Proceedings of the 18" Conference on Computer
Science and Intelligence Systems pp. 523-532

DOI: 10.15439/2023F695
ISSN 2300-5963 ACSIS, Vol. 35

Is Homomorphic Encryption Feasible
for Smart Mobility?

Anika Hannemann
Dept. of Computer Science, Leipzig University
Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.Al) Dresden/Leipzig, Germany
Email: anika.hannemann@informatik.uni-leipzig.de

Abstract—Smart mobility is a promising approach to meet ur-
ban transport needs in an environmentally and and user-friendly
way. Smart mobility computes itineraries with multiple means
of transportation, e.g., trams, rental bikes or electric scooters,
according to customer preferences. A mobility platform cares
for reservations, connecting transports, invoicing and billing. This
requires sharing sensible personal data with multiple parties, and
puts data privacy at risk.

In this paper, we investigate if fully homomorphic encryption
(FHE) can be applied in practice to mitigate such privacy issues.
FHE allows to calculate on encrypted data, without having
to decrypt it first. We implemented three typical distributed
computations in a smart mobility scenario with SEAL, a recent
programming library for FHE. With this implementation, we
have measured memory consumption and execution times for
three variants of distributed transactions, that are representative
for a wide range of smart mobility tasks. Our evaluation shows,
that FHE is indeed applicable to smart mobility: With today’s
processing capabilities, state-of-the-art FHE increases a smart
mobility transaction by about 100 milliseconds and less than
3 microcents.

I. INTRODUCTION

ROWING cities, urban sprawls and environmental con-

cerns demand for mobility concepts [1], [2] that go
beyond individual cars [3]. A promising approach is smart
mobility, also known as multi-modal mobility or intelligent
mobility. It refers to the integration of advanced technologies
and intelligent systems into transportation networks to improve
efficiency, safety, and sustainability, to lower emissions and
to enhance the overall quality of urban life. To this end,
smart mobility encompasses solutions from the area of cloud
computing, machine learning and artificial intelligence, that
optimize the movement of people and goods within urban
areas.

With smart mobility, customers can specify a mobility
demand and travel preferences [4], e.g., the shortest, fastest,
most inexpensive or eco-friendliest route from a starting
point to a destination, or the route with the least transfers
between the means of transportation. A cloud-based mobility
platform [5] then lets the customer select an itinerary among
some alternatives [6], [7], [8], [9], and connects to all services
needed to process and settle the trip.

Example: A customer might want to go from a train station
to a stadium and must arrive at the beginning of a game. The

IEEE Catalog Number: CFP2385N-ART ©2023, PTI

523

Erik Buchmann
Dept. of Computer Science, Leipzig University
Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.AI) Dresden/Leipzig, Germany
Email: buchmann@informatik.uni-leipzig.de

Mobility
[* -] Platform
Gy

" Ihave to be at the ‘
_ stadiumat5pm! |

Provider

Customer Mobility ¢
Providers
o0 é i Q‘;@
\ /
)) % =) =
5 min. 3 stops 15 min. -
walking driving cycling ETA: 4.42 pm

Fig. 1. Smart Mobility Scenario

mobility platform queries the databases of the connected mobil-
ity providers, and suggests three options that allow the customer
to reach the destination in time: Based on an assessment of
environmental impact, the most eco-friendly option is to use
a tram to travel three stops to a rental bike station, as illustrated
in Figure 1. As an alternative, a customer could opt to take
a bus for six stops and use an electric scooter for the rest of
the way. The most comfortable but expensive option would be
hiring a cab. Once the customer has selected one option, the
platform makes reservations. It collects the recorded distances
and stations traveled. After the trip, the platform connects to a
billing provider that handles invoicing and payment.

Smart mobility approaches raise numerous privacy con-
cerns [10], [11], [12]: Start and end of a route can reveal
personal needs, e.g., if it is a church, hospital or event location.
It might be possible to identify an individual by recurring
ways home from work and vice versa. If customers frequently
travel together, this might indicate personal relationships. If a
rental sports car is preferred over a suburb train, this might tell
about preferences and wealth. Travel times and frequent routes
reveal habits, employment status or daily routines. What makes
privacy issues even more challenging is that personal data is
distributed among many parties [13], such as providers for
mobility and infrastructure, and various services for payment,

Thematic track: Cyber Security, Privacy and Trust

524

demand forecasting, parking space management, etc.

Existing privacy-aware smart mobility approaches make
use of anonymization, e.g. by using differential privacy [14],
[15], [16] or by reducing the data resolution [17], [18], [19].
Alternatively, secure multi-party computation can be used [20],
[21]. This induces noise to the data and/or requires multiple
rounds of computation among several parties, i.e., it reduces
accuracy, efficiency and, therefore, user experience.

We investigate if fully homomorphic encryption [22] (FHE)
can be an alternative. FHE allows to calculate sums or products
on encrypted data without having to decrypt the data first. The
decryption then provides the exact, noise-free result of the
calculation. This makes FHE a natural choice for calculations
with privacy-related data. However, some calculations increase
the size of the data and/or make encryption, calculations or
decryption computationally expensive. Some years ago, this
limited the practical applicability of FHE in any real setting.

However, vast advances in FHE programming libraries such
as SEAL [23], HEIlib [24] or OpenFHE [25], new paradigms
such as edge computing, and a huge computing power avail-
able at little costs both at edge nodes and cloud services give
reasons for new analyses. For example, in May 2023, a cloud
instance with 128 XEON CPU cores at 3.5 GHz and 512 GiB
RAM and 50 Gbps network bandwith costs only 8 USD per
hour. Our concern is to find out whether the overhead of FHE
for typical smart mobility transactions is reasonable to support
privacy-compliant business models in this application domain.

In this paper, we make the following contributions:

« We identify three distributed transactions that are rep-
resentative for a smart mobility scenario and benefit
from FHE, i.e., require noise-free results and cannot
be readily secured by simpler means such as one-time
pseudonyms [18].

« We implement a prototype based on Microsoft
SEAL [23], which uses the state-of-the-art FHE
schemes BGV [26], BFV [27] and CKKS [28].

