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Abstract—The rapid growth of the Internet of Things has
significant security implications. In the current IoT security
landscape, many institutions and entities are defining security
requirements, but no industry-wide standard has been agreed
upon. There are solutions in the present state-of-the-art that fulfill
a subset of secure IoT device requirements, but none adheres to
all of them. However, the existing technologies introduced by
those solutions could be combined to create a design framework
which provides security baseline features to support requirements
of a secure IoT device. In this paper, a configurable and com-
prehensive hardware-software security framework is proposed,
that, when applied in the process of designing System on Chip
for IoT, will ensure its cybersecurity by providing security core
baseline features. The proposed sollution is CPU-agnostic, in the
sense that no assumptions are made about the CPU’s support
for privilege levels, memory protection schemes, or any security
mechanisms.

I. INTRODUCTION

I
oT devices are becoming an increasingly important aspect

of our lives and can be sensed everywhere around us.

Due to the inherent characteristics of IoT devices, data is

continuously transmitted, processed, and stored in the cloud.

Studies have indicated that many IoT devices that have been

compromised lack adequate security measures. IoT security is

not just device security, as all elements need to be considered,

including the device, cloud, mobile application, network inter-

faces, software, use of encryption, use of authentication, and

physical security. Recent research directions in IoT focus on

addressing these challenges and improving the performance

and security of IoT systems [1].

Much research focuses on software, network, and cloud

security; however, hardware security in these devices has been

overlooked. Although software-based solutions are less expen-

sive to implement and update, they have their limitations and

are also more vulnerable to attacks. Hardware-based solutions

may be more expensive and time-consuming to implement,

but integrating hardware security can significantly strengthen

the system’s defenses against attackers and in the long run,
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this type of solution is better positioned to protect sensitive

communications and personal data from exposure.

Many renowned institutions have already come forward with

their security guidelines for developers, distributors, and users.

Among the first was the National Institute of Standards and

Technology (NIST), that in [2] has defined an Internet of

Things (IoT) device cybersecurity capability core baseline,

which is a set of device capabilities generally needed to sup-

port common cybersecurity controls that protect an organiza-

tion’s devices as well as device data, systems, and ecosystems.

This core baseline provides organizations a starting point to

use in identifying the device cybersecurity capabilities for new

IoT devices they will manufacture, integrate, or acquire.

In [3] the authors provide an overview of security guidelines

for IoT proposed by various organizations and evaluate some

of the existing technologies applied to ensure IoT secu-

rity against these guidelines. In the paper, recommendations

proposed by selected government organizations, international

associations, and advisory groups are gathered and compiled

into a set of the most common and important considerations,

divided into eight categories. Then the authors chose a number

of representative examples from IoT security technologies and

evaluated them against these criteria. Conclusions captured

in that paper show that there is no exhaustive and CPU-

agnostic solution. While none of the examined solutions fulfill

all recommendations on their own, the existing technologies

introduced by those solutions could be combined to create a

design framework that satisfies all the requirements of a secure

IoT device.

In this paper the concept of an IoTrust framework has been

proposed. This hardware-software solution, when applied in

the process of designing System on Chip (SoC) for IoT, will

ensure its cybersecurity by providing security core baseline

features. The proposed framework architecture assumes the

combination of the mechanisms from the area of Hardware

Root of Trust (HWRoT), Trusted Execution Environment

(TEE), and Trusted Computing in order to ultimately create a

configurable and comprehensive solution ensuring the security

of IoT nodes.
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II. STATE OF THE ART

The security of IoT devices is an area of active research

due to unsatisfactory levels of safety and the immense range

of applications. The constrained resource nature of many IoT

devices increases the challenge of an all-in-one solution. That

is why there are many solutions that solve pinpointed areas of

the SoC, but the security of the entire device is still a novel

topic which has yet to have an industry-wide accepted solution.

A. Key enabling technologies

Security architectures defined for traditional embedded sys-

tems are also currently used in IoT devices, solving some

security issues. However, further improvements to these ar-

chitectures are necessary to address new varieties of device

vulnerabilities in the IoT ecosystem. Trustworthy computing

is a major challenge in the field of cybersecurity.

1) Trusted Execution Environments: Solution which pro-

vides a secure environment for applications to run, regardless

of the security in the rest of the system. TEEs are complex

systems that consist of both hardware and software com-

ponents and offer an enhanced execution environment [4].

