
Towards Industry 4.0: Machine malfunction

prediction based on IIoT streaming data

Dragana Nikolova∗, Petre Lameski∗, Ivan Miguel Pires†, Eftim Zdravevski∗

∗Faculty of Computer Science and Engineering,Ss Cyril and Methodius University, Skopje, Macedonia

Email: dragana.nikolova.1@students.finki.ukim.mk, petre.lameski@finki.ukim.mk, eftim.zdravevski@finki.ukim.mk
†Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal

Email: impires@it.ubi.pt

Abstract—The manufacturing industry relies on continuous
optimization to meet quality and safety standards, which is part
of the Industry 4.0 concept. Predicting when a specific part of a
product will fail to meet these standards is of utmost importance
and requires vast amounts of data, which often are collected
from variety of sensors, often reffered to as Industrial Internet
of Things (IIoT). Using a published dataset from Bosch, that
describes the process at every step of production, we aim to train
a machine learning model that can accurately predict faults in
the manufacturing process. The dataset provides two years of
production data across four production lines and 52 stations.
Considering that the data generated from each production part
includes more than four thousand features, we investigate various
feature selection and data preprocessing methods. The obtained
results exhibit Area Under the Receiver Operating Characteristic
Curve (AUC ROC) of up to 0.997, which is remarkable and
promising even for real-life production use.

Index Terms—Industrial Internet of Things, Industry 4.0,
Machine malfunction prediction, Machine failure prediction

I. INTRODUCTION

T
HE ONGOING progression of the fourth industrial rev-

olution, accompanied by a fundamental shift towards

digitization, referred to as Industry 4.0, is advancing at an

exponential rate [1].

In Industry 4.0 systems, the goal is to utilize different

temperature sensors, pressure sensors, audio sensors, camera

devices, etc., as Industrial Internet of Things (IIoT) devices for

machine monitoring and operation control in industrial envi-

ronments [2]. However, performing machine fault diagnosis

and failure prediction is challenging, especially considering

the explainability and interoperability requirements.

Introducing predictive maintenance to production environ-

ments can provide many benefits, albeit with a few challenges.

Some benefits include heightened productivity, decreased sys-

tem faults, minimized unplanned downtimes, optimized uti-

lization of financial and human resources, and improved

planning of maintenance interventions as stated in [3] [4]. In

addition, employing machine learning is an effective means

of accomplishing prognostics and predicting failures [5]. Pre-

dicting when a part of a product will fail is paramount in

identifying and preventing defects, thereby improving product

quality and safety [6]. By leveraging data generated from each

production part, manufacturers can determine whether a part

has a weakness and take appropriate action.

Bosch, a leading manufacturer, recognizes this need and

has started recording data at every step of the production

process. In 2016, they published an anonymized dataset on

Kaggle that provides valuable insights into two years of

production data across four production lines and 52 stations
1. Each workstation in the production process performs a

variable number of tests and measurements on each part,

generating 4,264 features. This experiment aims to train a

machine learning model that can accurately predict faults in

the manufacturing process using this dataset.

Given the vast number of features in the dataset, data pre-

processing and feature selection is a critical step in the model

development process [7], [8]. The enormous data growth

requires using big data architectures for efficient, robust, and

timely processing of it [9]. In turn, it requires the use of

efficient algorithms for optimizing hardware resources and

minimizing computational cost [10].

In this paper, we perform analyses and feature extraction

techniques for numerical, date, and categorical data types

to ensure only the most relevant data are used to train the

model. With this approach, we aim to create a highly accurate

machine-learning model that can aid the manufacturing in-

dustry in predicting faults in the manufacturing process using

a training dataset where 6,879 parts out of 1,183,747 were

labeled as failed, which is a 0.58 error rate. This relatively

low error rate presents a significant challenge in creating an

accurate predictive model. Figure 1 shows the number of failed

parts per line on the left and the number of failed parts per

station, indicating that station S32 has a significantly higher

number of failures than the rest.

We aim to solve a classification problem to predict whether

a product part will fail to meet quality and safety standards

during manufacturing. To achieve this, we trained separate

machine learning models such as Random Forest, Deci-

sion Tree, GradientBoostingClassifier, AdaBoostClassifier, and

XGBoost. After evaluating the performance of each model, we

found that the XGBoost model had the highest accuracy in

predicting faults. Therefore, it was chosen as the final model

for the task.

