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Abstract—This paper addresses the problem of an aerial
moving target search with a radar on an airborne platform.
An observation of the radar is modeled as a cone covering a set
of regions of the search area. We assume overlapping cones of
observation, and we want to find the discrete allocation plan of
search effort to the cones in order to optimize target detection.
For the stationary target search with overlapping cones, we
present a dynamic programming algorithm that computes the
optimal allocation. An approximate greedy heuristic, which is
more appropriate in a real time context, is also presented
and assessed. The moving target search problem is solved
with the Forward And Backward (FAB) algorithm coupled
with the different stationary search algorithms. In this paper,
we use a radar detection model that has been shown to be
more realistic than the ones usually considered. Also, several
models of movement of the target are considered with different
Markovian transition matrices. We compare the performance of
the mentioned algorithms on several scenarios.

Index Terms—Moving Target search, Dynamic Programming,
FAB algorithm, Overlapping Observation Cones.

I. INTRODUCTION

S
EARCHING for a moving target with a sensor is a

complex problem, especially when the search area is large.

This has been the subject of much research in the past, as

evidenced in literature reviews by Stone [1] and by Rapp [2].

In general, one seeks to optimize an objective related to

the probability of detecting one or more moving targets.

The search area is discretized into identical regions and a

sensor plan is computed over a fixed horizon. All regions

are associated with prior probabilities of presence of targets.

The probability of detecting targets in a region depends on

the amount of search effort invested in it, the visibility of

the region, and the probability that targets are present in the

region.

Depending on the type of the platform (drone, satellite) or

sensor (radar, camera), several approaches exist (see the review

in [2] and references included therein). One can try to solve a

path constrained search, where the subset of regions that will

be observed and the order of visit of these consecutive regions

must be determined (see [3], [4]). One can instead try to find

the quantities of effort (discrete or continuous), constrained

by a budget, to allocate independently to each region, at each

time step, in order to maximize the probability of detecting

the targets over the time horizon considered [1], [5], [6]. The

search plan can be computed using the Forward-and-Backward

algorithm (FAB) [7], [5], [6], Branch and Bound methods [8],

or MILP [9] among others (see [2]).

In the problem we address, the search effort cannot be allo-

cated independently to each region. Indeed, each observation

of the radar is characterized by a cone that covers a set of

regions. Moreover we assume that the cones may overlap, so

that a region can be covered by several observation cones. This

model applies for 2D as well as for 3D dimensional cones. As

pointed out in chapter 14 of [10], an important parameter of

the search plan design is beam search spacing, that defines the

maximum number of consecutive overlapping cones. In this

paper, we investigate its role in the efficiency of search plans

and algorithms. We consider here discrete search effort on each

cone which means we deal with the number of observations.

In [11], the authors consider a similar context for a con-

tinuous search effort and propose a customized version of the

Forward-And-Backward algorithm to solve it, without proving

its optimality. Path search have been considered in [9] where

several regions are observed at the same time from each posi-

tion and a region can be observed from several positions. The

solution proposed is a mixed integer programming method.

In [12], the authors addressed the problem of a moving target

search with a radar where the cones of observation are disjoint:

each region is covered by a single cone of observation. They

show that for continuous effort the FAB algorithm is still

optimal, and adapt the FAB algorithm to the discrete effort

case. None of these works address the problem of allocating

a discrete search effort to overlapping cones.

Another relevant issue in target search is the detection

model. Chapter 2 of [13] presents an extensive literature

review on detection models and quotes that in most of the

papers the visibility of a region depends only on the distance

from the radar. However, one of the main characteristics
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of radar measurements is that the detection probability also

decreases on the borders of an observation cone. Such a model

was first proposed in [11]. In this paper we consider a general

model where the detection probability of a single observation

depends arbitrarily on the region and on the observation cone.

In this work, we address a moving target search with a

radar by considering overlapping cones of observation for the

allocation of discrete search effort and with a new detection

model. Unfortunately, in this case the usual algorithm to

optimize the probability of finding a stationary target given

by [1] is not optimal. Thus, we face up a combinatorial

optimisation problem to compute the optimal quantity of effort

to allocate at each time step.

We present a dynamic programming algorithm that finds

the optimal allocation of effort for a stationary target search

case with overlapping cones of observation. Operational con-

siderations require a short execution time of the algorithm.

Therefore, we study different computational heuristics. Among

them we propose a greedy algorithm which approximates

efficiently the optimal solution. All stationary algorithms are

then used in a FAB algorithm to solve the moving target

search. We then present numerical experiments to compare

the performance of these different algorithms in different

scenarios. Among them we consider different models of target

movement.

This paper is organized as follows. Section II details the

framework of the target search. In Section III we present

the dynamic programming algorithm that finds the optimal

allocation for a stationary target search while Section IV

is devoted to heuristics and an upper bound. We recall the

moving target search problem and the FAB algorithm in part

V. At last Section VI focuses on the numerical experiments.

II. FRAMEWORK

The search problem that we consider is the following:

a) the target: An airborne platform faces a search area,

which is partitioned into J regions. We assume a single target.