« We measure memory consumption and execution times,
and we compare them with the resources available in the
cloud or on a smartphone.

Our evaluation shows that with CKKS, encrypted transac-

tions add approx. 100 ms to the CPU time of unencrypted
transactions. This does not impact user experience [29]. With
parallel processing, this time can be reduced, and it costs
less than 3 microcents on a current cloud instance. Thus, we
have confirmed that FHE is indeed feasible for smart mobility
business models, where such transaction fees are several orders
of magnitude smaller than the billing amount on the customer’s
invoice, but privacy is an important factor.
Paper structure: The next section reviews related work.
In Section III, we derive our smart mobility transactions
with fully homomorphic encryption. Section IV contains an
experimental evaluation, and Section V concludes.

II. RELATED WORK

In this section, we explain the state-of-the-art in (fully) ho-
momorphic encryption, and we briefly review smart mobility

PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

approaches.

A. Homomorphic Encryption

Homomorphic Encryption (HE) is a well-established tech-
nique that enables third-party computation on encrypted data,
without requiring the data to be decrypted beforehand. HE
allows for data to be encrypted while keeping the features
of the function and format of the encrypted data, supporting
privacy-preserving data processing. Although this property
of HE is known already for over than 30 years, the first
plausible FHE approach was proposed by Gentry et al. in 2009
[30]. However, HE is costly in terms of computation and is,
therefore, still subject of ongoing research [22].

The homomorphic property of HE allows certain operations
to be computed over the encrypted data, with the resulting
values also being encrypted. For two messages Vmi,my €
M of a message space M, Eq. 1 shows an HE scheme that
supports any operation on their respective ciphers cj, c2. In
the context of a public-key cryptosystem, the public key is
denoted as k., the private key as kg4, and the encryption and
decryption functions as Enc and Dec, respectively.

c1 = Enc(ke,my), co = Enc(ke,ms2)

1
my & mg = Dec(kq, c1 @ c2) M

Formally, a homomorphic encryption scheme is a quadrupel
HE=(KeyGen, Enc, Dec, Eval) with KeyGen, Enc, Dec
and Fwval being probabilistic polynomial time algorithms:

KeyGen generates a public key k., a private key kg and
an evaluation key k.,q given some security parameter
A for the asymmetric version of HE: KeyGen(1}) —
(km k/‘dv keval)
For the symmetric version, only a secret key k4 and an
evaluation key kc,q; are created.

Enc encrypts a plaintext message m € Z,, to a ciphertext c
using the public key, which is shared: Enc(k.,m) — ¢

Dec uses the private key, which is kept secret, to decrypt a
ciphertext ¢ to a plaintext message m: Dec(kq,c) — m

Eval applies an operation f : Z!, — Z, to a given ciphertext
c1, ..., c; and outputs a ciphertext ¢y using the evaluation
key kevai: Eval(kevar, foc1,-++ 1) = ¢y
kevar 18 generated uniquely for every computation and,
therefore, does not pose a privacy threat. With Ewval,
homomorphism of the scheme can be proven.

B. Fully Homomorphic Encryption

Depending on the support of the operations applied in the
FEval function, HE can be categorized into fully homomor-
phic encryption (FHE), partially homomorphic encryption
(PHE) and somewhat homomorphic encryption (SHE), each
of them with different limitations and capabilities. PHE allows
FEval for one operation @, either addition of multiplication,
for an unlimited number of times. SHE allows both addition
and multiplication, but with a limited number of operations
due to the increasing size of the ciphertext. FHE allows an
unlimited number of operations & for an unlimited number

ANIKA HANNEMANN, ERIK BUCHMANN: IS HOMOMORPHIC ENCRYPTION FEASIBLE FOR SMART MOBILITY?

of times. Addition and multiplication operations as well as
comparison and branching are supported. Therefore, FHE is
the most powerful approach of HE and, therefore, implemented
in this work.

FHE is a form of ring homomorphism with structure pre-
serving characteristics [30]. This allows for arbitrary com-
putations to be performed, as the homomorphic properties
of the ring ensure that the results of the computations can
be obtained without requiring decryption. Which operation
is allowed depends on the FHE scheme; in this work the
well known Brakerski-Fan-Vercauteren (BFV) [27], Brakerski-
Gentry-Vaikuntanathan (BGV) [26] and Cheon-Kim-Kim-
Song (CKKS) [28] schemes are implemented and evaluated.
They are based on on the hardness of the (Ring) Learning With
Errors (RLWE) problem. Learning with Errors is considered
to be one of the hardest, post-quantum problems to solve in
polynomial time: Given (z,y) where y = f(z) for some
linear function f, f can be easily learned. Now, when adding
errors to the algorithm’s input such that y # f(z) for a small
probability, it is assumed that the problem can not be solved
in polynomial time and is, therefore, hard [31].

A subproblem is the Ring Learning with Errors (RLWE), an
extension of the LWE problem for polynomial rings over finite
fields. A major advantage of RLWE is the key size: While
the private and public keys of LWE-based cryptography can
become large, RLWE-based keys are roughly the square root
of LWE [32].

For FHE, there are methods for maintaining the ciphertext,
without modifying the message, such as bootstrapping and
relinearization. In bootstrapping, the evaluation key keyq iS
used to control noise. Thus, any number of FHE operations can
now be computed without noise becoming uncontrollable. In
this context, noise refers to a measure to prevent unauthorized
decryption of encrypted data using the secret key, and it does
not affect the precision of the computation outcome. Relin-
earization handles a common problem of RLWE-based FHE,
whose ciphertext sizes increases with every homomorphic
multiplication. During homomorphic evaluation, relineariza-
tion limits the expansion of the ciphertext to prevent high
computation costs.

The variety of supported operations allow for a wide range
of computations to be performed on encrypted data, making
FHE powerful and versatile and applicable in multiple settings.
In Cloud Computing, FHE is used to protect the client’s data
privacy to process them on an external party [33], [34]. The
line of FHE works on Machine Learning aim to protect the
training data’s privacy in either a collaborative setting [35],
[36] or a federated learning setting [37], [38]. Another relevant
application specifically for this work is private fog comput-
ing for the Internet-of-Things (IoT) which enables multiple
users to authenticate and aggregate data collected with edge
devices [39], [40]. Another work at the intersection of the
previously mentioned areas is the work of Zhang et al. with
an approach to privacy preserving federated learning with IoT-
enabled healthcare system [41].

