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Abstract—Meta Automated Machine Learning (Meta AutoML)
platforms support data scientists and domain experts by automat-
ing the ML model search. A Meta AutoML platform utilizes
multiple AutoML solutions searching in parallel for their best ML
model. Using multiple AutoML solutions requires a substantial
amount of energy. While AutoML solutions utilize different
training strategies to optimize their energy efficiency and ML
model effectiveness, no research has yet addressed optimizing
the Meta AutoML process. This paper presents a survey of 14
AutoML training strategies that can be applied to Meta AutoML.
The survey categorizes these strategies by their broader goal,
their advantage and Meta AutoML adaptability. This paper
also introduces the concept of rule-based training strategies
and a proof-of-concept implementation in the Meta AutoML
platform OMA-ML. This concept is based on the blackboard
architecture and uses a rule-based reasoner system to apply
training strategies. Applying the training strategy “top-3” can
save up to 70% of energy, while maintaining a similar ML model
performance.

I. INTRODUCTION

M
ACHINE LEARNING (ML) is an important sub-

domain of artificial intelligence (AI), allowing pro-

grams to make predictions using models based on previous

observations [1]. Creating effective ML models requires sub-

stantial knowledge and experience in the field of ML. Data

scientists are a group of experts possessing those foundations.

Generating an ML model involves several tasks, including data

analysis, data preparation, feature engineering, model selec-

tion, validation, learning curve analysis and hyperparameter

optimization.

The research field of Automated Machine Learning (Au-

toML) emerged to support data scientists and domain experts

(professionals in a domain like medicine) with these tasks.

AutoML aims to automate the model selection and hyper-

parameter optimization process leading to higher efficiency,

and potentially better results [2]. Finding the best model and

its hyperparameter optimization for a given problem is also

known as the Combine Algorithm Selection and Hyperparam-

eter Optimization (CASH) problem [3]. An AutoML solution

programmatically searches for an ML pipeline by solving the

CASH problem [4]. More progressive AutoML solutions also

perform data preparation, feature engineering, and validation,

allowing for the creation of entire ML pipelines [5]. There are

a growing number of AutoML solutions available [6] offering

automated solutions for ML tasks belonging to supervised

learning (e.g. Auto-WEKA [7]) and unsupervised learning

(e.g. AutoCluster [8]). Although AutoML aims to be accessible

to users with and without ML and programming expertise,

only a few AutoML solutions are targeted at domain experts

[6]. Furthermore, due to the wide range of AutoML solutions

and their constraint to mainly support only one major ML

library (e.g. Auto-Keras [9] supporting Keras1), finding the

most effective ML method for a given use case requires a trial

and error approach.

Meta Automated Machine Learning (Meta AutoML) [10] is

a concept that addresses such issues by integrating multiple

Automated Machine Learning solutions into one ensemble.

During a training session, the AutoML solutions search for

their best ML model in parallel. Some AutoML solutions

may use different approaches to automatically optimize the

model search [3]. This internal optimization aims to reduce

the training time and increase the effectiveness of the final ML

model. Within the research field of AutoML, a wide range of

different optimization approaches exist [11] e.g. meta-learning

[12], or early-stopping [13].

Running multiple AutoML solutions in parallel is energy-

inefficient. Therefore, improving the energy-efficiency of the

Meta AutoML process is an important goal. AI approaches

that use vast amounts of computation power to increase their

performance can be labelled as red AI [14]. Meta AutoML

falls into this red AI category, as it uses a massive amount

of computation power to operate multiple AutoML solutions

in parallel. It is important to optimize the Meta AutoML

process and move it towards green AI [14]. However, on the

Meta AutoML level, there has been no research on improving

efficiency.

A simple Meta AutoML training strategy to improve energy

efficiency is the “top-3” strategy. This strategy performs two

successive training sessions. The first training session uses

all AutoML solutions with a reduced sample set and training

time. The second training session utilizes the full sample set

and the remaining training time. This session uses the 3 best

performing AutoML solutions found during the first training

session. We use the top-3 strategy to demonstrate and evaluate

the approach presented in this paper.

1https://keras.io
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The contributions of this paper are two-fold: (a) A survey

of AutoML training strategies that can be applied to Meta

AutoML; (b) A concept for a rule-based training strategy

component for Meta AutoML and its prototypical implemen-

tation in the platform OMA-ML [6] as a proof-of-concept.

This paper uses the prototypical implementation to evaluate the

effectiveness of a selected training strategy, namely the top-3

strategy. The evaluation compares CO2 emission equivalents

produced by the entire Meta AutoML training and the ML

model prediction performance with and without using the

training strategy.