The target position is unknown but we assume that we know its

movement model. Similarly as in previous works, namely [1],

the target moves from one region to another, at each time step

t ∈ {0, . . . , T}, following a Markovian transition model with

some transition function πt(i, j) defined for all pair of regions

i, j ∈ {1, . . . , J} and t = 0, . . . , T . As soon as we know the

prior probability p0(j) that the target is initially located in a

region j, we deduce pt(j) which is the probability that the

target is in region j at time t. A trajectory is a sequence of

regions ω = (ωt)t=0,...,T .

b) the sensor: We also assume a single sensor that

observes the search area such that at each time step, it

has a budget of observations that it can allocate to one or

several angles. An observation made by the sensor in an angle

encompasses all the regions covered by the cone defined by the

angle and the position of the sensor. We define Ma as the set

of regions observed in angle a (see Figure 1) and conversely

by Yj the set of angles covering region j. We say that two

angles a, a′ overlap if Ma ∩Ma′ ̸= ∅.

Fig. 1. A single cone of observation and the regions being observed.

We assume that the set of angles A is indexed such that

each region of the search area is observable from at least one

angle and from at most N consecutive angles. In Figure 2, we

present three examples for N = 1, 2, 3. The set A is indexed

from left to right. In each example, there are four cones of

observation and a region indicated by a red circle. The cones

that cover the region are represented in green such that an

area covered by several green cones appears darker. The other

cones of observation are represented in white. For N = 1, the

search area is partitioned into disjoint cones of observation.

For N = 2 the red circle is covered by angles 2 and 3, and

for N = 3, the red circle is covered by angles 1, 2, 3.

Fig. 2. Example of overlapping cones of observation.

c) the search plan: We define the search plan Z as a

matrix of shape |A| × (T + 1). It defines at each time step

t = 0, . . . , T , an allocation vector ζ(t) whose components

ζa(t) define the number of observations made in the angle a

at time t for a ∈ A.

We define κ(a) ∈ R
+, κ(a) ≥ 1 the cost of investing an

effort to the angle a. The cost of an allocation vector ζ(t) is

K(ζ(t)) =
∑

a∈A

ζa(t) · κ(a) .

At each time step, we construct an allocation vector ζ(t) such

that its cost is bounded by a budget Ct.

d) The detection model: The range of a radar is not

uniform in an observation cone: it is at its highest in the

center of the cone and decreases on the borders. In our

model, we assume that a region-angle couple (j, a) such that

a ∈ Yj is associated with a visibility coefficient αj,a ∈ [0, 1]
representing the conditional probability of detecting the target

in the region j when the sensor makes one observation in the
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angle a, provided that the target is in the region j. We also

assume that the observations are independent.

We call this model “realistic”: the coefficient depends on

the distance of the region to the radar and the angular offset

to the center of the observation cone. We also consider in

our experiments the usual model where the coefficient only

depends on the distance. It is called “distance” model. In this

case αj,a = αj for all a ∈ Yj . Figure 3 illustrates these two

models.

Fig. 3. Two types of detection models in a single cone of observation.

Consider a single time step t of the plan and the allocation of

effort vector ζ at this time step (t is omitted in the notation).

The detection function b(j, ζ) is the conditional probability

of detecting the target in a region j for an effort vector ζ

given that the target is located in j. It can be expressed by the

following property:

Property 1 (Detection function).

b(j, ζ) = 1−
∏

a∈Yj

(1− αj,a)
ζa . (1)

Proof. Let Dj and D̄j be respectively the events associated

with a detection and a non detection of the target in the region

j. Let Cj be the event associated with the target located in

region j. By definition, The detection function in a region is

defined as: b(j, ζ) = P(Dj |Cj) = 1− P(D̄j |Cj).
Now, we know that for each observation of j in angle a, the

probability of missing the target, given it is present, is 1−αj,a.

So, if ζa independent observations are made in angle a, the

conditional probability of missing the target in region j, given

Cj is (1− αj,a)
ζa .

Finally, as region j is covered by all angles a ∈ Yj , and as

all observations are independent, the probability P(D̄j |Cj) of

missing the target, given it is in region j, is
∏

a∈Yj
(1−αj,a)

ζa

so that the property hold.

When we use the ”distance” model, since the value of αj,a

is the same for any a in Yj , then the formula is simplified to

b(j, ζ(t)) = 1− (1− αj)
∑

a∈Yj
ζa(t)

. (2)

e) the objective function: Let Pt(Z, ω) be the conditional

probability of detecting the target before the time horizon t

given the target follows the trajectory ω and the allocation

plan is Z. Pt(Z, ω) is defined as follows:

Pt(Z, ω) = 1−
t
∏

s=0

(

1− b(ωs, ζ(s))
)

. (3)

As in [1], we consider a generic objective function composed

of any linear combination of such probabilities:

P̂T (Z) = E

[

γT+1(ω) +
T
∑

t=0

γt(ω) · Pt(Z, ω)

]

. (4)

Two remarkable objectives can be formulated by adjusting

the coefficients γt:

• The maximization of the probability PT (Z) of detecting

the target before the time horizon T by executing the

allocation plan Z: (γt = 0 for t = 0, . . . , T − 1, γT = 1
and γT+1 = 0).