C. Smart Mobility

The use of IoT technologies has proven to be an appropriate
response to the growth of cities and the associated impact
on traffic and transportation. It has brought up the concept
of smart mobility, which refers to the optimal combination
of various modes of transportation, including e-bikes, e-
rollers, buses, shared cars, tramways, and trains, as well as
infrastructure components such as roads, bridges, airports, and
train stations. As transportation modes continue to grow and
become more interconnected, the resulting complexity can
make it increasingly challenging to efficiently use and combine
available options. To tackle this problem, relevant related work
has been done concerning urban mobility and multi-modal
routing planning. [6], [7], [8], [9], [42] proposed a mobile
recommender system for personalized multi-modal routes by
utilizing a hybrid approach combining various IoT devices,
primarily targeted for private cabs and taxis. The focus of a
contribution of Al-Rahamneh et a. is on creating an multi-
modal urban data platform with context-awareness [2].

[1] provides an analysis on the potentials of multi-modal
travel support, but does not provide a framework or archi-
tecture. A mathematical model for preference-aware transport
matching is contributed by [4]. The European Platforms Ini-
tiative project BIG IoT has been initiated to implement smart
mobility services and applications for Barcelona, Piedmont,
and Berlin/Wolfsburg. It aims to solve the interoperability
gap by defining a generic, unified Web API for smart object
platforms [5].

D. Security and Privacy Issues in Smart Mobility

Smart mobility offers many benefits for urban areas, users
and the environment. However, there are also many privacy
concerns. Smart mobility approaches manage and share both
sensed and user-generated data to a large extent, which
are associated with user identities, spatial information and
temporal information [11], [43], [44]. This might allow to
infer sensitive personal information based on location ho-
mogeneity, location distribution, probability distributions of
locations, and background knowledge, even if the location
data is anonymized [45]. Statistical analyses show that even
the distribution of locations where users stay for some time,
e.g., to switch from one vehicle to another one, is a sen-
sitive information [12]. In addition to that, smart mobility
approaches depend on a complex IT ecosystem with many
different parties, which increases the likelihood of security
incidents. Finally, the IoT technologies used enable new kinds
of cyber-physical attacks [10].

Secure and privacy-aware smart mobility is of interest to
both the research community and society. Nevertheless, there
are are only a few studies targeting smart mobility with
Homomorphic Encryption. For example, [46], [47] provide
a privacy preserving solution for mobile cloud computing
using IoT devices with HE. However, they do not propose
a framework or analysis of the application on smart mobility.

525

526

PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Mobility Platform

* Accounts: user login, preferences
* Bookings: reserved vehicle, seats

Edge Layer

Customers m

Mobility Providers

Billing Providers

Travel preferences
Time constraints
€O, budget *
Comfort
Costs

Travel requests Modes of Travel Payments .
« Start, destination * Rental cars, bikes, scooter ¢ Accounts, banking,
* Time * Tram, bus, train, metro, taxi information

* Shared vehicles * Deposits, receipts

Mobility Offers °
Available vehicles, seats

* Timetables, routes, stations
Usage Records

« Distances traveled

Billing, refunds

Fig. 2. Smart Mobility Architecture

III. SMART MOBILITY WITH FULLY HOMOMORPHIC
ENCRYPTION

In this section, we will introduce our system architecture,
and we derive privacy requirements. Furthermore, we describe
transactions that are representative for smart mobility and can
be implemented with fully homomorphic encryption.

A. Smart Mobility Architecture

To find out if FHE is applicable to smart mobility, we use
a generalized architecture model, as shown in Figure 2. This
model is in line with existing work [5].

Customers issue travel requests via resource-constrained
devices such as smart phones. Travel requests have a start
point, a destination and a start/end time. A travel request
can be constrained by the customer’s budget and preferences
regarding speed, comfort, eco-friendliness, etc.

The mobility platform manages user accounts, connects
all parties with each other, and provides platform services
such as identifying potential mobility providers for a travel
request and booking seats or vehicles at the mobility providers
selected by the customers. The mobility platform is part of
the Cloud Layer of our architecture model. Thus, the mobility
platform has extensive processing resources. This includes a
high network throughput, plenty of primary and secondary
storage, and a high processing capacity.

Mobility providers deploy various means of transportation,
e.g., rental/shared vehicles or seats in a public transportation
service. Furthermore, mobility providers log the actual dis-
tances traveled with each vehicle or on each seat. Mobility
providers are located in the Edge Layer, i.e., they run services
on a cloud instance that is one order of magnitude smaller
than the mobility platform.

Finally, billing providers invoice the trips made by each
means of transportation. Similarly to mobility providers, the
billing providers are part of the Edge Layer.

Observe, that in this architecture only the customers are
natural persons in the sense of the GDPR [48]. All other parties
are institutions that are not covered by the data protection
regulations. Thus, only customer data needs to be protected.

B. Privacy requirements

The components of our architecture model process five
distinct categories of data:

Insensitive data cannot be related to a person, and does
not carry sensible information. Any information from an
institutional party such as the mobility platform or a mobility
provider is insensitive data, e.g, the public keys of those
parties. We also consider the aggregated values calculated with
FHE to be insensitive, e.g., total travel costs, duration of a trip
or CO- budget.

Identifiers such as a name or a bank account reveal the
identity of a person. A trip can be an identifier, if it ends at
the customer’s home.

Pseudonyms such as a login name can be changed easily.
We assume that a pseudonym only allows to recognize a
person during one transaction. The public key of a customer
is also a pseudonym.

Sensitive data, refers to personal information, e.g., habits,
social life (persons traveling together), mobility preferences
or travel costs. Note that sensitive data is not necessarily
identifying.

Finally, secret data includes all information that must not
be shared, e.g., the private keys of the various parties. From
this categorization, we derive three privacy requirements:

R1 The mobility platform connects customers with two
kinds of providers. Therefore, it needs to maintain user
pseudonyms and transaction IDs. The platform does not
need to learn identifiers or sensitive data, e.g., travel data
forwarded to mobility providers.