This paper is structured as follows. Section II presents

related work. Section III shows the survey on training strate-

gies. Section IV is the paper’s core, introducing the concept

of rule-based training strategies. Section V briefly indicates

aspects of the prototypical implementation in the platform

OMA-ML. Section VI evaluates the concept and prototypical

implementation. Section VII concludes the paper and discusses

future work.

II. RELATED WORK

A number of surveys exist that focus on state-of-the-

art research about AutoML [6][3][15][16][17][18][19]. These

surveys focus on the algorithms and approaches used to solve

the CASH problem. They also review individual AutoML

solutions. However, only one survey [6] offers a broader

survey of existing AutoML solutions. Furthermore, we are not

aware of a survey on AutoML training strategies.

The next important aspect of research relates to AutoML

training strategies. There are two different categories of Au-

toML strategies: strategies that are applied during prepro-

cessing and strategies that are applied during training of an

ML model. Some AutoML solutions preprocess the dataset

only once; e.g., Autogluon infers the process from the initial

dataset [20]. Others may use intricate data preprocessing

approaches; e.g., TPOT uses genetic programming [21] to find

the best preprocessing workflow. Additionally, some AutoML

solutions apply strategies to the ML model training process,

e.g. early stopping (e.g. H2O: AutoML [22]) which stops

the fitting process of a ML model based on a user-defined

termination criterion [13]. Another strategy is multi-fidelity

(e.g. Auto-Pytorch [23]). This aims to optimize the ML model

and hyperparameter search by training models using lower-

fidelity (e.g. less time, computation, data) to determine the

best configuration to run high-fidelity training [24]. AutoML

solutions can implement frameworks like BOHB to use multi-

fidelity optimization [25]. Finally, some AutoML solutions

implement strategies such as meta-learning [26] to further

improve their training by learning from previous ones. While

early stopping and multi-fidelity training strategies are used

by AutoML solutions, they are not limited to AutoML. Data

scientists use the concept of applying optimization strategies

to improve their manual search for the best ML model.

There exists a collection of foundation literature introducing

different strategies to improve the ML training [27][28]. The

literature provides different optimization strategies depending

on the dataset and general ML training. There are scientific

surveys that compare different approaches used to optimize the

individual steps of preprocessing [29][30]. Additionally, there

are publications that present new approaches to optimize or

replace existing preprocessing approaches [31][32].

The concept of improving the efficiency of Meta AutoML

via rule-based training strategies is novel. We are not aware of

any publication dealing with this issue. Currently, we are aware

of two Meta AutoML platforms: OMA-ML [6] and Ensemble

Squared [33]. Both Meta AutoML platforms use a meta layer

to administer the built-in AutoML solutions. This abstraction

layer allows a user to leverage multiple AutoML solutions

simultaneously, without requiring previous knowledge about

individual AutoML solutions or data science.

Ensemble Square does not use training strategies to optimize

its Meta AutoML process. It uses all supported AutoML

solutions for every training session by default.

III. A SURVEY OF ML TRAINING STRATEGIES

In this section we compare 14 training strategies from Au-

toML solutions regarding their applicability to Meta AutoML.

A. Methodology

The training strategies are evaluated using the following

criteria:

• Category of the training strategy:

– Data cleaning: Identification and correction of flaws

in the data;

– Data transformation: Changing the scaling or distri-

bution of the data;

– Complexity reduction: Reducing the feature or sam-

ple size to reduce complexity;

– Infrastructure: Adjusting the available hardware and

computation power;

– Spot checking: Using trial training sessions to deter-

mine the most viable solution;

– Training observation: Actively supervising the ML

model performance during the fit process;

– Meta-learning: Learning from past training sessions

to improve future trainings.

• ML process phase: The phase during which the strategy

is applied:

– Pre-processing: The preprocessing phase occurs be-

fore the actual ML model training and focuses on

preparing the dataset;

– Training: The training phase where the ML models

are fitted to the training data;

– Post-processing: the phase after training proper;

– Meta-level: The Meta-Level is not a phase as such

but covers the entire process.

• Advantage: The benefits of applying the strategy:

– Effectiveness: The ML model’s effectiveness may

increase;

– Efficiency: The amount of computation power re-

quired by the training may decrease.

236 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE I
OVERVIEW OF AUTOML TRAINING STRATEGIES

Strategy Category ML process phase Advantage Feasibility References

Handling outliers Data cleaning Preprocessing Effectiveness Yes [27][34][29]

Imputing missing values Data cleaning Preprocessing Effectiveness Yes [27][31][32]

Omitting redundant samples Data cleaning Preprocessing Effectiveness, Efficiency Yes [27][35]

Data sampling Data cleaning Preprocessing Efficiency Yes [27][36]

Text feature encoding Data transformation Preprocessing Effectiveness Yes [37]

Numerical feature scaling Data transformation Preprocessing Effectiveness Yes [38][39]

Feature extraction Complexity reduction Preprocessing Effectiveness, Efficiency Partial [40][41]