• The minimization of the mean completion time MT (Z)
(i.e. the expected number of time steps until the target

is detected or the time horizon T is reached). By setting

γt = 1 for t = 0, . . . , T and γT+1 = −(T + 1), we get

the objective −MT (Z) to be maximized.

The global objective of the planning algorithm is thus to

find the feasible plan (satisfying the budget constraint) Z∗

that maximizes P̂T (Z).

III. OPTIMAL STATIONARY TARGET SEARCH

The Forward and Backward algorithm decomposes the

moving target search problem into successive resolutions of

stationary target search problems at each time step. Hence,

we first consider the problem of stationary target search. The

aim is to minimize the probability of missing the target at a

single time step t, given the probabilities of the target presence

in every region, and a budget C for the observations.

For the sake of clarity, in this section we do not use the time

step t in our notations and ζa(t) is denoted by ζa. We present

a dynamic programming algorithm to compute the optimal

allocation of effort to angles bounded by a budget C for the

search of a stationary target when the cones of observation

overlap.

The stationary target search problem can be formulated as

a convex mathematical program:

min 1− P (ζ) =
J
∑

j=1

p(j) ·
∏

a∈Yj

(1− αj,a)
ζa (5)

s.t.
∑

a∈A

κ(a) · ζa ≤ C and ζa ∈ N , ∀a ∈ A .

To our knowledge, the complexity of this problem is un-

known, even in the simpler case considered in [1] where

the effort applies independently to regions and assuming unit

costs. The complexity of the algorithm presented in [1] de-

pends linearly on the maximal number of observations, which

is constrained by the budget, and thus is pseudo-polynomial.

However from a practical point of view, in the operational

instances the maximum number of observations is usually far

lower than the number of regions, or cones in our case which

makes the algorithm polynomial.

3
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A. Properties

The algorithm uses the fact that at most N consecutive

cones of observation overlap (as illustrated in Figure 2) to

decompose the problem into elementary subproblems and

computes the optimal solution iteratively by considering con-

secutive angles.

We consider the tuple (ak)k=1,...,|A| of the angles of A

in increasing order. For each phase k ∈ {1, . . . , |A|} of the

algorithm, we define the set of regions Rk that are observable

from angle ak but not from any angle ak′ with k′ > k.

For example in Figure 2, when N = 2, there are 4 cones

of observations associated to the angles (ak)k=1,...,4. The red

circle is covered by the cones a2 and a3 but not by a4. The

circle belongs to R3. Note that in an operational instances the

number of angles is far greater than 4.

Property 2. The sets (Rk)k=1,...,|A| form a partition of the

set of regions.

Note that, since the Rk are disjoint, Property 2 implies that

the probability of detecting the target P (ζ) (given by Eq. (5))

can be computed by summing the probabilities of detecting

the target in each Rk, for k = 1, . . . , |A|.
Let us denote by nk = min(N, k) the maximum number

of angles that can observe a region in Rk. Notice that for

k = |A|, Rk contains all regions observable by angle ak, so

there might be a region in Rk covered by N angles.

Property 3. A cone Ma intersects Rk if and only if a ∈
{ak−nk+1, . . . , ak}.

Property 3 implies that the probability of missing the target

in Rk can be determined using the allocation of effort on

{ak−nk+1, . . . , ak}, which can be expressed as a list of nk

values: ζak
, . . . , ζak−nk+1

for k = 1, . . . , |A|.
We define Wk(ζak

, . . . , ζak−nk+1
) the probability of missing

the target in Rk as:

Wk(ζak
, . . . , ζak−nk+1

) =
∑

j∈Rk

p(j)
k
∏

l=k−nk+1

(1− αj,al
)ζal .

(6)

Let us define the partial objective of order k as:

Partk(ζ) =

k
∑

l=1

Wl(ζal
, . . . , ζal−nl+1

) . (7)

The partial objective Partk(ζ) is thus the part of the global

objective (5) that excludes the part of the area covered by the

cones of the angles ak+1, . . . , a|A|. Notice that our objective

is then:

1− P (ζ) = Part|A|(ζ) (8)

B. The algorithm

We now define the dynamic programming scheme to min-

imize Part|A|(ζ), where each phase k corresponds to the

decision concerning the effort ζak
. The nk − 1 past decisions

at phase k are summarized into a state E = (B, x) where:

• B is an integer between 0 and C representing the remain-

ing budget available for the decisions of the phases k to

|A|;
• x is a list of nk − 1 elements representing the last

decisions made in reverse chronological order (thus con-

cerning the angles ak−1, . . . , ak−nk+1).

In this context, the initial state is (C, null) (where null

represents an empty list). If x is a list of values we denote by

x[p] the pth element of the list, and by x[p . . . q] the sub list

of x with elements indexed from p to q. Moreover if u is an

element or another list we denote by x · u the concatenation

of x and u.