This paper is organized as follows. Section II extensively

reviews the machine-learning approaches used for machine

1https://www.kaggle.com/c/bosch-production-line-performance

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 291–296

DOI: 10.15439/2023F677

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 291 Topical area: Advanced Artificial

Intelligence in Applications



malfunction prediction. In Section III, we introduce our

proposed method and provide a detailed explanation of the

approach that we are using. Section IV describes the dataset

used in our study and presents the results obtained from our

experimental analysis. Finally, in Section V, we summarize

our findings and conclusions from our research, discussing the

potential impact of our work on the manufacturing industry.

II. RELATED WORK

The foundation of this study lies in the preprocessing and

feature extraction of numerical and time series data, as well as

in classification for malfunction prediction. In the following,

we delve into related research on these topics.

A paper focuses on methods for fault prediction [11] and

using raw sensor data elaborates on the differences between the

Support Vector Machine (SVM) and the Multilayer Perceptron

(MLP) for fault prediction. This paper presented an initial

development of a supervised machine learning algorithm for

diagnosing faults in rotating machinery in the oil and gas

industry. They aim to create a simple, easily implementable

model that enables quick, informed decision-making. Some

preprocessing steps explained in the study are filling in the

missing values using linear interpolation, feature engineering

performed to introduce the correlation between a data sample

and preceding samples in chronological order, and data related

Fig. 1. (above) Number of failed parts by a production line in the training
dataset (below) Number of failed parts per production station in the training
dataset

to downtime and start-up periods filtered out. As a result, the

SVM algorithm demonstrated higher precision than MLP but

lower recall for the positive class.

[12] discusses the problem of hardware failures in circuits

due to aging or variations in circumstances. While self-healing

and fault tolerance techniques can recover circuitry from a

fault, fault prediction can be used as a pre-stage to these

techniques. The proposed method for early fault prediction

of circuits uses Fast Fourier Transform, Principal Component

Analysis, and Convolutional Neural Network to learn and

classify faults. The approach was validated by testing it on

two different circuits (comparator and amplifier) using 45 nm

technology, providing a fault prediction accuracy of 98.93%

and 98.91%, respectively.

Not only hardware failures but, in an article from [13],

software failures were also analyzed. The quality of software

depends on its bug-free operation, and identifying bugs in the

early stages of development can reduce the cost of testing and

maintenance. Software defect prediction models can identify

bugs before release using historical data from software projects

for training. The study used software change metrics for defect

prediction, and the performances of machine learning and

hybrid algorithms were compared. This study uses different

machine learning techniques to create defect prediction mod-

els, including Random Forest, Multilayer Perceptron, Fuzzy-

AdaBost, and Logitboost. With Logitboost, was reached the

best accuracy.

Focusing on the feature extraction part, [14] proposes new

damage classifiers for locating and quantifying damage based

on a supervised learning problem. A new feature extraction

approach using time series analysis is introduced to extract

damage-sensitive features from auto-regressive models. The

coefficients and residuals of the AR model obtained from this

approach are used as the main features in the proposed super-

vised learning classifiers, which are categorized as coefficient-

based and residual-based classifiers. These classifiers are val-

idated using experimental data for a laboratory frame and

a four-story steel structure. They are shown to be able to

locate and quantify damage, with the residual-based classifiers

yielding better results than the coefficient-based classifiers.

Furthermore, comparative analyses show that these methods

are superior to some classical techniques.

The following related work uses the same dataset in our

paper and solves a classification problem for faulted parts.

The authors of [15] used the Bosch dataset uploaded on

Kaggle. First, they trained a model that predicts which parts

are most likely to fail. Then, to manage many categorical

features, they employed the FTRL(Follow The Regularized

Leader) algorithm to train a model using solely categorical

features. Afterward, they stacked the probability predictions

with numerical and date features as a new column. This

technique serves as a means of reducing features, in which all

the categorical features are condensed into one feature column.