TEE is a tamper-resistant computing environment running a

separation kernel that guarantees the authenticity of program

code, integrity of crucial system assets (processor registers,

secured memory), and confidentiality of code and data stored

in persistent memory [4]. Additionally, a TEE is useful in

providing authentication and identification of the system. To

the outside world, TEE is a module that guarantees isolation

between secure and non-secure environments for both code

and data.

2) Hardware Root of Trust: A key technical challenge

for TEEs is ensuring trust, meaning that the system behaves

as expected by the user. To address this challenge, there

has been significant support for the use of hardware-based

root-of-trust (HRoT) implementations to establish trust in

secure computing. Hardware RoTs are preferred over software

RoTs due to their immutability, smaller attack surfaces, and

more reliable behavior. They can provide a higher degree of

assurance that they can be relied upon to perform their trusted

functions [5].

3) Physically Unclonable Functions: A Physically Un-

clonable Function (PUF) is a physical random function that

typically displays a unique challenge-response behavior for

each of its instances. The response to a given challenge is

randomly generated based on the intrinsic physical properties

of the hardware in which it is embedded. Recently, PUFs have

been proposed as key components in cryptographic mecha-

nisms and security architectures [6]. They can be used for

device identification and authentication, binding software to

hardware in a platform, securely storing cryptographic secrets

and designing secure protocols.

B. Existing solutions

Trusted computing solutions for IoT devices are essential for

ensuring the security and integrity of IoT systems. To address

this challenge, a number of solutions have been proposed.

Some of them are already mature and currently in use for IoT

devices, and some are emerging concepts that might bring new

quality to the topic.

The evaluation of representative IoT security technologies

against criteria presented in [3] shows that while there are

solutions with the potential to meet all these recommendations,

no solution currently addresses all requirements in an out-of-

the-box capacity. This leaves room for further research in this

field.

Here, we briefly describe a few example solutions.

1) ARM TrustZone: A security extension provided by ARM

for both application processors (Cortex-A family) and mi-

crocontrollers (Cortex-M family) [7]. It is based on a TEE

concept. TrustZone divides the system into secure and non-

secure environments by providing two virtual processors with

hardware-based access control. Memory isolation and a special

processor mode dedicated to monitoring (the secure monitor)

ensure complete separation of the two execution environments

in hardware.

TrustZone offers a comprehensive security solution, but

it requires a good understanding of the framework, creative

implementation, and support from external IPs. It is important

to note that TrustZone is designed for ARM infrastructure

and relies on additional hardware such as CryptoCell and

applications to do so. TrustZone alone is not an off-the-shelf,

ready-to-use solution.

2) Intel SGX: A set of CPU instructions that enable the

creation of isolated software containers called enclaves [8].

These enclaves provide a secure environment for a program’s

code, data, and stack through hardware-based access policy

control and memory encryption. This isolation protects the

program from other processes, even those with higher privi-

lege levels. From a hardware perspective, Intel SGX isolates

Processor Reserved Memory (PRM) and protects it against

all memory accesses from outside an enclave. This includes

access attempts by the kernel, hypervisor, system management

mode, and DMA accesses requested by peripherals.

3) Keystone: An open-source framework designed for cre-

ating TEE environments based on an unmodified RISC-V

architecture [9]. It uses RISC-V Physical Memory Protection

(PMP) and the programmable machine mode (M-Mode) to

implement a memory protection scheme. The Trusted Se-

curity Monitor (SM) is proposed at the M-Mode level and

is responsible for managing secure hardware handling and

context switching between enclaves. The SM should be exe-

cuted entirely from on-chip memory and satisfies typical TEE

requirements such as memory isolation and code/configuration

attestation. Keystone does not provide direct resource manage-

ment; this responsibility falls on the secure enclave application

developer. Also, several platform requirements are listed by the

authors, including support for a trusted boot process, an unique

authentication key dedicated to this process, and a hardware

source of randomness. Keystone can be a good starting point

for securing an IoT device, but it is not sufficient on its own.

4) OpenTitan: An open-source Hardware Root of Trust

implementation endorsed by leading non-profit, academic, and
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commercial organizations [10]. As an open-source project,

its sources are available online for inspection by the broader

community, which should improve its security. While OpenTi-

tan’s core is still under development, and several features are

missing from its early-stage top-l el, its creators’ intentions

are well-documented. In its complete form, OpenTitan should

be a robust solution for securing various systems as a HWRoT

module that supports secure boot procedures and implements

miscellaneous cryptographic primitives.