Feature selection Complexity reduction Preprocessing Effectiveness, Efficiency Yes [42][43][27]

Dimensionality reduction Complexity reduction Preprocessing Effectiveness, Efficiency Yes [44][30][45]

Hardware optimization Infrastructure Training Efficiency Yes

Multi-fidelity optimization Spot checking Training Efficiency Yes [28][46][24]

Top 3 optimization Spot checking Training Efficiency Yes

Early Stopping Training observation Training Efficiency Partial [13]

Meta-learning Meta-learning Meta level Effectiveness, Efficiency Yes [47]

• Feasibility: Can the strategy be applied to Meta AutoML:

– Yes: Can be applied to Meta AutoML;

– Partial: Can be partially applicable to Meta AutoML.

– No: Cannot be applied to Meta AutoML.

B. Strategies

Table I gives an overview of the training strategies survey.

1) Data cleaning: Data cleaning aims to remove or repair

dirty data within the dataset [27]. The following can be issues

within a dataset:

• Outliers: A value is an outlier if it significantly deviates

from the other values;

• Missing values: When no data is available for a feature

in a sample;

• Redundancy: Identical samples present in a dataset.

a) Handling outliers: Detecting and handling outliers is

one of the first steps of data cleaning. Outliers represent noise

within data [27]. If outliers are improperly handled, they can

decrease the prediction performance of the ML model [34].

Statistical methods can be used to automatically identify and

handle outliers (e.g. interquartile range, standard deviation

[29]). Some AutoML solutions (e.g. Pycaret2) offer support to

handle outliers from datasets. Handling outliers may increase

the effectiveness of ML models.

b) Imputing missing values: Imputing missing values is

important. Missing values can negatively impact the quality

and accuracy of ML models by introducing bias [27]. Statis-

tical methods can automatically impute missing values (e.g.

k-nearest-neighbor-based approaches [31], neural networks

[32]). Some AutoML solutions (e.g. MLJAR3) implement

automatic imputation of missing values. Handling missing

values may increase the effectiveness of ML models, as the

potential bias from missing values is not introduced.

2https://github.com/pycaret/pycaret
3https://github.com/mljar/mljar-supervised

c) Omitting redundant samples: Duplicated samples can

introduce bias in the model. Identical samples can negatively

impact the search time of the training session and the ML

model’s effectiveness. Statistical methods can automatically

detect duplicate samples (e.g. probabilistic matching [35]).

Removing duplicate samples may increase the effectiveness of

the ML model by removing potential bias. It may also increase

the training efficiency by reducing the size of the dataset.

d) Data sampling: Sampling can adjust the dataset size

to the training configuration to allow the most effective training

(e.g. limit time or computation power) [27]. By sampling the

dataset the training efficiency may increase and the ML model

performance may not be negatively impacted [27]. Some

AutoML solutions (e.g. FLAML) apply sampling to adjust the

dataset size on the training configuration (e.g. limited time and

large sample set by applying e.g. holdout [36]).

2) Data transformation: Data transformation aims to

change the type or distribution of the data in a dataset. This

includes transforming data into a format an ML algorithm can

process [27].

a) Text feature encoding: Text features often can not be

processed by ML algorithms and require encoding [37]. Text

features may be disregarded without proper encoding or lead

to errors during the ML model training. When confronted with

text features, three categories of encoding strategies exist:

• Binary encoding: encodes the textual values into binary

values, e.g. yes/no;

• Ordinal encoding: encodes the textual values into a finite

set of discrete values with a rank or ordering between

them. e.g. low/medium/high;

• Nominal encoding: encodes the textual values into a finite

set of discrete values with no relationship between them.

e.g. married/single/widowed.

Some AutoML solutions (e.g. Autokeras [9]) automatically

encode text features. Encoding text features may increase the
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effectiveness of an ML model as it can consider those features

while training instead of disregarding them.

b) Numerical feature scaling: Numerical features with

a wide range of values may cause bias in the ML model.

Some ML approaches are sensitive to the relative magnitude

of features and may give more weight to features with larger

values [38]. When confronted with numerical features display-

ing a wide range, two categories of scaling strategies can be

applied:

• Normalization: This method resizes the data to a fixed

value between 0 and 1;

• Standardization: This method resizes the data to have a

median of 0 and a standard deviation of 1.

Some AutoML solutions (e.g. MLJAR) automatically scale

numerical features using normalization or standardization

functions. Scaling numerical features may increase the effec-

tiveness of an ML model [39].