The top 200 features were used to train an XGBoost model on

the entire training dataset, which consists of approximately 1

million samples. The training data were randomly divided into

292 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



three subsets, each containing 33% of the data. Three separate

XGBoost models with the same hyperparameters were trained

on 67% of the data and evaluated on the remaining 33% of

the data.

Authors in [16] propose a systematic feature engineering

and selection methodology considering data from a variety

of sensors. From the originally recorded time series and

some newly generated time series, a variety of time and

frequency domain features are extracted and then selected.

Such approaches can be also used in the machine malfunc-

tion problems where there is abundancy of time-series data

originating from IoT devices and sensors.

The main focus in many related papers is typically on

data preprocessing, and this was also our primary focus. Our

work dealt with numerical features and extracted additional

features from the date values, emphasizing capturing the

time dependence between different parts. For example, in

[15], the feature extraction was made directly on the features

combined, while we deal with numerical and date features

separately with different techniques for each. However, we

also devoted significant attention to analyzing the raw data, as

the time series data provided by Bosch were anonymized and

normalized, which made it necessary to create estimations of

the duration in the time series data. We were able to leverage

this information to develop additional features based on the

date values.

Additionally, we paid careful attention to null values during

feature extraction, given the large number of numerical values

we were dealing with (970 in total). Finally, we addressed the

challenge of imbalanced data by performing downsampling

and oversampling. We use a gradient-boosted decision tree

as our primary model for malfunction prediction. This robust

algorithm can handle complex data structures and identify the

most valuable features for predicting the desired outcome.

III. METHODS

The primary objective of this paper is to develop a fault

prediction model using the Bosch dataset. The dataset was

released by Bosch in 2016 as a challenge to improve its

future defect reduction efforts. Furthermore, we aim to solve

a classification problem using the dataset. We trained different

models separately, Random Forest, Decision Tree, Gradient-

BoostingClassifier, AdaBoostClassifier, and XGBoost. After

evaluation, we found that the XGBoost model produced the

highest accuracy.

The numerical data in the dataset contains many zero values,

with 929,125,166 fields or 80.91% of the total being empty.

However, this is not surprising, as each part goes through a

specific set of stations and measurements, and empty cells

indicate that a part did not undergo a particular measurement

at a certain station or line. As such, these zero values are

not considered missing data, and filling them using standard

methods like mean imputation or forward/backward filling is

inappropriate.

The dataset comprises 970 numerical columns, including

the Id and Response columns. There are no columns with all

null values, so such columns cannot be dropped. However,

227 columns have 99% null values, and their relevance must

be determined to decide whether to keep or discard them.

Upon closer inspection, we found that 11 of these columns

have non-zero values for parts that were not classified as

failed, and these can be immediately removed. We calculated

Pearson correlation coefficients between the 11 columns and

the Response variable to ensure these columns are irrelevant.

That indicated correlation values close to zero, meaning they

are not significantly correlated with the outlier parameter and

can be safely removed.

Our next step is to use the XGBoost model to identify the

most and least significant numerical features to reduce the set

of features. First, we ran the model on the remaining 227

columns from the previous step and found that 107 features

had a significance of 0.005 or less, so we removed them. This

process left us with 852 numerical features.

Next, we applied the XGBoost model to the remaining

852 columns and removed those with more than 90% null

values and a significance of 0, resulting in the removal of 218

columns. It brought the total number of numerical features

down to 634, reducing the percentage of empty fields to

47.58% from the initial 80.91%.

Of the remaining 534 columns, 100 had a significance

greater than 0 and more than 90% non-zero values, so we used

them directly in the model. For the remaining 434 columns,

we found that, on average, 49 columns had over 50% non-zero

values. Therefore, for each of these 49 columns, we merged 10

zero columns and used them in the combining process, where

the first non-zero value is taken. As a result of these steps, we

ended up with 149 numerical features and 13.58% null fields.

Moving next to the date features, we have extracted some

features from the existing date features, and then we have

added additional date features with a focus on time dependence

between parts.

To include time dependence, we added the following time

domain features:

1) Number of parts in one takt (6 minutes). To calculate the

number of parts that pass through the measuring stations

in one takt, we look for the consecutive parts with the

same starting takt where the first column is the takt and

the second column is the number of parts that pass in

the same takt.

