a short time an

674 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



efficient solution, with respect to the value obtained

from application of a MILP library to the exact model

Expand(N , f).

Technical Context: We run those experiments on a com-

puter with a 2.3GHz Intel Core i5 processor and 16GB RAM,

while using the C++ language (compiled with Apple Clang

10) and the CPLEX12.10 MILP library.

Instances: No standardized benchmarks exist for the

generic IBP. So we built instances as follows: the node set

X is a set of n points inside a 100 × 100 grid, the set

of arcs A consists of m arcs generated randomly, the time

matrix T= (T(x,y), (x, y) ∈ A) corresponds to the rounded

Euclidean Distance and the cost matrix C= (Ca, a ∈ A) to

the Manhattan Distance. Each node x but Depot is assigned

to a bx value in {−10, . . . , 10}, the capacity Cap is chosen in

{2, 5, 10, 20}, and the time horizon limit Tmax is a product

λ · (max(x, y)∈A T(x, y)) when choosing λ ∈ {4, 5, 6, 8, 9}.

The scaling coefficients α, β, γ are chosen in such a way

that the values of cost components α · number of carriers,

β · carrier riding cost and γ · items riding time become com-

parable.

Outputs. Table I involves 15 instances and displays:

• Values n, m, respectively the number of vertices and arcs

of the base network N .

• Values Cap, Tmax, respectively the carrier capacity and

the time horizon value.

• Values G1, V1, respectively the optimal value of the

projected model and related carrier number.

• Values G,V, respectively an upper bound value of the full

TE-Network IRP model computed by the CPLEX library

in no more than 1 h (this relatively short time limit is due

to the fact that we use a personal computer), and related

carrier number.

Table II involves the same instances as table I and displays:

• Values GDC,VDC, TDC, respectively the value com-

puted by the Dual Carrier Algorithm, related carrier

number and related running time (in seconds).

• Values GPC,VPC, TPC, respectively the value computed

by the Path Concatenate Algorithm, related carrier num-

ber and related running time (in seconds).

• Values GL,VL, respectively the optimal value computed

of the exact MILP Expand(N , f) model (computed

through CPLEX Library) and related carrier number.

• Missing values are indicated by a hyphen symbol -, and

correspond to PIBP solutions f for which the Expand(N ,

f) MILP is unfeasible.

Comments: The Path Concatenate heuristic finds feasible

IBP solutions for most instances but only 1, which happens not

to be Split/Carrier consistent. Also, by comparing values GDC

and GPC, TDC and TPC, VDC and VPC, we see that most of the

time the solutions found by the Path Concatenate heuristic

have lower costs, involve fewer vehicles, and have required

lower running times than the solutions computed by the

Dual Carrier Algorithm. Finally, comparing values G, GL,

V and VL shows us that the Project/Expand decomposition

TABLE I
BEHAVIOR OF THE Dual Covering AND Path Concatenate ALGORITHMS.

Id n m Cap Tmax G1 V1 G V

1 20 78 2 324 2110.85 3 2633.00 4

2 20 65 5 400 1196.10 3 1282.7 3

3 20 77 10 440 854.83 2 1123.25 2

4 20 75 5 400 1105.00 2 1269.3 3

5 20 81 10 440 887.9 2 1005.05 2

6 50 163 2 460 15561.30 17 17043.00 20

7 50 155 5 390 4326.10 7 5023.7 9

8 50 149 10 440 7966.03 6 8820.5 8

9 50 146 20 436 1840.17 4 2670.95 6

10 50 168 20 436 2169.5 5 2750.10 6

11 100 363 2 336 17179.00 22 19483.00 27

12 100 236 5 516 4826.24 8 31881.35 86

13 100 289 10 432 6091.24 4 8450.00 9

14 100 296 5 516 4320.5 6 12029.4 20

15 100 308 10 432 6340.4 5 9875.4 12

TABLE II
BEHAVIOR OF THE Dual Carrier AND Path Concatenate ALGORITHMS.

Id GDC TDC VDC GPC TPC VPC GL VL

1 3097.00 0.17 5 3097.00 0.003 5 2633.00 4

2 1289.50 0.12 3 1289.50 0.100 3 1289.50 3

3 1493.25 0.44 4 1495.25 0.041 3 1468.35 3

4 1302.4 0.52 3 1269.3 0.25 3 1269.3 3

5 1212.9 077 3 1074.6 0.38 2 1005.05 2

6 20952.00 780.61 35 18435.00 19.007 24 17043.00 20

7 5328.9 122.6 10 5023.7 47.9 9 5023.7 9

8 - - - - - - - -

9 2859.0 158.2 8 2711.4 54.8 7 2670.95 6

10 G 2900.8.0 226.0 7 2784.3 82.0 6 2750.10 6

11 23469.00 303.52 35 21623.00 9.303 32 20086.00 28

12 9331.00 382.99 24 6571.75 20.803 14 6436.0 14

13 10906.2 188.6 12 7548.00 65.3 7 7459.3 7

14 6224.7 405.6 10 5468.5 208.5 8 5029.4 8

15 9408.5 252.4 12 7977.0 109.0 10 7900.3 10

scheme yields a very good approximation of the optimal value

of the TE-Network IBP model. By the way, we notice an

instance (instance 12) which really puts the MILP solver in

trouble. Examining this instance makes appear that it is very

tight, and admits few efficient feasible solutions. Moreover,

related vehicle number coefficient α is rather large. So we

feel that it was difficult for the MILP solver to turn rational

solution into feasible integral solutions.