3) Complexity reduction: Complexity reduction aims to

reduce the complexity of a dataset. The available methods can

be divided into three categories:

• Feature extraction: Create new features from existing data

that may have more meaningful information;

• Feature selection: Reduce the number of features by

selecting the most relevant ones without changing the

features themselves;

• Dimensionality reduction: Reduce the number of features

by transforming the features into a lower dimensional

space while preserving essential information.

a) Feature extraction: Feature extraction aims to create

a subset of more meaningful features from the existing ones

[40]. The construction of new features is highly specific to

the data and data type of the dataset. Often, it is required

to collaborate with domain experts who can group features

correctly together. Automated feature engineering offers data

scientists and AutoML solutions methods to automatically

create candidate features derived from the original dataset e.g.

Deep Feature Synthesis [41]. Using newly created features

based on existing data may increase the performance of an

ML model. Some AutoML solutions (e.g. MLJAR) apply

automated feature engineering to create new and potentially

more effective ML models. Multiple open-source libraries

focus on automated feature engineering, e.g. Feature-engine4.

Such tools can help data scientists quickly trial a wide range of

different feature combinations. However, only a domain expert

has the necessary understanding of the problem to determine

the suitability of features.

b) Feature selection: Feature selection aims to reduce

dataset complexity by removing non-useful features [42] and

creating a feature subset that performs best under classification

[43]. A dataset can contain irrelevant or noisy features (e.g.

duplicated features) that may introduce bias into an ML model.

By removing noisy features, the ML model’s effectiveness and

training efficiency may increase [27]. The existing methods

can be classified into one of three categories:

4https://feature-engine.trainindata.com/en/latest/

• Filter: Filtering out undesirable features before learning

by using heuristics based on the general data character-

istics to evaluate the goodness of feature subsets;

• Wrapper: Methods that search the feature space for

the best-performing subset. They assess the quality of

features by training and evaluating a classifier with the

subset;

• Embedded: Similarly to the wrapper method, the feature

selection is performed during the learning process of the

ML model.

Some AutoML solutions (e.g. MLJAR) apply automated

feature selection to evaluate which feature is relevant for a

given search.

c) Dimensionality reduction: Dimensionality reduction

aims to reduce the dimensionality of the dataset. The number

of features may be considered the dimensionality of the

dataset. Dimensionality-reducing methods project the data

into a lower-dimensional space that still preserves the most

important properties of the original data. By reducing the

complexity of the dataset the ML model’s effectiveness and

the training efficiency may increase. The existing methods can

be divided into three categories:

• Linear dimensionality reduction methods: e.g. principal

component analysis [44];

• Non-linear dimensionality reduction methods: e.g. multi-

dimensional scaling [30];

• Autoencoder methods: e.g. using artificial neural networks

[45].

C. Hardware optimization

Hardware optimization aims to choose the most suitable

infrastructure for the task and use it in the most energy-

efficient and resource-saving way possible. Optimizing the

underlying hardware may reduce the amount of computa-

tion power invested during training by providing specialized

hardware for ML. Another option is to limit the access

to computation power to limit the used computation during

training. Some AutoML solutions (e.g. MLJAR) can limit the

maximum amount of RAM the solution uses.

D. Spot checking

Spot-checking aims to discover the approach that performs

best for an ML task [28]. A spot-checking algorithm uses

multiple trials to evaluate multiple ML algorithms on a given

dataset to determine their performance. The spot-checking

training aims to quickly assess the viability of a collection

of ML models and decide which approach to use for further

training.

a) Multi-fidelity optimization: The multi-fidelity strategy

uses numerous training sessions with low-fidelity samples to

evaluate the general trend of a system’s behaviour, and a small

number of high-fidelity samples to enhance the prediction

accuracy in important regions [46]. Sequential multi-fidelity

surrogate modelling is one multi-fidelity approach that limits

the computational budget in addition to using low-fidelity
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samples [24]. Some AutoML solutions (e.g. Auto-Pytorch) use

multi-fidelity to improve their training.

b) Top-3 optimization: The top-3 strategy is a variation

of the multi-fidelity strategy. The training is divided into two

steps. The first is a pre-training with a low-fidelity config-

uration (limited data and time budget). After all candidates

are trained, they are evaluated. The top 3 candidates are then

trained with the full dataset and the remaining time. The

benefit of top-3 is the increased efficiency of the training

process, as only the best 3 ML models are fully trained. The

top-3 strategy is not used by any existing AutoML solution,

but it could be applied to AutoML.

1) Early-stopping: Early stopping is a strategy to intelli-

gently terminate the training when a user-defined early stop-

ping criterion is met. The standard early-stopping criterion

is the loss on the validation set [13]. Some AutoML solu-

tions (e.g. PyCaret) use early stopping to optimize training

efficiency. On a Meta AutoML level, it is only partially

possible to use early stopping. The main issue is that there

is currently no interface available for Meta AutoML to extract

the current status of the AutoML solution, except through

text mining the console output. One issue with text mining

is that some AutoML solutions produce limited or no relevant

output during the training itself [6]. Additionally, no interface

is available for the Meta AutoML process to halt the AutoML

training. In most cases, the Meta AutoML could terminate the

process using the underlying operating system, which leads to

a complete loss of the ML model within the AutoML solution.