The transitions of the dynamic programming scheme are

defined as follows:

If at phase k the system is in state E = (B, x), the decision

δ (effort on angle ak) satisfies δ ∈ {0, . . . ,
⌊

B
κ(ak)

⌋

}. For such

a decision δ, we define x′ = δ ·x[1 . . . nk−2], δ′ = x[nk−1],
and B′ = B−δκ(ak). The pair (B′, x′) is the resulting state of

the decision δ at phase k+1. Notice that x = x′[2 . . . nk−1]·δ′,
and B = B′ + x′[1]κ(ak). This will be used in Property 4.

The immediate cost of the decision δ is then Wk(δ·x). Using

the previous notations, we observe that Wk(δ·x) = Wk(x
′ ·δ′).

Let Fk(B, x) be the minimal value of Partk−1(ζ) where ζ

is subject to the two constraints:

k−1
∑

l=1

ζal
≤ C −B ,

ζak−1
, . . . , ζak−nk+1

= x .

We can now express the optimal objective of the stationary

search as follows:

min
x

F|A|+1(0, x) (9)

Property 4. The values Fk(B, x) satisfy the following recur-

rence equation:

Fk+1(B
′, x′)=















Fk(B
′ + x′[1]κ(ak), x=x′[2 . . . nk − 1]) +Wk(x

′) if k < N

min
0≤δ′≤C′

(

Fk

(

B′ + x′[1]κ(ak), x=x′[2 . . . nk − 1] · δ′
)

+Wk(x
′
· δ′)

)

otherwise.

(10)

where C′ =

⌊

C−B
′−

∑nk+1−1

i=1 x
′[i]κ(ak+1−i)

κ(ak−nk+1
)

⌋

.

Proof. Let ζ be the optimal allocation solution of

Fk+1(B
′, x′). By the decomposition of the values Partk

as a sum of Wl values in (7), we can see that if k < N ,

nk+1 = nk + 1 and x′ = ζak
, . . . , ζ1 contains the

effort of all the first angles that led to a remaining

budget B′. So for earlier decisions, all the allocation of

effort is know and thus Fk+1(B
′, x′) = Partk(ζ) =

Wk(x
′) + Fk(B

′ + x′[1]κ(ak), x=x′[2 . . . nk − 1]).
Assume that k > N , so that nk+1 = nk = N . Setting δ′ =

ζak−nk+1
, we have x′ · δ′ = ζak

, . . . , ζak−nk+1
. Setting x =

x′[2 . . . nk − 1] · δ′, the allocation ζ considered for angles a1

4
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to ak−1 defines a feasible solution of the sub problem whose

optimal value is Fk(B
′ + κ(ak)x

′[1], x). So Fk+1(B
′, x′) =

Partk−1(ζ) +Wk(x
′ · δ′) is not less than the right hand side

of the equality.

Conversely, consider any δ′ ≤ C ′. Set x = x′[2 . . . nk −
1] · δ′. Let ζ ′ be the optimal plan solution of Fk(B

′ +
κ(ak)x

′[1], x). We can define the plan ζ ′′ such that ζ ′′al
= ζ ′al

if l < k, and ζ ′′ak
= x′[1], and obtain a feasible solution of the

sub problem for which Fk+1(B
′, x′) is the optimal value. So

we get:

Fk+1(B
′, x′) ≤ Partk(ζ

′′) = Partk−1(ζ
′) +Wk(x

′ · δ′)

= Fk(B
′ + κ(ak) · x

′[1], x) +Wk(x
′ · δ′). (11)

Hence the reverse inequality holds.

The forward dynamic programming algorithm issued from

Property 4 computes for each phase k from 1 to |A| and for

each possible state (B′, x′) of this phase the value Fk(B
′, x′).

Algorithm 1 shows this first part that computes the minimal

target missing probability. The computation of the optimal

effort allocation ζ is then done using classic dynamic pro-

gramming approach by searching among the stored values

Fk(B
′, x′) which decisions gave the optimal value, with a

lower complexity.

Algorithm 1 DP algorithm

1: for all B ≤ C do

2: F1(B, null) = 1
3: end for

4: for k = 2 to |A|+ 1 do

5: for all possible couples (B′, x′), with length(x′) =
nk − 1 do

6: Compute Fk(B
′, x′) using equation (10)

7: end for

8: end for

9: return minx F|A|+1(0, x)

We can now analyze the complexity of Algorithm 1.

Property 5. The time complexity of Algorithm 1 is:

O
(

|A| ·N · J · CN
)

.

It is pseudo-polynomial for fixed N .

Proof. Let us denote by zmax =

⌊

C

mina∈A κ(a)

⌋

the maxi-

mum number of observations in an angle. For each iteration

of the outer loop, k ∈ {2, . . . , |A| + 1} a state (B′, x′) is

composed of the remaining budget and the at most N − 1
last decisions composing x′. The space needed to store each

value Fk(B
′, x′) is therefore O(|A| · C · zN−1

max ). Now for

each Fk(B
′, x′), the time complexity of the computation

of the recurrence equation (10) depends on the number of

different δ′ values, which can be bounded by zmax. For

each δ′ the computation of Wk(x
′.δ′) is in O(N · |Rk|). As

mina∈A κ(a) ≥ 1, zmax ≤ C. This gives the whole time

complexity of the algorithm.