ANIKA HANNEMANN, ERIK BUCHMANN: IS HOMOMORPHIC ENCRYPTION FEASIBLE FOR SMART MOBILITY?

R2 Mobility providers must learn which vehicles or seats
are booked for which periods of time, and where a
rented vehicle is left at the end of the trip. To create
an invoice, the actual usage must be recorded. This
requires pseudonymous information and sensitive data.
It must be impossible to join sensitive data from multiple
transactions or across multiple mobility providers.

R3 A billing provider needs to know identifiers (names,
addresses, bank accounts) and invoice amounts. It is
also acceptable if the billing provider learns pseudonyms.
Except from that, it should learn only insensitive data.

Our privacy requirements are summarized in Table 1.

Mobility | Mobility Billing

Platform | Provider | Provider
Data Categories (R1) (R2) (R3)
Insensitive Data v v v
Identifiers X X v
Pseudonyms v v v
Sensitive Data X v v
Secret Data X X X

TABLE 1

PRIVACY REQUIREMENTS

We assume that a combination of one-time pseudonyms and
traditional encryption helps to mitigate any privacy problem
that relates to data-management transactions, e.g., marking a
certain seat in a database as “reserved”, searching for available
modes of transportation at the last stop of a tram, or recording
the time a rental bike has been used.

This leaves open privacy issues related to calculations. For
example, consider the billing process. In traditional smart mo-
bility scenarios, the cloud platform might calculate the invoice
total by asking each mobility provider, that was involved in
the trip of a certain customer. By doing so, the smart mobility
platform learns the exact movement patterns of each customer.

FHE might be able to execute such calculations without
revealing personal details. The advantage of using FHE over
alternatives from the realm of secure multiparty computation is
that FHE does not depend on privacy models where multiple
semi-honest parties execute protocols in multiple rounds of
communication. If each transaction is secured with its own pair
of one-time keys, the security and privacy of the approach only
depend on the formal guarantees of the FHE schemes used.
We also do not need to make assumptions about colluding
parties.

C. Experiment Design

As we explore the applicability of FHE for smart mobility,
we rule out transactions without sensitive/pseudonymous data
or where encryption, decryption and computations take place
on a cloud instance. An application of the privacy requirements
(Table I) on our architecture model (Figure 2) has shown
that the billing provider has similar properties as the mobility
provider: It learns identifiers instead of pseudonyms, and it
has comparable computational means and data flows. Thus,

we also leave aside experiments that specifically address
billing providers. We experiment with three transactions T1-
T3. Each transaction contains a small number of additions and
multiplications. This is typical for business transactions that
compute arrival times, discounts or usage fees. With FHE,
such a transaction requires one relinearization operation.

a) TI: Centralized calculations: This transaction is rep-
resentative for operations where encryption and decryption
takes place at the customer’s smartphone, while the calculation
is executed at the mobility platform. For example, the mobility
platform might add up encrypted prices, travel times, CO5 bud-
gets, etc., whose summands stem from the mobility providers.
It might also multiply discounts or subtract bonuses. Then the
mobility platform sends the encrypted result to the customer
for decryption. The mobility providers might not want to
reveal bonus schemes, mutual price agreements or internal
calculations. Thus, it is not an option to send plain values
to the customer and let the smartphone do any calculation.
Instead, FHE can be applied. Figure 3 illustrates T1. Thick
lines in the figure refer to encrypted data.

’ Customer ‘ ’ Mobility Platform ‘ ’Mobilily Provider 1 ‘ D Mobility Provider n ‘

public key

public key .
request + evaluation keys ||

request

response

request

esponse

calculations

results

* plaintext data

—— encrypted data

decryption

Fig. 3. T1: Centralized Calculations

With this transaction, numerous parallel transactions must
not overload the computational resources of the mobility
platform, and the encryption/decryption of a single transaction
must be feasible on the customer’s smartphone. T1 requires
the mobility providers to know the public key of the customer.
This can be an one-time key, and it is a pseudonym. Each
mobility provider only learns which of its own means of trans-
port is part of the transaction. Thus, R2 is met. The mobility
platform does not learn the customer’s public key, because
relinearization requires evaluation keys that are used only
once. To manage travels across multiple mobility providers,
the mobility platform needs a transaction id, that is an one-
time pseudonym. Thus, R1 is also fulfilled.

b) T2: Decentralized calculations: This transaction lets
the mobility providers do the calculations. The mobility plat-
form transfers encrypted intermediate results to different par-
ties, e.g., to a rental car provider or a public transport provider,
and orchestrates distributed computations on encrypted data
there. Such parties have smaller computational resources than
the mobility platform, but are also loaded with a smaller

527

528

‘ Customer

‘ ‘ Mobility Platform ‘ ‘ Mobility Provider 1 ‘ u Mobility Provider n ‘

| public key + evaluation keys

public key + evaluation keys N
request i
intermediate results
| calculations
response

ate results

calculations

resfilts

results

D decryption

* plaintext data

encrypted data

Fig. 4. T2: Decentralized Calculations

number of parallel transactions. Encryption/decryption takes
place at the customer’s smartphone. Figure 4 illustrates this.
Similarly to T1, the reason for using FHE is that the mobil-
ity providers might not want to share internal agreements and
calculations. Again, the mobility providers need the customer’s
public key. Thus, the privacy properties of T2 are identical
to T1, but the resources needed at the different parties are
different.
c¢) T3: Customer-side calculations: Our third transaction
performs calculations at the customer’s smartphone, while
the mobility providers contribute encrypted parameters, and
the mobility platform is responsible for decryption (cf. Fig-
ure 5). Thus, the reason for requiring FHE is similar to T1
and T2. Such a transaction could calculate with telemetry
data: Forecasting demand, costs, CO2 per hour etc. require
usage-dependent calculations with data from multiple mobility
providers. But it might be sufficient for each mobility provider
to learn the aggregated numbers.