VI. CONCLUSION

We just presented a Project/Expand decomposition scheme

for the handling of 2-commodity flow problems set on TE-

ALAIN QUILLIOT: ALGORITHMIC HANDLING OF TIME EXPANDED NETWORKS 675



Networks and involving a coupling constraint. We focused

here on the Expand issue, and proposed approaches based on

the implicit management of the TE-Network.

Still, some issues remain open. One of them is the time

dependency, when the state of the network evolves over time.

Another one is about dynamicity and robustness since routing

decisions are usually taken in a dynamic way and must cope

with some uncertainty.

ACKNOWLEDGMENT

Present work was funded by French ANR: National Agency

for Research, Labex IMOBS3, and PGMO Program.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, M. R.Reddy, Applications

of network optimization, Chapter 1 of Network Models, Handbook
of Operation Research and Management Science 7, pp. 1-83, 1995.
doi.org/10.1016/S0927-0507(05)80118-5

[2] J. Aronson, A survey of dynamic network flows, Ann. Oper. Res. 20,
pp. 1-66, 1989. doi.org/10.1007/BF02216922

[3] C. Artigues, E. Hébrard, A. Quilliot, H. Toussaint, Models and algo-

rithms for natural disaster evacuation problems, Proc. 2019 FEDCSIS
WCO Conf., p 143-146, 2019. doi.org/10.15439/2019F90

[4] R. Bellman, On a routing problem, Quarterly of Applied Mathematics,
16, p 87-90, 1958.

[5] F. Bendali, J. Mailfert, E. Mole-Kamga, A. Quilliot, H. Toussaint, Pipe-

lining dynamic programming process in order to synchronize energy

production and consumption, Proc. 2020 FEDCSIS WCO Conf., p
303-306, 2020. doi.org/10.15439/978-83-955416-7-4.

[6] F. Bendali, J. Mailfert,and A. Quilliot, Flots entiers et multi-flots

fractionnaires couplés par une contrainte de capacité, Investigacion
Operativa, 9, 2001. DOI : 10.1051/ro:2006003

[7] S. Bsaybes, A. Quilliot, A. Wagler, Fleet management for autonomous

vehicles using flows in time-expanded networks, TOP, Springer Verlag
27 (2), pp. 288-311, 2019. DOI: 10.1007/s11750-019-00506-4

[8] D. Chemla, F. Meunier,Bike sharing systems: the static rebalanc-

ing problem, Discrete Optimization 10 (2), p 120-146, 2013.
doi.org/10.1016/j.disopt.2012.11.005

[9] A. O.Fleischer, M. Skutella, Quickest flows over time,
SIAM Journal of Computing 36 (6), p 1600-1630, 2007.
doi.org/10.1137/S0097539703427215

[10] S. Fidanova, O. Roeva, M. Ganzha, Ant colony optimization algorithm

for fuzzy transport modelling, Proc. 2020 FEDCSIS WCO Conference,
p 237-240, 2020. doi.org/10.15439/978-83-955416-7-4

[11] R. Ford and D. Fulkerson, Flows in networks, Princeton University
Press, 1962.

[12] J. L.Gonzalez, M. Baiou,A. Quilliot, H. Toussaint, A. Wagler,Branch and

cut for a two commodity flow relocation model with time constraints,
Combinatorial Optimization. ISCO 2022. LNCS 13526. Springer, Cham.
2022. doi.org/10.1007/978-3-031-18530-4-2

[13] M. S.Hall and S. Hippler, Multi-commodity flows over time, Theoretical
Computer Sciences, p 58-84, 2007.

[14] N. Kyngas, K. Nurmi, The extended shift minimization personnel task

scheduling problem, Annals of Computer Sciences and Information
Systems 26, p 65-74, 2021. doi.org/10.15439/978-83-959183-9-1

[15] K. Kishkin, D. Arnaudov, V. Todorov, S. Fidanova, Multicriterial

evaluation and optimization of an algorithm for charging energy storage

elements, Annals of Computer Sciences and Information Systems 26,
p 61-64, 2021. doi.org/10.15439/978-83-959183-9-1

[16] W. B.Powell and P. Jaillet, Stochastic and dynamic networks and network

routing, Handbook Operations Research, North Holland, 1995.
[17] F. T.Raviv and M. Tzur, Static repositionning in a bike sharing system:

models and solution approaches, EURO Journal of Transportation and
Logistics 2, p 187-229, 2013. DOI 10.1007/s13676-012-0017-6

[18] J. Schuijbroek, R. C. Hampshire, W. Van Hoeve, Inventory rebalancing

and vehicle routing in bike sharing systems, EJOR 257 (3), (2017).
doi.org/10.1016/j.ejor.2016.08.029

[19] K. Stoilova, T. Stoilov, Bi-level optimization application for urban traffic

management, Proc. 2020 FEDCSIS WCO Conf., p 327-336, 2020.
doi.org/10.15439/978-83-949419-5-6

[20] S. Varone, D. Schindl, C. Beffa, Flexible job shop scheduling problemm

with sequance-dependent transportation constraints and setup times,
Annals of Computer Sciences and Information Systems 26, p 97-102,
2021. doi.org/10.15439/978-83-959183-9-1

[21] Q. P. Zheng, A. Arulselvan, Discrete time dynamic traffic assignment

models and solution algorithms for managing lanes, Journal of Global
Optimization 51, p 47-68, 2011. doi.org/10.1007/s10898-010-9618-5

676 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