Notice that in real applications, N is usually quite small

and ranges from 2 to 6 (in the 3D case), and the budget and

zmax are usually far lower than J , which makes this approach

tractable in practice.

IV. HEURISTICS AND BOUNDS

This section is devoted to the presentation of some heuristics

methods and a relaxation for the stationary target search.

A. Greedy algorithm

We first present an iterative algorithm that approximates

the optimal search effort allocation. This algorithm is an

adaptation of the optimal greedy algorithm for the computation

of the allocation of discrete effort in the case of disjoint cones

of observation and unit costs which was proposed in [12]. Due

to the overlapping of the observation cones, the conditions

that ensured its optimality vanish. However our experiments,

in section VI, shown that it provides a fast and high quality

approximation of the optimal solution. We first detail the

concept of rate of return of angles on which the algorithm

is based and we then present the complete algorithm.

1) Rate of return of angles: Let us first define p(ang)(a) as

the probability that the target is in the cone associated with

the angle a. We have

p(ang)(a) =
∑

j∈Ma

p(j) . (12)

We define b′(j, ζ, a) as the rate of change of the function

b(j, ζ) for an additional effort in the angle a by:

b′(j, ζ, a) = b(j, ζ + 1a)− b(j, ζ)

= αj,a

∏

a′∈Yj

(1− αj,a′)ζa′ . (13)

Where b(j, ζ) is defined in Equation (1) and where 1a is the

unit vector of length A such that 1a(a) = 1 and 1a(a
′) = 0

for a′ ̸= a. As it can be seen in the Equation (13), the value

of b′(j, ζ, a) depends not only on angle a but also on all the

angles that cover the region j.

We define the angular detection function β(a, ζ) as the

conditional probability of detecting the target in one of the

regions in the cone associated with an angle a, for an allocation

of effort ζ on angles, given the target is located in the cone.

The angular detection function β(a, ζ) is:

β(a, ζ) =

∑

j∈Ma
p(j) · b(j, ζ)

p(ang)(a)
.

We define β′ as the angular rate of change of the function

β for an additional effort in angle a by:

β′(a, ζ) =

∑

j∈Ma
p(j) · b′(j, ζ, a)

p(ang)(a)
.

We then define ρ(a, ζ) as the rate of return function. It

represents, for an allocation ζ, the ratio between the increase

of the probability of detection for a new increment of effort

5
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in the angle a, and the investment cost generated by the same

increment. It equals:

ρ(a, ζ) =
p(ang)(a)β′(a, ζ)

κ(a)
=

∑

j∈Ma
p(j) · b′(j, ζ, a)

κ(a)
.

(14)

In the overlapping cones case, the value of the rate of return

ρ(a, ζ) depends not only on the value of effort ζa but also

on the allocation of effort ζ to all the angles that cover any

region j covered by a. Algorithm 2 summarizes the main steps.

Starting from a null allocation of effort, at each iteration an

additional unit of effort is added in the angle with the best rate

of return until the budget is reached (as we assumed costs not

less than 1, there are at most C such iterations). To compute

or update the rate of returns, each region j appears at most

N times in the sums, and there are at most N terms in the

computation of b′(j, ζ, a). The complexity of this algorithm is

thus O(C · |A| · J ·N2).

Algorithm 2 Greedy algorithm

1: ζ = (0, . . . , 0), B = 0, and Compute ρ(a, ζ), ∀a ∈ A

2: while ∃a ∈ A such that B + κ(a) ≤ C do

3: Compute a∗ = argmax
a∈A,B+κ(a)≤C

(ρ(a, ζ))

4: ζ = ζ + 1a
∗

5: B = B + κ(a∗)
6: Update ρ(a, ζ) for all a such that Ma ∩Ma∗ ̸= ∅
7: end while

In the non-overlapping cones case and unit costs, the opti-

misation problem can be exactly solved using this algorithm

[12]. In our case this result does not hold. Hence, our heuristic

is suboptimal.

B. Adapted Random Permutation Scan Method

We now introduce an algorithm adapted from the conven-

tional random permutation scan method as described in [14],

referred to as RPSM in the following. The original strategy

entails a comprehensive sweep of the entire search area in the

absence of any prior information about the target’s position.

During each iteration, the radar conducts an observation in

each considered direction following a random order. The

algorithm stops when the budget of observations runs out.

In this study, we have adapted this method to scenarios

where there is prior knowledge about the target’s location.

The set of considered angles corresponds to those that cover

at least one region j such that p(j) > 0 thus we consider

angles such that p(ang)(a) > 0.

a) The algorithm: A buffer H is used to store the angles

that have not been observed yet. The buffer is initialized with

the set of angles covering at least one region with a positive

prior on target presence (i.e. p(ang)(a) > 0). When the buffer

is empty, it is reinitialized with the same set of angles.