2) Meta-learning: Human domain experts derive knowl-

edge from previous tasks by learning about the performance of

ML algorithms. Meta-Learning mimics the perpetual process

of "learning to learn" across similar tasks and transferring that

prior knowledge to new tasks [47]. Some AutoML solutions

(e.g. Auto-Sklearn) use meta-learning to form recommenda-

tions for ML algorithms and their configuration based on

past training sessions. Meta-learning may increase training

efficiency and the ML model effectiveness.

In the next section, we introduce a concept for implementing

training strategies using a rule engine.

IV. A CONCEPT FOR RULE-BASED TRAINING STRATEGIES

Before introducing the concept of rule-based training strate-

gies, we define the optimization goals we aspire to achieve by

applying training strategies:

• Efficiency: The energy consumption will be significantly

reduced compared to a Meta AutoML training without

applying a training strategy;

• Effectiveness: The ML model performance will not be

significantly reduced.

The concept for achieving those goals uses a blackboard

architecture [48]. The blackboard architecture is a problem-

solving approach combining multiple specialized modules

working collaboratively to solve a complex problem. The

speech understanding system HEARSAY-II introduced and

used this approach [49]. The blackboard architecture defines

three components:

• Blackboard: a global data store that keeps the problem-

solving state data;

• Knowledge sources: individual components with domain

knowledge needed to solve a problem. Each component is

represented as procedures, sets of rules or logic assertions

and contributes information that will lead to a solution to

the problem.

• Controller: A component that monitors the changes on

the blackboard and decides what actions to take next.

The controller decides on the order of invocation of the

knowledge sources.

Fig. 1 shows a BPMN diagram [50] of the rule-based

training strategies process. The process starts when a new Meta

AutoML training is initiated.

A user initiates a new Meta AutoML training by config-

uring a new training within a Meta AutoML platform. A

Meta AutoML platform is an application based on the Meta

AutoML concept [10]. It unifies several AutoML solutions and

allows the user to configure and start new training sessions

without interacting with the AutoML solutions individually.

One example of a Meta AutoML platform is OMA-ML [6].

The result of the user’s training configuration is the training

configuration data. For example, a training configuration could

be represented as follows:

dataset : census_income.csv

task : tabular_classification

autoML_solutions_activated : [FLAML,

Autogluon, Autosklearn, TPOT, MLJAR,

AutoKeras, Pycaret, EvalML]

strategies_enabled : [top-3]

max_runtime : 60

In this example, the user configures the training for a tabular

classification of the Census Income dataset [51] with a total

runtime of 60 minutes. A total of 8 AutoML solutions are

activated (FLAML, Autogluon, Autosklearn, TPOT, MLJAR,

AutoKeras, Pycaret, EvalML) and one training strategy (top-3)

is enabled.

When uploading new training data into the Meta AutoML

platform, it is automatically analyzed. During this dataset

analysis, the analysis result data is generated by extracting

the properties of the training data. For example, the analysis

result for the Census Income dataset could be as follows:

samples : 48000

features : 15

missing_values : none

duplicated_samples : 48

In this example, the Census Income dataset, is comprised

of 48,000 samples and 15 features. It has no missing values

and a total of 48 duplicated samples.

The training configuration and analysis result are added

to the blackboard and represent the initial blackboard state

data. The blackboard state data is the collection of the current

state data of all the involved components and the current
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Fig. 1. Rule-based training strategies process as a BPMN diagram

training phase. When the blackboard is initialized the train-

ing phase is automatically set to ‘preprocessing’ and as the

training progresses it is updated to ‘training’ and eventually to

‘postprocessing’. For example, using the training configuration

and analysis result from the previous examples, the initial

blackboard state could be as follows:

phase: preprocessing

training_configuration:

dataset : census_income.csv

task : ...

analysis_result:

samples : 48000

features : ...

The blackboard and the reasoner component form together

the controller module. The controller administers the Meta

AutoML training process. It is responsible to advance the Meta

AutoML training phase when the reasoner has no more rules to

consider. During each phase, the reasoner will assess the rule

base with the current blackboard state and execute matching

rules. The rule base is a collection of all Meta AutoML training

strategies supported by a Meta AutoML platform. A training

strategy is composed of a condition and a collection of actions

to perform if the condition matches. A training strategy is

associated with one Meta AutoML training phase (see section

III). For example, the definition of the top-3 strategy could be

as follows:

if

phase == 'training' and

length(training_configuration.autoMl_

solutions_activated) > 3

then

do_top_3_training()