5) CURE: A security architecture providing Trusted Ex-

ecution Environments with different types of enclaves: sub-

space enclaves provide vertical isolation at all execution priv-

ilege levels, user-space enclaves provide isolated execution to

unprivileged applications, and self-contained enclaves allow

isolated execution environments that span multiple privilege

levels. CURE’s protection mechanisms are based on new

hardware security primitives on the system bus, the shared

cache, and the CPU. It also enables the exclusive assignment

of system resources, such as peripherals, CPU cores, or cache

resources, to a single enclave [11]. The authors assume the

CPU supports privilege levels to separate user space from the

more privileged kernel space through virtual address spaces

using a MMU. Moreover, it is assumed that the system

performs a secure boot on reset, with the first bootloader

stored in CPU Ready-Only Memory (ROM) and verifying the

firmware through a chain of trust.

III. CONCEPT OF THE IOTRUST FRAMEWORK

In this work, we present a security framework called IoTrust

that addresses security issues in a customizable way. The so-

lutions presented are CPU-agnostic, meaning no assumptions

are made about the CPU’s support for privilege levels, memory

protection schemes, or any security mechanisms.

A. Threat model

The presented framework focuses on securing code integrity,

control flow integrity, and confidentiality and integrity of

secrets of an application running on an IoT device installed

in the field. The secrets to be protected include encryption

keys, certificates, and hashes, as well as the application’s

sensitive data. The IoTrust architecture’s trusted computing

base consists of the system’s on-chip hardware components

as well as a dedicated hypervisor software component. While

the source of data in on-chip memory is assumed to be

correct, the framework does not trust off-chip memory, the

operating system, the applications, or the physical protection

provided by the device manufacturer. Side-channel attacks,

cloud security, and network security are beyond the scope of

this work. Potential attacks include cold boot attacks, physical

code injection, and compromising the hypervisor.

B. IoTrust architecture

Fig. 1 shows the architecture of a sample SoC system for

an IoT device based on a standard CPU, system bus fabric,

typical off-chip memory blocks and input/output devices with

additional specialized components of the IoTrust framework.

The IoTrust framework is intended to be a configurable SoC

framework for IoT devices that leverages TEE environment

concepts. A set of developed IP Cores is proposed, which

enable the implementation of a HWRoT, proxy modules that

filter interfaces that are connected to off-chip components, a

secure DMA that encrypts based on per-enclave cryptographic

keys and, a CPU agnostic module that allows compartmental-

ization of software execution space. The proposed solution can

be adapted for IoT implementations using both FPGA (Field

Programmable Gate Array) and ASIC (Application Specific

Integrated Circuit) technologies.

The software part of the framework consists of the Security

Manager Software (SM-SW). It is responsible for managing

enclaves and their lifecycle while acting as a hypervisor. It

allocates processor time to enclaves and queues enclaves that

are waiting for CPU execution time. Using emulated software

interrupts, enclaves are provided with a secure way to interact

with the rest of the system through the SM-SW API and data

exchange between enclaves is enabled. The SM-SW module

also includes interrupt handling of interrupts generated by

the Security Manager Hardware (SM-HW) module during

active enclave switching. This procedure ensures a safe and

secure switch between a potentially untrusted enclave and

the hypervisor code, which has full access to all system

components. For this implementation, the enclave context is

defined as the extension of the processor’s context (the state

of the CPU registers used by the executed program) by adding

the state of API registers included in the SM-HW.

Furthermore, the SM-SW ensures proper configuration of

the hardware modules of the framework at the boot time.

Before starting enclaves, it writes definitions of the privileges

enforced by the hardware, such as the interrupt filtering or

virtual address spaces, to SM-HW registers.

To guarantee a safe enclave switching procedure and suc-

cessful preemption even if the CPU runs malicious code,

SM-SW programs a handshake sequence based on handler

execution and a watchdog timeout.

The software part includes libraries that provide trusted

Application Programming Interfaces (APIs), enabling the im-

plementation of typical cybersecurity mechanisms and mod-

ules that implement functionalities outlined in the aforemen-

tioned core baseline requirements. The solution can provide

a comprehensive, configurable software/hardware framework

for building a trusted TEE runtime environment together with

hardware specific to IoT security solutions.

The hardware part of the IoTrust framework consists of the

following main parameterizable modules that are added at the

SoC level.

The Security Manager Hardware together with the Secu-

rity Manager Software enables the implementation of Trusted

Computing concepts by creating enclaves where code is ex-

ecuted and ensuring their physical isolation (each enclave

has access to dedicated hardware resources), which, with the

proper use of the HWRoT module, allows for the imple-

mentation of a state-of-the-art TEE environment. It manages

transactions between CPU and system bus. Additionally, in-
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Fig. 1. Block level diagram of an example SoC integrating with the IoTrust framework

formation about the currently active enclave is passed to other

IoTrust framework blocks to ensure synchronized isolation

of processes from system devices and enable memory access

(encryption/decryption) associated with the keys tied with the

currently running enclave. Configuration changes and access

violations are reported using a cybersecurity event logging

module and the created logs are sealed to ensure their con-

fidentiality and integrity when read by an authorized entity.