The markovian transition matrix is used to compute the

probability of presence of the target at each timestep. Hence

at time step t, the probability pt(j) is computed recursively

from the prior probability p0 and the transition matrices πt of

Algorithm 3 RPSM adapted to target search with priors

1: ζ = (0, . . . , 0), B = 0
2: H = {a ∈ A : p(ang)(a) > 0}
3: while ∃a ∈ H,B + κ(a) ≤ C do

4: Sample a from H without replacement

5: if B + κ(a) ≤ C then

6: ζ = ζ + 1a

7: B = B + κ(a)
8: end if

9: if H = ∅ then

10: H = {a ∈ A : p(ang)(a) > 0}
11: end if

12: end while

the Markov chain. The set of angles covering at least one

region with a positive prior on target presence is updated

consequently at each timestep. An allocation plan is initialised

to a null plan and allocations are computed sequentially with

Algorithm 3. When the buffer is empty, it is updated with

{a ∈ A : p
(ang)
t (a) > 0}.

This algorithm is used as a baseline for the search of a

stationary and moving target.

C. Relaxation of the problem for the computation of an upper

bound

For the moving target search problem, the FAB algorithm

is guaranteed to converge to the optimal plan when the search

effort is continuous but not when it is discrete (see [1]). As in

[12], we use the value of the optimal payoff obtained in the

continuous case as an upper bound on the optimal value of

the payoff obtainable in the discrete case. The aim is then to

measure the efficiency of the discrete approach with respect

to the bound given by the continuous optimal solution.

The detection function and the objective functions (sta-

tionary and moving target) have the same formulation both

in discrete and continuous cases. These functions can thus

be used to compute the optimal allocation of effort in the

continuous case.

Computing the optimal allocation of continuous effort for a

stationary target search is a quite difficult convex optimization

problem. Henceforth, we propose here to further relax the

problem in order to compute an allocation on disjoint angles

that provides a simpler upper bound for the optimal probability

of detection on this problem. This relaxation requires that

κ(a) = 1 ∀a ∈ A.

The relaxed instance I ′ is defined by splitting each angle

a into N disjoint cones of same area: u1(a), . . . , uN (a). The

budget of I ′ is C ′ = C ·N . The visibility coefficients are such

that for each region j = 1, . . . , J , if a′ is an angle of instance

I ′, then α′
j,a′ = αj = maxa∈Yj

αj,a.

Property 6. A continuous allocation ζ for the original in-

stance I defines a feasible continuous allocation ζ ′ for the

relaxed instance I ′, by allocating ζa effort to each of the

N cones issued from angle a. If a′ is an angle of I ′ then:

ζ ′a′ =
∑

a,∃i,ui(a)=a′ ζa. Moreover P (ζ ′) ≥ P (ζ).

6
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Proof. The allocation ζ ′ is feasible for the relaxed instance I ′

because
∑

a′∈A′

ζ ′a′ =
∑

a′

∑

a,∃i,ui(a)=a′

ζa =
∑

a

N · ζa ≤ N · C = C ′.

Let us first observe that for a region j, since for any angle a,

αj,a ≤ αj ,
∏

a∈Yj

(1− αj,a)
ζa ≥

∏

a∈Yj

(1− αj)
ζa .

Thus,

1−
∏

a∈Yj

(1− αj,a)
ζa ≤ 1−

∏

a∈Yj

(1− αj)
ζa . (15)

Now consider the new instance I ′. For each region j, there

exists a unique angle a′(j) that covers j (since in I ′ we have

disjoint observation cones). Hence

P (ζ ′) =
∑

j∈J

p(j)
(

1− (1− αj)
ζ′

a′(j)

)

=
∑

j∈J

p(j)
(

1− (1− αj)
∑

a∈Yj
ζa
)

=
∑

j∈J

p(j)
(

1−
∏

a∈Yj

(1− αj)
ζa
)

.

From (15), we deduce that P (ζ ′) ≥ P (ζ).

We can compute the optimal allocation of continuous effort

on disjoint cones of observations for the relaxed instance

I ′ with the algorithm presented in [12]. We can then use

it to compute an upper bound on the optimal allocation of

continuous effort to overlapping cones for the search of a

moving target.

V. MOVING TARGET SEARCH

We now consider the moving target search problem with

objective function given by Eq. (4). The mathematical formu-

lation of this problem is:

max P̂T (Z) (16)

s.t.
∑

a∈A

ζa(t) · κ(a) ≤ Ct for t = 0, . . . , T .

ζa(t) ∈ N , ∀a ∈ A, for t = 0, . . . , T .

Here this problem is solved by using the FAB algorithm [7]

which is a generalization of Brown’s recursion [15]. Both

algorithms adapted to an allocation to disjoint angles have

been presented in [12].

Let us recall the principles of the FAB algorithm [1].

Starting from an initial plan Z0, at each iteration (outer loop)

the FAB algorithm computes a new plan, until two successive

plans are equal, or the allowed number of iterations is reached.

In an iteration of the outer loop, starting from a plan Z,

the computation of a new plan is done iteratively in an inner

loop for each time step t = 0, . . . , T . At a time-step t of the

inner loop, the algorithm computes the values q(j, Z, t) for

each region j. To give an intuition, when the objective is the

detection probability before horizon T , q(j, Z, t) represents

the probability that the target is in region j at time t and

is not detected at any time other than t according to the

current plan Z. The plan Z is then updated by computing

an optimal stationary allocation for time t, using q(j, Z, t)
for j = 1, . . . , J as a prior probability distribution of target

presence in the regions.