In this example, the condition for the top-3 strategy is that

the Meta AutoML training phase is equal to ‘training’ and

there are more than three AutoML solutions activated in the

training configuration. If this is the case, the controller will

execute the do_top_3_training function. During which, the

controller instructs the AutoML solutions to begin the first

training session. This initial training will use only 10% of

the sample size, 10% of the max runtime and all activated

AutoML solutions. For example, using the blackboard state

from above, the action to perform by the top-3 strategy for

the initial training could be represented as follows:

action : training

dataset : census_income.csv

task : tabular_classification

autoML_solutions_activated : [FLAML,

Autogluon, Autosklearn, TPOT, MLJAR,

AutoKeras, Pycaret, EvalML]

sample_size : 10%

max_runtime : 6

This action instructs the AutoML solution modules

(FLAML, Autogluon, Autosklearn, TPOT, MLJAR, AutoK-

eras, Pycaret, EvalML) to perform tabular classification train-

ing, using 10% of the samples from the Census Income dataset,

and a maximum runtime of 6 minutes.

During the training process, the AutoML solution modules

notify the blackboard about their current training state. Each

AutoML solution module represents the implementation of one

AutoML solution used by the Meta AutoML platform. The

training state represents information about the progression of

the AutoML training process. For example, the information

provided by the AutoML solution Autokeras during the initial

training could be represented as follows:

AutoKeras:

remaining_training_time : 2

best_model_performance : 0.8

In this example, the remaining training time is 2 minutes,
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and the highest ML model performance is 80%. The ML

model performance is measured using a standard ML metric

for the current ML task. For example, the metric for tabular

classification could be accuracy. This training state is updated

throughout the AutoML solution training.

When the initial training for the top-3 strategy concludes,

the controller evaluates the training state from all AutoML

solutions and continues with the second training session using

the complete sample set, the remaining 90% of the max

runtime and the top-3 AutoML solutions from the preliminary

training. For example, the final training state of the 8 AutoML

solutions could be as follows:

FLAML:

remaining_training_time : 0

best_model_performance : 0.77

Autogluon:

remaining_training_time : 0

best_model_performance : 0.78

Autosklearn:

remaining_training_time : 0

best_model_performance : 0.87

TPOT:

remaining_training_time : 0

best_model_performance : 0.87

MLJAR:

remaining_training_time : 0

best_model_performance : 0.88

AutoKeras:

remaining_training_time : 0

best_model_performance : 0.92

Pycaret:

remaining_training_time : 0

best_model_performance : 0.95

EvalML:

remaining_training_time : 0

best_model_performance : 0.95

All AutoML solutions finished the preliminary training indi-

cated by the remaining training time of 0. The controller based

on the top-3 strategy decides that the best-performing AutoML

solutions by best model performance are: AutoKeras, Pycaret

and EvalML. The controller instructs these three AutoML

solutions on further actions to perform. In this case, the action

is to begin the second training using the remaining time and

complete sample set. For example, the action to perform the

second training could be as defined as follows:

action : training

dataset : census_income.csv

task : tabular_classification

autoML_solutions_activated : [AutoKeras,

Pycaret, EvalML]

sample_size : 1.0

max_runtime : 54

This action instructs the AutoML solutions AutoKeras,

Pycaret and EvalML to perform a tabular classification training

using the Census Income dataset with all the samples and a

maximum runtime of 54 min.

As described above, the AutoML solution modules perform

the training session and update their training state on the

blackboard accordingly. When all three AutoML solutions

conclude their training, the top-3 strategy ends. When the

controller assesses that no more rules can be applied during

this training, the Meta AutoML training concludes.

In the next section, we introduce the prototypical implemen-

tation of the rule-based training strategy within the OMA-ML

platform.

V. PROTOTYPICAL IMPLEMENTATION

The rule-based training strategy concept was implemented

as a proof-of-concept in the Meta AutoML platform OMA-

ML. OMA-ML is an open-source5 platform providing users

with a web application-based interface to configure the Meta

AutoML training. Fig. 2 displays a screenshot of the training

wizard used to configure the Meta AutoML training.

The training wizard displays the required and optional

parameters for a Meta AutoML training. The minimal config-

uration OMA-ML requires comprises of the ML task (tabular

classification), the target column (‘class’) and a maximum

runtime (60 minutes).

For expert users, OMA-ML allows in-depth parametrization

of the Meta AutoML training using optional parameters.

The user may activate or deactivate individual ML libraries

and associated AutoML solutions. For example, in Fig. 2

the following AutoML solutions are activated: Autogluon,

Autosklearn, EvalML, FLAML, MLJAR, TPOT, Pycaret and

Autokeras. Additionally, OMA-ML displays a collection of

training strategies compatible with the current training con-

figuration. For example, the top-3 strategy is available since

more than 3 AutoML solutions are activated.