2) Number of failures in the next 1, 10, 24 hours

3) Number of failures in the last 1, 10, 24 hours

The date features represent the date and time the measure-

ments were taken. These features can be important because

they capture temporal patterns and trends that may be relevant

for predicting the target variable.

Since the test and training data are consecutive parts with

indices from 1 to 2,367,494, the specified features are appro-

priate for the training and unlabeled data.

Of the 4,258 categorical features, 1,913 are duplicates and

will be removed. Among the remaining ones, 1,549 have

a single value, and 428 have multiple values. Any empty

feature will also be discarded. Categorical feature values are

DRAGANA NIKOLOVA ET AL.: TOWARDS INDUSTRY 4.0: MACHINE MALFUNCTION PREDICTION BASED ON IIOT STREAMING DATA 293



represented as classes denoted by T followed by a num-

ber, which labels different processes. For instance, column

L1_S24_F1269 contains four classes: ’T1372’, ’T618624’,

’T83888’, and ’T8389632’. After removing duplicates and

empty features, we use one-hot encoding to represent each

category with an integer. One-hot encoding transforms a

single variable with d distinct values into d binary variables,

where each observation indicates a particular binary variable’s

presence (1) or absence (0). This results in a vector of size

988 for each row, but since most values are zero, we end up

with a sparse matrix. To avoid overfitting, we will compare

the performance of the model with and without categorical

features.

Moreover, we will reduce the dimensionality of the resulting

matrix using a dimensionality reduction algorithm. Sparse

PCA is an unsupervised learning method used in statistical

analysis to identify sparse features that can reconstruct the

data. We will replace the 988 features with 5 features obtained

from Sparse PCA.

After processing the features, we have 1,183,747 rows and

173 features from the training set, of which 19 are date, 149

are numeric, and 5 are categorical.

Classification models aim to assign data to different classes,

but in an unbalanced dataset, one class may have a much larger

number of samples than the other classes. It creates a majority

class and a minority class, which can be problematic during

model training because the model may not learn enough about

the minority class. In our case, the defect class is the minority

class, with only 6,879 parts, or 0.58% of the training data

being defects.

One effective approach is to reduce the sample size of

the majority class and increase the weight of the minority

class. It can be achieved by either downsampling the majority

class or oversampling the minority class. Downsampling may

lead to a loss of information, while oversampling can result

in overfitting. [17] elaborate on the sampling approaches,

and they suggest that downsampling approaches give a better

overall performance on all datasets. Thus, we tested the model

with both techniques, and the best results were achieved

by oversampling the minority class and downsampling the

majority class.

IV. EXPERIMENTS

In this section, we describe the datasets and the experimental

results obtained in our study.

A. Data description

Bosch, a leading manufacturing company, has made a

dataset available on Kaggle as part of a research project to

assess the quality and safety of its manufacturing recipes. The

dataset tracks parts as they move through the production lines,

each with a unique identifier that serves as a row in the dataset.

The dataset is a time series, with each row representing a

specific section and the date attribute providing the time when

each measurement was taken.

The dataset contains three types of characteristics: numeric,

categorical, and date characteristics. Each feature is named

according to a specific convention, including the line, station,

and feature number. For example, the feature L1_S25_F2202

was measured at line 1, station 25, and has a sequence

number of 2202. Therefore, this feature is measured in column

L1_S25_D2203, since each feature Lx_Sy_Fn is calculated at

time Lx_Sy_D(n+1).

By processing the column names, we concluded that there

are four lines and 52 segment stations. Each line performs a

specific production process, and one line can have multiple

stations where different operations are performed, such as

machining, turning, and welding. Line L0 has stations S0

to S23, line L1 has stations S24, S25, line L2 has stations

S26, S27, S28, and line L3 has stations S29 to S51. Each

workstation performs various tests and measurements on a

given part, resulting in 4,264 features. We have 969 numeric

features, 1,156 date features, and the rest are categorical.

The date features are normalized and given as takt time,

which is a value for how long it takes for a process to fulfill

the demand. To determine the period the data represent, we

analyzed the unique values in the date features. There are

105,413 unique values, ranging from 0 to 1,718.48, with

a rate of 0.01. Figure 2 shows a graph of the values and

their frequencies, indicating space in the middle, meaning no

measurements were made during that period.