‘ Customer ‘ ‘ Mobility Platform ‘ ‘ Mobility Provider 1 ‘ u Mobility Provider n ‘
‘ ‘ key N

public

evaluation keys B public key .
data data [j

calculations

results

decryption

| P———

results

Fig. 5. T3: Customer-side Calculations

With T3, the calculations must not overload a smartphone,
and decrypting many results in parallel must be feasible for
a mobility platform. T3 means that the mobility providers
need the public key of the mobility platform. Because it is
an institutional party, this is insensitive data (cf. Table I).
The mobility platform cannot learn which parameters from
which mobility provider contribute to the aggregated results.

PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Similarly, mobility providers only learn aggregated results,
which is insensitive data. Thus, privacy requirements R1 and
R2 are fulfilled. Our three transactions are representative for
a wide number of typical real-world calculations in smart
mobility scenarios. Therefore, we refrain from realizing other
transactions that have the same structure and do not provide
further insights. For example, in the billing process the in-
voice amounts could be encrypted by the mobility providers,
calculated at the platform and decrypted by a billing provider,
which has the same structure as T1.

IV. EXPERIMENTAL EVALUATION

In this section, we define the computational and financial
overhead we deem acceptable for smart mobility. Furthermore,
we describe our prototypical implementation of our transac-
tion, and we evaluate it with a series of experiments.

A. Resources and Costs

To find out if FHE can be applied to smart mobility
scenarios, we need an understanding of the resources available
and the costs involved. The mobility platform is a cloud
service with plenty of computational resources for massive
parallel processing. However, it must handle a very large
number of requests at the same time. Furthermore, some FHE
operations cannot be parallelized. An Amazon AWS instance
“m6i.32xlarge” [49] serves as a reference for the computing
costs of a large cloud instance. It is equipped with 128 XEON
CPU cores at 3.5 GHz, 512 GiB RAM, 50 Gbps network
bandwith. In July 2023, a m6i.32xlarge instance costs approx.
8 USD per hour, i.e., one second of one core 0,017 millicents.

The mobility providers are part of the edge layer of our
architecture model. Thus, such providers would operate its
services on a cloud instance that is one order of magnitude
smaller and less expensive than those of the mobility platform.
As multiple mobility providers exist, each of them has a
much smaller individual load of parallel transactions than the
mobility platform. A “m6g.8xlarge” cloud instance with 32
XEON CPU cores at 3.5 GHz and 128 GiB RAM might be
suitable for the edge layer. Such an instance costs approx. 1.5
USD per hour.

Customers connect via smartphone to the mobility platform.
A smartphone has comparatively scarce computing resources.
However, as it is the customer’s property, it does not need to
execute multiple transactions in parallel. As a reference for
computing times on a current mid-range smartphone, consider
a “Fairphone 4” [50]. It has a CPU with 8 cores at 2.2 GHz
and 8 GiB RAM and 128 GiB internal storage. We assume
that it is acceptable for a customer and any other party if a
transaction takes at most two seconds to complete. This time
is comparable to starting an app on a smartphone, i.e., it does
not impact the user experience. For comparison, humans do
not perceive a reaction time below 400 ms as an interruption,
and cannot sense delays below 100 ms [29]. Furthermore, a
few seconds computing time on a small number of cores of
a large cloud instance does not contribute much to the total
travel costs of the customer.

ANIKA HANNEMANN, ERIK BUCHMANN: IS HOMOMORPHIC ENCRYPTION FEASIBLE FOR SMART MOBILITY?

1.4 180
160
1,2
140
1
120
0,8
100 mBFV
mBGV
80
06 CKKS
60
0,4
40
0,2
' 20
0 0 I
s Context ms Encryption Decryption Calculation Relinearization Key Gen.

Fig. 6. Runtimes of the
Context Creation

B. Implementation

For each of our three distributed transactions, we have
implemented a FHE-encrypted variant, and a non-encrypted
one for comparison. We decided to implement our transactions
in C++ with Microsoft SEAL [23], because it is the most
advanced implementation of the three state-of-the-art schemes
BGV [26], BFV [27] and CKKS [28]. While the first two
schemes compute with integers, the last one supports float-
point operations. The length of the integers and the precision
of float-point operations depend on the size of the modulus
degree. The modulus determines how much noise can be
accumulated during computations, before a relinearization
operation with a pre-calculated evaluation key is needed. The
noise is an internal measure to avoid that encrypted data
can be decoded without knowing the secret key, i.e., it has
nothing to do with the accuracy of the computation result.
We used a polynomial modulus degree of 16384 and a plain
modulus degree of 1024, which is the recommended setting in
SEAL. For performance reasons, we disabled the debug mode
and enabled batch processing, i.e., the SEAL library did not
encrypt or decrypt any value individually.

We executed our experiments on a host with a 2.8 GHz Intel
17 CPU with 8 cores and 32 GiB RAM. Thus, one CPU core
of our experimental host is approx. 25% slower than a core
of an “mé6i.32xlarge” instance and 30% faster than a core of
a “Fairphone 4”. We have started one customer, one mobility
platform and two mobility providers as separate processes, and
we have repeated each experiment 500 times and computed
the averages. We want to measure the processing time and
the size of the encrypted data at each party separately. This
allows us to find out if a FHE scheme exceeds the time
budget of 2-3 seconds in total, or if one of the parties might
be potentially drained of resources, when handling many
customers in parallel.

In order to execute the measurements, we have imple-
mented our experiments as test cases with the DOCtest frame-

Fig. 7. Runtimes of the Operations

work [51]. This allows to implement experiments as a batch,
and to verify that the computed results are correct. We used
log4cplus [52] to monitor the execution, and we measured
with the Google Benchmark v1.7.1 [53] microbenchmarking
framework. Google Benchmark ensures that the compiler does
not change the execution, e.g., to optimize 500 repetitions of
the same execution. It delivers the values measured in a JSON
format. We also evaluated the individual method calls with
Intels VTUne profiler [54].