The Hardware Root of Trust (HWRoT) acts as an an-

chor of trust in the system and provides secure hardware

implementations of necessary cryptographic algorithms. This

component consists of hardware modules that provide security

functions necessary to ensure trust within a platform (such

as confidentiality, integrity, verification, authorization, secure

storage, and updating). Its essential traits are immutability and

predictability - it always behaves in the same way under known

conditions. A hardware implementation enables meeting these

conditions. HWRoT is treated as an inherently trusted element

of the system. Thanks to the security services it offers, it

can verify the correctness of subsequently launched software

modules during the runtime of a Rich OS or other kernels. In

this way, trust can be propagated within the platform and, the

so-called Chain of Trust is formed, with HWRoT as the first

element and the operating system or application running in it

as the last. The secure system startup process including the

creation of the Chain of Trust is called secure boot.

The RAM Proxy handles accesses to an external RAM

with data protection. The task of the RAM Proxy module

is to secure and manage accesses to external RAM. It is an

essential component that mediates between the SM-HW and

the memory controller during data exchange. Additionally, it

works closely with the HWRoT module for data encryption

and decryption.

IV. IMPLEMENTATION

The IoTrust framework’s components have been developed

using Verilog HDL and C/assembler. An example SoC based

on the Xilinx Microblaze soft CPU and Vivado system plat-

form has been designed as a proof of concept.

A Trusted Execution Environment of the IoTrust framework

is a secure and isolated execution area within a computing

unit that provides the authenticity of executed code, integrity

of resources (such as CPU registers, memory, or input/output

devices), and confidentiality of code, data, and states of

non-volatile memory. In the IoTrust framework a TEE is

implemented using the concept of enclaves.

An enclave is defined as a secure runtime environment

managed by the Security Manager software and hardware,

along with its metadata (a set of hardware access permissions,

checksums, and digital signatures for the code) and an iso-

lated address space where verified application instances are

launched. Each enclave running on the processor operates in a

separate virtual address space. Access to peripherals is limited

by the Security Manager Hardware and is configurable per

enclave.

A. IoTrust Hardware

1) Security Manager Hardware: The Security Manager

Hardware module (Fig. 2) is directly connected to the CPU and

is responsible for implementing Trusted Computing features.

It is composed of:
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• Enclave switch control – a module that monitors the CPU

instruction bus to detect the sequence of instructions indi-

cating enclave switch. The sequence can be programmed

in the register file. The CPU Proxy is instructed to change

the enclave context when the sequence is detected.

• CPU Proxy – a module responsible for hardware transla-

tion of transaction addresses from the virtual space seen

by a given enclave to the physical space of the system

bus. Transactions that violate access rights are rejected,

and security breach logging processes are started. The

module labels each AXI transaction with the number of

the currently active enclave using AXI USER signals.

This information is used by other IoTrust framework

blocks to ensure isolation of enclaves from each other

and enable memory access by encryption/decryption of

its content using the keys tied with the currently running

enclave.

• Interrupt Proxy – system interrupts are intercepted and

subsequently forwarded to the computing unit only if they

are authorized to be handled by the currently executing

enclave. The Current Enclave register and the Watchdog

interrupt mechanisms enable run-time security control of

the system and detect anomalies. If the designated enclave

fails to handle a specific interrupt within the appropriate

time, the Watchdog module signals a system malfunction

due to an error or a cyber attack. The event is then

reported in a sealed log, and the system is reset.

SM HW

CPU Proxy

CPU
SPACE

SYSTEM
SPACE

Enclave
Switch
Control

Register
Space

Interrupt Proxy

AXI

IRQ

SYSTEM
BUS

CPU

AXI

AXI

- ACCESS CONTROL
- ADDRESS TRANSLATION
- RESPONSE GENERATION
- LOGGING

AXI

Fig. 2. Block level diagram of the SM HW module

2) Hardware Root of Trust: The Hardware Root of Trust

of the IoTrust platform (Fig. 3) consists of three main com-

ponents. The first one is a read-only memory for the first

bootloader, which performs the initial system initialization and

does the initial configuration of the HWRoT blocks during

the secure boot procedure. The next component is the crypto

accelerator block, which implements necessary cryptographic

primitives (including lightweight algorithms suitable for hard-

ware resource-constrained devices) and includes a DMA unit

for efficient data operations. This module assists in the encryp-

tion of RAM for individual enclaves. The last component is

the secret top block, which manages cryptographic keys and

other secrets (such as physical and logical device identifiers,

owner identity). It also generates secure cryptographic random

sequences (to generate cryptographic keys within the HWRoT
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Fig. 3. Block level diagram of the HWRoT module

itself) and includes a Physical Unclonable Function block,

which provides a unique fingerprint for each device.