We conducted an autocorrelation analysis using a lag func-

tion to understand the time dependence between the parts

further. The results are presented in Figure 3, where the

most significant values are at 1,675, with 7 local maxima

corresponding to 7 days of the week. Therefore, 16.75 in the

normalized data correspond to one week, and the data have

a granularity of 6 minutes. It means that 0.01 corresponds to

6 minutes, and 1 corresponds to 600 minutes or 10 hours,

indicating that the data correspond to two years.

For each part, we determined the maximum and minimum

date, their difference, and the station with the maximum and

minimum time. We also calculated the path size for each part

by counting the number of non-zero values. Additionally, we

found the week for the maximum and minimum dates by

calculating a module of 16.75 on such values. Given the week,

we labeled each day of the week, where 1 is Monday, 2 is

Tuesday, 3 is Wednesday, 4 is Thursday, 5 is Friday, 6 is

Saturday, and 7 is Sunday. Therefore, there are a total of 10

date features. In addition, as described previously, we added

9 features based on time dependence. Overall, in addition to

focusing on the preprocessing of the data, we also analyzed

the raw data to extract useful features for our model.

294 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 2. Date values with frequencies

Fig. 3. Autocorrelation of date features. Autocorrelation for the number of
observations recorded daily as a function of the time lag between them.

B. Experimental setup

After extracting features from the dataset, we train multiple

classifiers on a balanced dataset. The classifiers include Ran-

dom Forest, Decision Tree, Gradient Boosting, Ada Boosting,

and XGBoost. Next, we will compare the accuracy results

between 20% of testing data and the entire training dataset.

Then, using the unlabeled dataset, we will predict the number

of faults.

To obtain the best results, we have trained models using

different combinations of features. We found that including

all features (date, numerical, and categorical) resulted in

the worst accuracy. Therefore, we removed the categorical

features, leading to the models’ highest accuracy. We also

compared the results using standardized features and raw

features. Standardized features yielded better results, and we

used Z-Score Standardization. Z-Score Standardization is a

widely used method to standardize data in machine learning.

It transforms each value of a given feature in the dataset to a

representative number of standard deviations away from that

feature’s mean. The resulting standardized value measures how

far the raw value is from the mean in standard deviation units.

C. Accuracy results

Because we are dealing with an unbalanced dataset, for

correct accuracy results, we have to consider true positives,

true negatives, false positives, and false negatives. AUC-ROC

(Area Under the Receiver Operating Characteristic Curve)

plots the true positive rate (sensitivity) against the false

positive rate (1-specificity) at various threshold settings and

calculates the area under the curve. The AUC-ROC score

ranges from 0 to 1, with higher values indicating better

performance. MCC (Matthews Correlation Coefficient): MCC

is a correlation coefficient used in binary classification that

considers true positives, true negatives, false positives, and

false negatives. MCC ranges from -1 to +1, with +1 indicating

a perfect classification, 0 indicating a random classification,

and -1 indicating a completely wrong classification. F1-Score

(F-Measure): F1-score is the harmonic mean of precision and

recall. It provides a single score that balances precision and

recall and is often used to measure a model’s performance in

binary classification. F1-score ranges from 0 to 1, with higher

values indicating better performance.

After several tests of the parameter values, the fol-

lowing obtained the best result using the XGBoost clas-

sifier: learning_rate=0.2, n_estimators=100, max_depth=16,

min_child_weight=3, colsample_bytree=0.9, gamma=1, sub-

sample=0.9, booster=’gbtree’, objective=’binary:logistic’.

Table I reports results regarding AUC ROC, MCC, Pre-

cision, Recall, and F-Score on the training dataset. Table II

provides accuracy scores on 20% testing data.