OMA-ML uses an ML ontology to display individual Au-

toML solution parameters. These are parameters AutoML

solutions provide to fine-tune their search process. When the

user clicks on the finish button, the Meta AutoML training

begins.

The OMA-ML web application is developed in C# with

the Blazor web framework6. OMA-ML follows a 3-layer

architecture design. See Fig. 3 for an overview of the software

architecture and technologies used.

The presentation layer is connected to the logic layer

using a gRPC7 interface. The logic layer is developed in

Python based on the blackboard architecture. The Controller

component uses the library rule-engine8 to reason over the

rule base. The library rule-engine provides a grammar to

create general-purpose rule objects from a logical expression

that can be applied to arbitrary objects. The Meta AutoML

training strategies conditions are modelled using this grammar.

The training strategies are implemented within a rule base

5https://github.com/hochschule-darmstadt/MetaAutoML
6https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
7https://grpc.io/
8https://pypi.org/project/rule-engine/
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Fig. 2. Screenshot of the OMA-ML training configuration wizard

Fig. 3. OMA-ML software architecture and technologies (adapted from [6])
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component. For example, the top-3 strategy implementation is

as follows:

self.register_rule(

'training.top_3',

Rule("phase == 'training'" and

training_configuration['activated

_auto_ml_solution'].length > 3,

context=training_context),

self.do_top_3

)

The register_rule functionality of the rule base permits rules

to be registered. This method requires as parameters, the name,

a condition in the rule-engine grammar and a function to

execute when the condition matches. In the example above

the top-3 strategy has:

• the name: ‘training.top_3’;

• the condition: the phase is training and the sum of all

activated AutoML solutions must be greater than three;

• the function: ‘do_top_3’.

Using the register_rule functionality, new training strategies

can easily be added to the existing rule base. For example, the

whole implementation of the top-3 strategy requires less than

50 lines of code. During a Meta AutoML training, the con-

troller evaluates the rule base for any rule matching the state

of the blackboard. Any matching rule invokes their respective

function and interacts with the AutoML adapters. The AutoML

adapters use the AutoML solutions (e.g. AutoKeras). They

are based on the adapter-pattern and plug into the Controller,

easing integration.

The logic layer uses the data layer to connect to various data

stores. The ML ontology is located here and loaded using the

Pyhton library RDFlib9 into the Controller. SPARQL queries

are used to interact with the ML ontology. Additionally, the

document database MongoDB stores data generated by the

Meta AutoML process. The ML pipelines generated by the

AutoML adapters are saved in the ML pipeline store. Finally,

any logs generated during the Meta AutoML training process

are stored in a log storage.

VI. EVALUATION

This section evaluates the concept and implementation of

the rule-based training strategies within the Meta AutoML

platform OMA-ML. By applying training strategies to Meta

AutoML we aim to significantly reduce the energy consump-

tion (efficiency) of the Meta AutoML process while avoiding

a significant reduction in ML model performance (effective-

ness). To evaluate these goals we compare two measures of

quality:

• Best ML model accuracy: The highest accuracy of all the

AutoML solutions found ML models;

• Training CO2-eq: The sum of all the CO2 equivalence

produced by the AutoML solutions training.

9https://pypi.org/project/rdflib/

To measure the CO2 equivalence, the Python library code-

carbon10 was used. Codecarbon measures the amount of CO2-

eq emitted by the individual AutoML solutions. Codecarbon

tracks the power consumption of the underlying computational

infrastructure, measured in kilowatt-hours. This value is multi-

plied by the carbon intensity of the electricity consumed for the

computation. The carbon intensity is calculated as a weighted

average of the emissions of the different energy sources used

to generate the used electricity (e.g. natural gas, coal, wind)

in the respective country11, here Germany.

During the course of the experiment, five datasets from the

open-source AutoML benchmark by Gijsbers et al. [52] were

used:

• adult12: This dataset contains samples of more than

48,000 individuals and their socioeconomic properties ex-

tracted from the Census database in 1994. This dataset is

a binary classification and aims to predict if an individual

earns over 50k a year;

• amazon13: This dataset contains samples of more than

32,000 resource requests with the associated Amazon

employee meta information from 2010 and 2011. This

dataset is a binary classification and aims to predict if

access to a resource was approved;

• sylvine14: This dataset contains more than 5,000 numer-

ical samples; there is no definition of the origin of the

data of this dataset. This dataset is a binary classification;

• credit-g 15: This dataset contains samples of 1,000 indi-

viduals, their economic properties and loan requests. This

dataset is a binary classification and aims to predict the

credit score of an individual;

• kc116: This dataset contains samples of more than 2,000

software modules and their quality metrics. This dataset

is a binary classification and aims to predict if a software

module has a defect.