C. Evaluation Results

First we analyze the performance of BGV, BFV and CKKS.
For comparability, we have measured the runtimes as CPU
time on a single core. After that, we measure the memory
consumptions.

a) Runtime Performance: Context creation takes only
once at startup of a service or application. The purpose of
this operation is to initialize and configure the SEAL library
with the appropriate credentials, seeds, buffers etc. for the
respective FHE scheme. As Figure 6 shows, we have measured
an average context-creation time of up to 1.2 s. Thus, it is
mandatory for any application not to shut down and start
up the FHE library for each operation, but to preserve its
state. Note that context creation can be executed in parallel
with the normal launch of an application. Since even today’s
smartphones have multiple CPU cores, this overhead does not
necessarily increase the application’s startup time.

Figure 7 shows the runtimes in milliseconds of the FHE
operations. Encryption and decryption refer to the respective
cryptographic operations. With calculation, we denote to a
basic mathematical operation consisting of a few additions,
multiplications and subtractions. Surprisingly, this was a time-
consuming operation with BFV, which took approx. 115 ms on
our 2.8 GHz Intel i7 CPU. The other schemes required 4 ms
and 2.3 ms. Relinearization is needed after some calculations
to ensure that the decryption produces correct results. The

529

530

relinearization requires an one-time evaluation key, whose
creation time is depicted in the last column of Figure 7.

As the figure shows, CKKS consumes approximately half
the CPU time of the two other schemes, and the most
expensive operations are encryption and relinearization. The
runtimes for computations on encrypted data are orders of
magnitude higher than on plain-text values. However, humans
do not perceive reaction times below 400 ms as annoying,
and do not recognize a delay below 100 ms at all [29]. Note
that our measures only consider the runtimes of the FHE
operations, i.e., we leave aside context creation, operating
system, start-up times of applications and network delays.

We want to find out if those runtimes add up to a disruptive
amount for our three transactions T1, T2 and T3. Therefore,
we measured and aggregated the CPU times for any operation
on any party, again for each of the schemes BFV, BGV and
CKKS. We have left aside the context creation.

To avoid confounding the effects of parallelization with the
CPU times needed at the various parties, we have structured
our experiment so that all mobility providers operate inde-
pendently in parallel, while the customer and the mobility
platform wait for all other parties. For the same reason,
we do not measure network delays, effects of the operation
system, etc. In a real setting, each party would start encrypting,
decrypting or calculating values as soon as the first chunk of
data has arrived, i.e., the total runtimes would be smaller.

To foster comparability among the transactions, we also
ensured that T1-T3 used the same set of operations, and
differed only in the place where each encryption, decryption,
calculation etc. took place. The set of operations contained a
number of additions and calculations that was large enough
to require one relinearization. Having said this, the BFV
scheme required a total of 314 ms CPU time on average to
complete a transaction. BGV needed an average of 232 ms,
and CKKS had the best runtime performance with only 104 ms
on average.

Figures 8-10 show for centralized, decentralized and
customer-side calculations at which party how much CPU time

350
300
250
200

mBFV
150 mBGV

CKKS

100

50

ms Customer Mobility

Platform

Mohility
Provider

Fig. 8. TI1: Centralized Calculations

PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

is consumed. For comparability, each party uses the same
CPU and is limited to one core. Figures 8§ and 9 confirm
that centralized and decentralized calculations do not burden
the smartphone of the customer. With such transactions, the
customer is responsible for generating evaluation keys and
decrypting values, which are fast operations (Figure 7).

Figure 8 corresponds to a centralized transaction where
any computation and relinearization takes place at the mo-
bility platform. Encrypting values must be performed at the
data sources. With the mobility providers as data sources,
this corresponds to an edge computing scenario, where all
time-consuming operations are executed on a centralized or
decentralized cloud instance.

350
300
250
200
u BFV

mBGV
CKKS

150
100

50

D .
ms Customer Mobility
Platform

Maobility
Provider

Fig. 9. T2: Decentralized Calculations

Figure 9 transfers any computationally expensive opera-
tion in the domain of the mobility providers. If we take a
mo6i.32xlarge cloud instance for comparison, each transaction
costs each mobility provider less than 0,003 millicents, even
with the slowest FHE scheme. Figure 10 confirms that even
customer-side calculations incur negligible overhead on a
smartphone. Similarly to T1 and T2, with T3 the encryption
of the data takes place at the mobility providers.

350
300
250
200
mBFV

mBGV
CKKS

150

100

50

ms Customer Mohility

Platform

Mohility
Provider

Fig. 10. T3: Customer-side Calculations

ANIKA HANNEMANN, ERIK BUCHMANN: IS HOMOMORPHIC ENCRYPTION FEASIBLE FOR SMART MOBILITY?

Note that for to calculations with unencrypted values at
the cost of privacy, the runtimes and the costs of a single
calculation are below measurement accuracy, and virtually
zero. Thus, FHE is not suitable for any big-data problem, or
for scenarios where numerous transactions must be executed
to the smallest possible costs. However, in the field of smart
mobility, such transaction fees are several orders of magnitude
smaller than the billing amount on the customer’s invoice, but
privacy is an important factor. Thus, we have confirmed that
FHE schemes are feasible for business models in the field of
smart mobility.

b) Approximated Memory Comsumption: In order
to have a practical estimate of the memory consumption
incurred by FHE, we have implemented each customer,
mobility platform and mobility provider as an individual
application. Thus, we have measured the total amount of
memory of the application, libraries, runtime variables
and the buffers where encrypted values are stored. The
isolated increase in buffer sizes needed to store encrypted
intermediate results can be found in [27](BFV), [26](BGV)
and [28](CKKS). Table II summarizes this.

FHE Scheme | Memory Consumption
Plain Text 76 — 104 MB
BFV 207 - 321 MB
BGV 216 — 306 MB
CKKS 146 — 188 MB
TABLE II

APPROXIMATED MEMORY CONSUMPTION

With our experiments, we measured a memory consumption
between 207 MB and 321 MB for BFV. We measured between
216 MB and 306 MB for BGV, and 146 MB to 188 MB for
CKKS. A large memory consumption corresponds to more
expensive operations (encryption and calculations including
relinearization). This was because such operations require
many runtime variables and, therefore, a large and deep stack.
In comparison, an execution on unencrypted values resulted
in applications with a memory footprint between 76 MB and
104 MB. Thus, none of the FHE schemes utilized memory
resources that exceeded even the capacity of a smartphone.