TABLE I
SUMMARY OF ACCURACY SCORES ON TRAINING DATASET

Model AUC ROC MCC Precision Recall F-Score

Random Forest 0.705 0.148 0.53 0.71 0.51

Decision Tree 0.717 0.149 0.53 0.72 0.51

Gradient Boosting 0.691 0.22 0.56 0.69 0.59

Ada Boosting 0.629 0.187 0.57 0.63 0.59

XGBoost 0.906 0.808 0.9 0.91 0.9

TABLE II
ACCURACY SCORES ON 20% TEST DATA

Model AUC ROC MCC

Random Forest 0.801 0.613
Decision Tree 0.986 0.972

Gradient Boosting 0.917 0.837
AdaBoost 0.903 0.809
XGBoost 0.997 0.994

The evaluation metrics also provide additional insights into

the performance of the models. For example, the XGBoost

model achieved the highest accuracy of all the models, indi-

cating that it correctly classified most test sets. In addition,

the XGBoost model also has the highest F1 score, meaning

a good balance between precision and recall. On the other

hand, the other models, such as Gradieng and Ada Boosting,

struggled to classify the fault class, reflected in their lower F1

scores. The MCC scores were also generally low for all models

except XGBoost, indicating that the models had trouble with

the imbalanced nature of the dataset. However, the AUC-ROC

scores for Random Forest and Decision Tree were relatively

high, suggesting they could distinguish between the positive

and negative classes reasonably well. The results indicated that

the XGBoost model is the most effective for this classification

task.

DRAGANA NIKOLOVA ET AL.: TOWARDS INDUSTRY 4.0: MACHINE MALFUNCTION PREDICTION BASED ON IIOT STREAMING DATA 295



Using the best accuracy model, XGBoost, to classify the

additional unlabeled dataset, we identified 60,028 out of

1,183,748 samples as faulty. It means that the fault rate in the

unlabeled dataset is approximately 5.07%. This information

can help identify potential issues in the manufacturing process

and improve the quality control procedures. However, the

accuracy of the classification results on the unlabeled dataset

may vary depending on the data’s quality and representative-

ness and the model’s performance on unseen data.

V. CONCLUSION

This paper presented a novel approach to predict malfunc-

tions in manufacturing processes using the Bosch manufac-

turing dataset. The dataset is large and complex, containing

many features with varying data types.

In this study, we addressed the challenge of handling a large

number of features in the Bosch manufacturing dataset. The

feature extraction process was a crucial step in the predictive

modeling pipeline. We performed an iterative feature selection

process to identify the most relevant features for predicting

malfunctions in the manufacturing process. Additionally, time-

dependent features were added to the dataset, improving

the predictions’ accuracy. The feature selection process was

carried out carefully to ensure the selected features were

relevant for the prediction task while avoiding overfitting the

training data. The selected features were then used to train

and evaluate various machine learning models. Handling the

unbalanced dataset was another key factor in achieving high

accuracy scores, and this was accomplished by performing

both downsampling on the majority class and oversampling

on the minority class. The study results showed that XGBoost

outperformed the other models in terms of accuracy scores,

including AUC ROC, MCC, and F1-score.

The proposed approach of supervised malfunction predic-

tion using machine learning models and feature engineering

can have significant implications in the manufacturing indus-

try. Manufacturers can proactively prevent downtime, optimize

maintenance schedules, and minimize production losses by

accurately predicting malfunctions. As a result, it can improve

manufacturing operations’ efficiency and productivity, leading

to cost savings and increased profitability. Moreover, the

approach can also help identify patterns and insights in the data

that can be used for process optimization and improvement.

In future work, we aim to extend our study to include

categorical features. While we made significant progress in

feature extraction and handling unbalanced data, the cate-

gorical features remain an important part of the dataset that

needs further investigation. Therefore, we plan to explore

various techniques for feature extraction on categorical data

and evaluate their impact on the model’s overall accuracy.

ACKNOWLEDGMENT

This work was partially financed by the Faculty of Computer

Science and Engineering at the Ss. Cyril and Methodius Uni-

versity, Skopje, Macedonia. This work is also partially funded

by FCT/MEC through national funds and, when applicable, co-

funded by the FEDER-PT2020 partnership agreement under

the project UIDB/50008/2020.

REFERENCES

[1] M. Ghobakhloo, “Industry 4.0, digitization, and opportunities for sus-
tainability,” Journal of cleaner production, vol. 252, p. 119869, 2020.