The computation of q values is done by using the markovian

target movement, by decomposing q into a product of two

functions R and S.

q(j, Z, t) = R(j, Z, t) · S(j, Z, t) . (17)

When the objective is the detection probability before hori-

zon T , R(j, Z, t) (resp. S(j, Z, t) ) represents the probability

that the target is in region j at time t and has been missed

in time steps t + 1, . . . , T (resp. 0, . . . , t − 1) withs the plan

Z. Those functions can be expressed with a recursive form

thanks to the markovian property of the target movement (see

details in [1]).

R(j, Z, t) = Ejt[γt(ω)]+
J
∑

i=1

R(i, Z, t+ 1)·
(

1− b(i, ζ(t+ 1)
)

· πt(j, i) . (18)

S(j, Z, t) =
J
∑

i=1

S(i, Z, t− 1)·
(

1− b(i, ζ(t− 1)
)

· πt−1(i, j) . (19)

The value Ejt[γt(ω)] is the expectation of the coefficient γt
of the objective function over trajectories such that the target

is in region j at time t. Notice that it only depends on the

target movement and does not depend on the plan, so that it

can be pre-computed.

The initial values, for j = 1, . . . , J , are S(j, Z, 0) = p0(j)
and R(j, Z, T ) = EjT [γT (ω)].

Notice that in the inner loop of the FAB algorithm, the plan

Z is updated iteratively for increasing time steps. So the future

of the plan does not change between two consecutive iterations

of the innerloop and thus R(j, Z, t) according to (18) can be

computed before the inner loop for each region j and each

t. At each iteration t of the inner loop, for each region j,

S(j, Z, t) can be computed using (19) with the plan updated

in the previous iteration.

If we start from a null plan, then the first iteration of

FAB computes a myopic plan where the optimal stationary

effort allocation of time t is computed from the target move

probabilities at time t regardless of the allocation in the

previous time steps. But the algorithm can be used with

different initial plans.

Unlike the continuous effort case, the algorithm FAB for

a discrete effort is not guaranteed to converge to the optimal

plan. However, there exists a necessary condition of optimality.

Proposition 1 (From Theorem 3.4 [1]). Assume we have a

discrete-effort exponential detection function by region b(j, ζ).

7
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If Z is optimal, then for all t the allocation ζ(t) is an

optimal allocation for the stationary target search with prior

distribution q.

Therefore, finding, with dynamic programming, the optimal

stationary plan at each step t ensures that the plan computed

with FAB satisfies the necessary conditions which only guar-

antees that the returned plan is a local optimum.

In order obtain an optimal plan, we may consider a nonlin-

ear integer program. Indeed, as stated in Section 3.3.2 of [1],

when the effort is allocated in each region j independently, one

can express the moving target search problem as a nonlinear

integer program. However, even in this simple case, this is of a

little theoretical and practical use since the objective function

is computed by considering all the possible trajectories ω of

the target. Hence, this does not scale to our problem with at

least 1500 regions.

VI. EXPERIMENTAL RESULTS

In this section, we study the efficiency of the algorithms

presented in the previous sections, in terms of solution quality

and computational effort. We implemented the models and

algorithms of the previous sections and designed different

realistic scenarios, inducing our experimental parameters, and

generated random instances according to these scenarios. The

algorithms were implemented in Python and we ran scenarios

on an two Intel Xeon E5-2690v3 (24 cores / 2.60 GHz).

Even though the algorithms presented in this paper could be

used with a 3D search area, we assumed a stationary airborne

platform facing a 2D search area discretized in regions spaced

10km apart, with a total of 1500 regions. The regions are

arranged in a honeycomb pattern for an efficient use of 2D

space. Using smaller distances between regions would improve

the realism of the scenarios. However, it hugely increases

the number of regions in the search area (e.g a distance of

1km gives 155000 regions) and then the computation time.

In our study, we chose the parameters so that the dynamic

programming algorithm could run in a reasonable time. We

expect that the behaviour of the algorithms remains consistent

for both small and large regions.

The target moves between two adjacent regions at each

timestep. Considering the maximum relative speed of fighter

jets, we consider a timestep to last roughly 7s in these

experiments.

The platform has a radar that can make observations in the

angular domain [−60◦; +60◦]. A radar ”dwell” (name for an

observation) in a direction affects the regions located in a cone

of geometric height 250km and angular diameter 3 degrees.

We consider set of angles such that they are equally spaced in

the angular domain and each associated with an observation

cone of angular width 3°.

The maximum number of cones N covering a region is

related to the angular separation between angles and the

number of angles. When the angular separation between angles

is 3◦ we have N = 1 and |A| = 40; if the angular separation

is 1.5◦, N = 2 and |A| = 79. The radar is considered to use

a single mode.

In the experiments, we assumed a fixed cost for making an

observation in an angle a to κ(a) = 1.