V. CONCLUSION

In the upcoming years, the planning of cities and trans-
portation logistics for moving people and goods will undergo
significant changes. The conventional concept of mobility
using individual transportation modes, such as a car, is not
longer useful due to environmental reasons and growing cities.
The demand for multi-modal transport solutions that allow
users to move flexible and eco-friendly is high. However,
the implementation of this approach requires the sharing of
sensitive personal data with various parties, creating potential
privacy risks.

This paper explored the potential use of fully homomorphic
encryption as an efficient and noise-free solution for data
privacy concerns in the implementation of smart mobility.
Initially, privacy requirements for such a smart mobility ap-
proach were formulated, based on which three multi-party
computations were identified that benefit from FHE. An im-
plementation was provided using state-of-the-art FHE schemes
BGV [26], BFV [27] and CKKS [28] based on Microsoft
SEAL [23]. Finally, memory consumption and execution times
were measured, evaluated and compared with a non-encrypted
benchmark. To provide optimal experimental results, a bench-
mark framework was used to monitor memory consumption
and execution times. To test the applicability of FHE in
a real-life smart mobility scenario, the ressources used in
the implementation were analyzed and compared to available
resources on smartphones and cloud instances.

Based on the experiments conducted, encrypting transac-
tions with FHE increases CPU time by approximately 100 mil-
liseconds compared to unencrypted transactions. However, this
additional processing time does not adversely affect the user
experience [29]. The use of parallel processing can signifi-
cantly reduce this time, and the cost of such encryption on a
current cloud instance is less than 3 microcents. We conclude
that FHE is a cost-effective means of ensuring privacy, and a
viable option for a smart mobility business model.

For future research, it would be beneficial to scale the
implementation to a real-life scenario involving multiple
smartphones functioning as edge devices, and leveraging
cloud instances for both the mobility platform and service
providers. Hence, experiments could be extended to measure
actual runtimes including side effects of operating systems,
and delays of a virtualization environment. Also, delays of
network connection could be reported. Furthermore, it would
be worthwhile to evaluate and compare other libraries such as
OpenFHE [55] and other state-of-the-art FHE schemes.

ACKNOWLEDGMENT

We would like to thank Yasin Akbas for his excellent
implementation and evaluation of the smart mobility model
with fully homomorphic encryption.

REFERENCES

[A Jevinger and J. A. Persson, “Potentials of context-aware travel support
during unplanned public transport disturbances,” Sustainability, vol. 11,
no. 6, p. 1649, 2019.

[2] A. Al-Rahamneh et al., “Enabling customizable services for multimodal
smart mobility with city-platforms,” IEEE Access, vol. 9, pp. 41 628—
41646, 2021.

[3] J. Schuppan, S. Kettner, A. Delatte, and O. Schwedes, “Urban mul-
timodal travel behaviour: Towards mobility without a private car,’
Transportation Research Procedia, vol. 4, pp. 553-556, 2014.

[4] M. S. Chowdhury, M. A. Osman, and M. M. Rahman, “Preference-aware
public transport matching,” in International Conference on Innovation
in Engineering and Technology (ICIET). 1EEE, 2018, pp. 1-6.

[5S] A. Broring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Kibisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente, “En-
abling iot ecosystems through platform interoperability,” IEEE software,
vol. 34, no. 1, pp. 54-61, 2017.

[6] Y. Li et al., “Pare: A system for personalized route guidance,” in
Conference on World Wide Web, 2017.

531

532

(71

(8l

(9]

[10]
[11]
[12]
(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

(28]

[29]
(30]

(31]

(32]

D. Herzog, H. Massoud, and W. Worndl, “Routeme: A mobile rec-
ommender system for personalized, multi-modal route planning,” in
Conference on User Modeling, Adaptation and Personalization, 2017.
P. Campigotto, C. Rudloff, M. Leodolter, and D. Bauer, “Personalized
and situation-aware multimodal route recommendations: the favour
algorithm,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 1, pp. 92-102, 2016.

O. Moran, R. Gilmore, R. Ordéiiez-Hurtado, and R. Shorten, “Hybrid
urban navigation for smart cities,” in 20th International Conference on
Intelligent Transportation Systems (ITSC). 1EEE, 2017, pp. 1-6.

S. Paiva et al., “Privacy and security challenges in smart and sustainable
mobility,” SN Applied Sciences, vol. 2, pp. 1-10, 2020.

T. Borchers et al., “Privacy concerns on the mobility of smart cities,”
in Brazilian Technology Symposium (BTSym’21), 2021.

E. P. de Mattos et al., “The impact of mobility on location privacy,”
IEEE Systems Journal, vol. 16, no. 4, pp. 5509-5520, 2022.

D. Eckhoff and I. Wagner, “Privacy in the smart city,” IEEE Communi-
cations Surveys & Tutorials, vol. 20, no. 1, pp. 489-516, 2017.

P. Zhao, G. Zhang, S. Wan, G. Liu, and T. Umer, “A survey of local
differential privacy for securing internet of vehicles,” The Journal of
Supercomputing, vol. 76, pp. 8391-8412, 2020.

A. A. Khalig, A. Anjum, A. B. Ajmal, J. L. Webber, A. Mehbodniya,
and S. Khan, “A secure and privacy preserved parking recommender
system using elliptic curve cryptography and local differential privacy,”
IEEE Access, vol. 10, pp. 56410-56 426, 2022.

G. Qin, S. Deng, Q. Luo, J. Sun, and H. Kerivin, “Toward privacy-
aware multimodal transportation: Convergence to network equilibrium
under differential privacy,” Available at SSRN 4244002, 2022.

P. Shanthi and S. Balasundaram, “An efficient clique cloak algorithm
for defending location-dependent attacks in location based services,”
in Conference on Information and Communication Technology for
Competitive Strategies, 2014.

I. Memon, L. Chen, Q. A. Arain, H. Memon, and G. Chen, “Pseudonym
changing strategy with multiple mix zones for trajectory privacy protec-
tion in road networks,” International Journal of Communication Systems,
vol. 31, no. 1, p. e3437, 2018.