[2] B. Natesha and R. M. R. Guddeti, “Fog-based intelligent machine
malfunction monitoring system for industry 4.0,” IEEE Transactions on

Industrial Informatics, vol. 17, no. 12, pp. 7923–7932, 2021.
[3] K. Wang and Y. Wang, “How ai affects the future predictive main-

tenance: a primer of deep learning,” in Advanced Manufacturing and

Automation VII 7. Springer, 2018, pp. 1–9.
[4] P. Poór, J. Basl, and D. Zenisek, “Predictive maintenance 4.0 as

next evolution step in industrial maintenance development,” in 2019

International Research Conference on Smart Computing and Systems

Engineering (SCSE), 2019, pp. 245–253.
[5] Z. M. Çınar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael,

and B. Safaei, “Machine learning in predictive maintenance towards
sustainable smart manufacturing in industry 4.0,” Sustainability, vol. 12,
no. 19, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/
12/19/8211

[6] Y. Ren, “Optimizing Predictive Maintenance With Machine Learning
for Reliability Improvement,” ASCE-ASME J Risk and Uncert in Engrg

Sys Part B Mech Engrg, vol. 7, no. 3, 05 2021, 030801. [Online].
Available: https://doi.org/10.1115/1.4049525

[7] E. Zdravevski, P. Lameski, A. Kulakov, S. Filiposka, D. Trajanov, and
B. Jakimovski, “Parallel computation of information gain using hadoop
and mapreduce,” in 2015 Federated Conference on Computer Science

and Information Systems (FedCSIS). IEEE, 2015, pp. 181–192.
[8] E. Zdravevski, P. Lameski, A. Kulakov, B. Jakimovski, S. Filiposka,

and D. Trajanov, “Feature ranking based on information gain for
large classification problems with mapreduce,” in 2015 IEEE Trust-

com/BigDataSE/ISPA, vol. 2. IEEE, 2015, pp. 186–191.
[9] E. Zdravevski, P. Lameski, C. Apanowicz, and D. Slezak, “From big

data to business analytics: The case study of churn prediction,” Applied

Soft Computing, vol. 90, p. 106164, 2020.
[10] M. Grzegorowski, E. Zdravevski, A. Janusz, P. Lameski, C. Apanowicz,

and D. Slezak, “Cost optimization for big data workloads based on
dynamic scheduling and cluster-size tuning,” Big Data Research, vol. 25,
p. 100203, 2021.

[11] P. F. Orrù, A. Zoccheddu, L. Sassu, C. Mattia, R. Cozza, and S. Arena,
“Machine learning approach using mlp and svm algorithms for the
fault prediction of a centrifugal pump in the oil and gas industry,”
Sustainability, vol. 12, no. 11, p. 4776, 2020.

[12] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “Machine learning-
based approach for hardware faults prediction,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 3880–3892,
2020.

[13] W. Rhmann, B. Pandey, G. Ansari, and D. K. Pandey, “Software fault
prediction based on change metrics using hybrid algorithms: An empir-
ical study,” Journal of King Saud University-Computer and Information

Sciences, vol. 32, no. 4, pp. 419–424, 2020.
[14] M. H. Chegeni, M. K. Sharbatdar, R. Mahjoub, and M. Raftari, “New

supervised learning classifiers for structural damage diagnosis using time
series features from a new feature extraction technique,” Earthquake

Engineering and Engineering Vibration, vol. 21, no. 1, pp. 169–191,
2022.

[15] A. Mangal and N. Kumar, “Using big data to enhance the bosch produc-
tion line performance: A kaggle challenge,” in 2016 IEEE international

conference on big data (big data). IEEE, 2016, pp. 2029–2035.
[16] E. Zdravevski, P. Lameski, V. Trajkovik, A. Kulakov, I. Chorbev, R. Gol-

eva, N. Pombo, and N. Garcia, “Improving activity recognition accuracy
in ambient-assisted living systems by automated feature engineering,”
IEEE Access, vol. 5, pp. 5262–5280, 2017.

[17] S. Tyagi and S. Mittal, “Sampling approaches for imbalanced data
classification problem in machine learning,” in Proceedings of ICRIC

2019: Recent Innovations in Computing. Springer, 2020, pp. 209–221.

296 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