OMA-ML performed two training sessions with each

dataset. During the first training session, no optimization

strategy was activated. For the second training session, the

top-3 optimization strategy was activated. After every training

session, the best ML model performance by accuracy [53] was

logged as well as the AutoML solution which produced this

ML model. Finally, the total CO2-eq was calculated by taking

the total of all AutoML solutions training CO2-eq.

The training sessions were performed on an AMD Ryzen

7 5800H @ 3.20 GHz CPU with 64GB of RAM. A result

summary of all training sessions can be seen in Table II.

The Meta AutoML training sessions applying the top-3

optimization all display a significant saving in CO2-eq. The

difference ranges from 59% with the adult dataset to 70% with

the sylvine dataset. The performance of the best ML model

10https://github.com/mlco2/codecarbon
11https://mlco2.github.io/codecarbon/methodology.html
12https://openml.org/search?type=data&status=active&id=179
13https://openml.org/search?type=data&status=active&id=4135
14https://openml.org/search?type=data&status=active&id=41146
15https://openml.org/search?type=data&status=active&id=31
16https://openml.org/search?type=data&status=active&id=1067
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TABLE II
EVALUATION SUMMARY

Meta AutoML, no optimization Meta AutoML, top-3 optimization Comparision

Dataset AutoML solution accuracy CO2-eq [g] AutoML solution accuracy CO2-eq [g] Difference accuracy Saving CO2-eq

adult FLAML 0.88 53.5 FLAML 0.87 22.1 -0.01 59%

amazon Autogluon 0.95 45.8 Autogluon 0.95 16.6 0.00 64%

sylvine Autosklearn 0.95 49.96 Autosklearn 0.95 15.0 0.00 70%

credit-g FLAML 0.78 36.2 MLJAR 0.77 11.7 -0.01 68%

kc1 Autogluon 0.87 37.0 Autogluon 0.87 13.1 0.00 65%

is equal to or at worst one percentage point lower compared

to the Meta AutoML training sessions without optimization.

Additionally, the best AutoML solution is the same in both

training sessions for four out of the five datasets. The only

exception being the dataset credit-g, the best AutoML solution

is FLAML in the training without optimization and MLJAR

during the training with optimization. While FLAML did not

produce the best ML model during the optimized training

session, it was one of three AutoML solutions selected by the

top-3 strategy to train a model in the second training session.

By using the top-3 training strategy it is possible to sig-

nificantly (up to 70%) reduce the amount of CO2-eq for a

training session. While also achieving similar or slightly (1

percentage point) reduced results in the performance of the

best ML model, the goals of this study can been regarded as

achieved.

VII. CONCLUSION AND FUTURE WORK

Meta AutoML provides users with or without data science

knowledge access to automatically generated ML models.

However, there is the major issue of massive computation

power requirements for Meta AutoML. The concept of rule-

based training strategies aims to optimize the energy efficiency

and ML model effectiveness for Meta AutoML. The contribu-

tion of this paper is two fold. Firstly, we presented a survey

of 14 AutoML training strategies, classifying them by their

function category, ML phase, advantage and implementation

feasibility for Meta AutoML. Most training strategies aim to

optimize the dataset and only 3 strategies focus on the ML

model fitting process. Twelve training strategies can be fully

applied to the Meta AutoML process. The exception being the

feature extraction and early-stopping strategy. While different

approaches exist to automate feature extraction, only a domain

expert can decide if the extracted features are relevant. Early

stopping requires process information and an interface from

the AutoML solutions to allow interaction by a Meta AutoML

platform. Both of these are not supported by most AutoML so-

lutions, making implementation of early stopping challenging.

While AutoML solutions implement various training strategies

already, on the Meta AutoML level however there has been no

research on optimization using training strategies. The second

contribution of this paper addresses this issue.

We presented the novel concept of rule-based training

strategies. This concept uses the blackboard architecture to

implement training strategies for Meta AutoML. This con-

cept aims to significantly increase the efficiency of Meta

AutoML by reducing the required computation power while

not significantly reducing the best ML model performance.

The Meta AutoML platform OMA-ML was used to implement

a proof-of-concept. We evaluated the implementation by using

the training strategy top-3. During the evaluation, five binary

classification datasets were used. Using each dataset, two

experiments were performed, one without an optimization

strategy and one with the top-3 optimization strategy. Applying

the top-3 optimization led to a saving of up to 70% CO2-eq,

with the best ML model having identical or slightly reduced

performance (one percentage point).

The results show that rule-based training strategies can

improve the Meta AutoML training efficiency significantly

with only a slight reduction in ML model effectiveness.

However, further evaluation is required. In future work, we

aim to implement additional training strategies and perform

extensive benchmark testing using a variety of ML tasks (e.g.

regression, time series forecasting etc.) and various dataset

types (e.g. texts, images, time series etc.).
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