3) RAM Proxy: RAM Proxy is a component which con-

nects system and the RAM. It intercepts memory accesses

and is responsible for data protection. At first, appropriate

data block is read from the memory and passed to HWRoT

with enclave identifier (for cryptographic key selection) to be

decrypted. If the requested operation is read, the decrypted

data block is transmitted on the system bus. In the case of

write operation, the corresponding data fragment is replaced,

and the data block is then re-encrypted in HWRoT, and

passed to the memory controller. Module has cache buffer

that stores recently read memory blocks and increases the

system’s efficiency, because it allows to reduce the number

of interactions with off-chip memory and the HWRoT.

4) IO Proxy: Allows hardware-based control of interface

access in the SoC. For example, a local JTAG debug interface,

Bluetooth, or Ethernet. It can filter transactions to and from

peripherals. It contains a register that must be accessed by

the SM-SW before usage due to hardware access restrictions

when the peripheral is not enabled.

B. IoTrust Software

The SM-SW is functionally split into several modules. The

Enclave Manager contains the main loop and is responsible for

enclaves’ management. Memory manager allocates/deallocates

memory regions (memory slices) and is responsible for their

safe clearing. It translates between virtual space and physical

system bus addresses (Fig. 4). The hypervisor implements

dedicated mechanisms for scheduling, safe switching of the

enclaves, and data exchange between enclaves.

V. SYNTHESIS RESULTS

Synthesis and implementation were performed using Vivado

tools version 2022. The results presented are for the Trenz

evaluation board TE0712 [12] equipped with a Xilinx Artix-7

XC7A200T FPGA. Table I presents the resource utilization

of the entire system by assessing the number of LUTs, Slice,

DSPs and block RAMs.
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TABLE I
UTILIZATION RESULTS

Used Available Util [%]

Slice LUT
LUT as Logic
LUT as Memory

59719
58105
2064

133800
134600
46200

44.63
43.19
4.47

Slice Registers
Slice

31023
18363

269200
33650

11.52
54.57

Block RAM 41 365 11.23

DSPs 4 740 0.54

The article presents the Proof of Concept of the IoTrust

framework. For this reason, the target solution may be op-

timized for utilization, power consumption, or frequency.

The results presented do not include the HWRoT module.

Considering the number of logic cells used, the solution can

be classified as a lightweight solution.

The power estimation analysis indicates, that the whole SoC

consumes about 1.5 W of power. Since the DDR memory

controler consumes about 1 W of power, the rest of the system

components use 0.5 W of power.

VI. CONCLUSIONS

The IoT ecosystem presents new security challenges beyond

traditional data security. There is a need for IoT security

guidelines, and many organizations worldwide have proposed

recommendations to help ensure secure IoT infrastructure.

While device designers and vendors have their own proprietary

solutions that address some issues, they fall short in others.

Evaluation of representative examples of IoT security tech-

nologies shows that while there are solutions with the potential

to meet all recommendations, none currently do so in an out-

of-the-box capacity.

In this paper, we proposed the concept of the hardware-

software security framework that, when applied in the process

of designing System on Chip for IoT device, will ensure

its cybersecurity by providing security core baseline features.

The proposed IoTrust framework consists of custom hardware

IP Cores designed in Verilog HDL as well as C/assembler

software procedures that can be included in SoC design,

enabling the combination of the mechanisms from the area of

Hardware Root of Trust, Trusted Execution Environment and

Trusted Computing. This ultimately creates a configurable and

comprehensive solution ensuring the security of IoT nodes.

The solution discussed does not make any assumptions

about the CPU’s support for privilege levels, memory protec-

tion schemes, or security mechanisms and is therefore CPU-

agnostic.

A proof-of-concept implementation has been demonstrated

where the IoTrust framework has been applied to SoC based

on MicroBlaze soft-processor. As the prototype platform the

Trenz evaluation board TE0712 equipped with a Xilinx Artix-7

XC7A200T FPGA has been used. Example execution scenar-

ios have been included, that demonstrate basic functionalities

of proposed solution.
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