F. Martelli, M. E. Renda, and J. Zhao, “The price of privacy control in
mobility sharing,” in Sustainable Smart City Transitions. Routledge,
2022, pp. 233-258.

T. Li, L. Lin, and S. Gong, “Autompc: Efficient multi-party computation
for secure and privacy-preserving cooperative control of connected
autonomous vehicles.” in SafeAI@ AAAI 2019.

G. Raja et al., “Ai-powered blockchain-a decentralized secure multi-
party computation protocol for iov,” in IEEE Conference on Computer
Communications, 2020.

A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1-35, 2018.

Microsoft Research, Redmond, WA., “Microsoft SEAL (release 4.1),”
https://github.com/Microsoft/SEAL, 2023, accessed Feb. 20th, 2023.

S. Halevi er al., “HElib 2.2.2, December 2022,” https://github.com/
homenc/HElib, 2023, accessed Feb. 20th, 2023.

OpenFHE., “OpenFHE,” https://www.openfhe.org/, 2023, accessed Feb.
20th, 2023.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012. [Online].
Available: https://eprint.iacr.org/2012/144

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic
encryption without bootstrapping,” Cryptology ePrint Archive, Paper
2011/277, 2011. [Online]. Available: https://eprint.iacr.org/2011/277

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Conference on the Theory
and Applications of Cryptology and Information Security, 2017.

J. Nielsen and R. Budiu, Mobile usability. ~MITP-Verlags GmbH &
Co. KG, 2013.

C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

O. Regev, “Lattice-based cryptography,” in Advances in Cryptology-
CRYPTO 2006: 26th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2006. Proceedings 26.
Springer, 2006, pp. 131-141.

V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of the ACM (JACM), vol. 60,
no. 6, pp. 1-35, 2013.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]
[53]
[54]

[55]

PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

S. Behera and J. R. Prathuri, “Design of novel hardware architecture for
fully homomorphic encryption algorithms in fpga for real-time data in
cloud computing,” IEEE Access, vol. 10, pp. 131406-131418, 2022.
S. Gupta et al., “Memfhe: End-to-end computing with fully homomor-
phic encryption in memory,” ACM Transactions on Embedded Comput-
ing Systems, 2022.

J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” I[EEE
Access, vol. 10, pp. 30039-30 054, 2022.

J. Chen, K. Li, and S. Y. Philip, “Privacy-preserving deep learning
model for decentralized vanets using fully homomorphic encryption and
blockchain,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11633-11642, 2021.

F. Wibawa et al., “Homomorphic encryption and federated learning
based privacy-preserving cnn training: Covid-19 detection use-case,” in
European Interdisciplinary Cybersecurity Conference, 2022.

D. Stripelis et al., “Secure neuroimaging analysis using federated
learning with homomorphic encryption,” in Symposium on Medical
Information Processing and Analysis, vol. 12088, 2021, pp. 351-359.
L. Zhu et al., “Privacy-preserving authentication and data aggregation
for fog-based smart grid,” IEEE Communications Magazine, vol. 57,
no. 6, pp. 80-85, 2019.

M. Goudarzi, M. Palaniswami, and R. Buyya, “A distributed application
placement and migration management techniques for edge and fog
computing environments,” in /6th Conference on Computer Science and
Intelligence Systems. IEEE, 2021, p. 37-56.

L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, and U. Ghosh, “Ho-
momorphic encryption-based privacy-preserving federated learning in
iot-enabled healthcare system,” IEEE Transactions on Network Science
and Engineering, 2022.

A. Morelli, L. Campioni, N. Fontana, N. Suri, and M. Tortonesi,
“A federated platform to support iot discovery in smart cities and
hadr scenarios,” in Federated Conference on Computer Science and
Information Systems (FedCSIS). 1EEE, 2020, pp. 511-519. [Online].
Available: http://dx.doi.org/10.15439/2020KM48

M. Jarosz, K. Wrona, and Z. Zielifiski, “Formal verification of security
properties of the lightweight authentication and key exchange protocol
for federated iot devices,” in 17th Conference on Computer Science and
Intelligence Systems (FedCSIS). 1EEE, 2022, pp. 617-625.

K. Kanciak, K. Wrona, and M. Jarosz, “Secure onboarding and key
management in federated iot environments,” in /7th Conference on
Computer Science and Intelligence Systems (FedCSIS). 1EEE, 2022,
pp. 627-634.

M. Wernke, P. Skvortsov, F. Diirr, and K. Rothermel, “A classification
of location privacy attacks and approaches,” Personal and ubiquitous
computing, vol. 18, pp. 163-175, 2014.

W. Ren et al., “Privacy-preserving using homomorphic encryption in
mobile iot systems,” Computer Communications, vol. 165, pp. 105-111,
2021.

M. R. Baharon et al., “A new lightweight homomorphic encryption
scheme for mobile cloud computing,” in IEEE Computer and Infor-
mation Technology, 2015.

Council of the European Union, “Regulation (eu) 2016/679 on the
protection of natural persons with regard to the processing of personal
data and on the free movement of such data,” OJ L 119, 4.5.2016, p.
1-88, 2016.

Amazon Web Services, Inc., “Amazon EC2 M6i Instances,” 2023,
accessed Feb. 20th, 2023. [Online]. Available: https://aws.amazon.com/
de/ec2/instance-types/

Fairphone B.V, “Fairphone 4,” 2022, accessed Feb. 20th, 2023.
[Online]. Available: https://www.fairphone.com/

V. Kirilov et al., “Doctest v2.4.9,” 2022, accessed Feb. 20th, 2023.
[Online]. Available: https://github.com/doctest/doctest

T. E. Smith et al., “logdcplus v2.1.0,” 2023, accessed Feb. 20th, 2023.
[Online]. Available: https://github.com/log4cplus

Google Inc., “google/benchmark v1.7.1,” 2022, accessed Feb. 20th,
2023. [Online]. Available: https://github.com/google/benchmark

Intel Corporation, “Intel VTune Profiler,” https://www.intel.com, 2023,
accessed Mar. 07th, 2023.

A. Badawi et al., “Openfhe: Open-source fully homomorphic encryption
library,” in Encrypted Computing & Applied Homomorphic Cryptogra-
phy, 2022.