In each scenario, an area of interest is initialized. The area

of interest is the set of regions that have a nonzero probability

of containing the target. This set is fully contained in the part

of the search area that is visible from the radar.

The experiments use six parameters for the tested scenarios:

• FOV portion: Determines the size of the area of interest

as its portion of the total observable area. It can be 0.05,

0.5, or 1.0.

• Horizon: The number of time steps for the search. It can

be 1, 2, 5, or 10.

• Budget: The number of observations that can be made

during a time step. It can be 1, 2, 5, 10, 20, 40, or 50.

• N: The maximum number of consecutive cones covering

a region (see Figure 2). It can be 1, 2 or 3. Higher values

did not lead to significantly different results from what

was observed at N = 3.

• visibility: Indicates the detection model used (see Fig-

ure 3) either “distance” or “realistic”.

• movement type: Defines the movement transition ma-

trix. Can be ”drone” or ”jet”. ”drone” defines a uniform

distribution over all possible direction. ”jet” selects a

random direction and then defines a distribution where

there is 0.9 chance of going in this direction and 0.1 of

remaining in the current region. The probability is 0 in

all other directions. It approximates the movement model

of a fighter jet that does not change direction.

A dwell is considered to last 100ms, allowing for a maxi-

mum of 70 observations per time step in different angles. We

limited the number of observations to 50 per time steps and

the horizon to 10, as larger values do not lead to significantly

different results.

In the following experiments, we first focus on the problem

of a stationary target search. We evaluate how using a detection

model that depends only on the distance can negatively impact

the performance of the allocation computed. Then, we evaluate

the error of the probability obtained with the greedy algorithm

compared with the optimal probability given by the dynamic

programming algorithm. Then, we compare the probability of

detection obtained with the dynamic programming algorithm

with the baseline and the upper bound.

The second part experiments the moving target search. We

show how increasing the maximum number N of observation

cones covering a region of the search area affects the mean

completion time of the plan. Also, we exhibit the performance

of the algorithms FAB + greedy algorithm and FAB + dynamic

programming for a fixed value of N in terms of the objective

function and computation time. Finally, we show how the

target movement model affects the mean completion time of

the plan.

A. Stationary target search

1) Error caused by the use of the “distance” detection

model: In the literature, the detection model used for the radar

is often only a function of the distance to the radar. In this

8
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section, we evaluate the error caused by the use of such a

model compared to the “realistic” detection model.

To do so, we compute optimal allocations for stationary

target search for the allocation of search effort on overlapping

cones of observations such that N = 3 on different scenarios.

We vary the budget and the FOV portion. We first compute

the optimal allocation for the “realistic” detection model and

obtain the optimal probability of detection. Then, we compute

the optimal allocation for the “distance” detection model and

compute the detection probability of this last allocation by

using the “realistic” detection model. We compute the mean

absolute error of the probability of detection obtained with

the “distance” detection model as compared to the optimal

probability. We also show values ranging from the 5th to the

95th percentile of the error.

Fig. 4. Error caused by the use of the ”distance” detection model.

In Figure 4 we see that the mean error is larger than 0.1 in

many cases (especially when the area of interest is small) and

the error can even achieve values above 0.4 for some scenarios

for large values of budget. The use of the “distance” detection

model therefore leads to a significant error in the probability

of detection. We will use the more realistic detection model

in the remaining experiments.

2) Comparison between the greedy algorithm and the dy-

namic programming algorithm: Algorithms 1 and 2 are both

used as a module of the FAB algorithm, it is therefore

interesting to study their behaviour in the simpler context of

the stationary target search.

We ran both algorithms on different scenarios. We then com-

puted the mean absolute error of the probability of detection

obtained with the greedy algorithm as compared to the optimal

probability obtained with dynamic programming.

Figure 5 depicts this error for small (left) to large (right)

areas of interest w.r.t the budget of observations and parameter

N . We computed the error only for N = 2 and 3 because using

larger values requires amounts of memory unavailable to us

to run the dynamic programming algorithm. The shaded areas

around the curves represent the values between the 5th and

the 95th percentile of the error.

We observe that the error is small. It is 0 in 81% of the

simulations, rarely takes value above 0.02: the maximum error

observed was 0.056. There seems to be a relationship between

the size of the area of interest, the budget of observations and

the error. For small areas of interest, there tends to be a higher

error for small budgets. On the contrary for large areas of

interest, there tends to be higher error for large budgets.

Fig. 5. Error of the greedy algorithm w.r.t. budget for different values of
FOV portion (columns), detection model (rows) and N (color).

Overall, we observed that the greedy algorithm is a good

approximation of the optimal plan for the search of a stationary

target. It also has a much lower space and time complexity,

as shown in Section III-B.

3) Stationary target search: comparison between the op-

timal solution, RPSM and the relaxation: In Figure 6, we

observe the optimal probability of detection computed with

the dynamic programming algorithm w.r.t. budget, and we

compare it with the one obtained with the random permutation

scan method and the upper bound provided by the relaxation

of the problem. We show the results for different sizes of

the area of interest (columns) and different values of N the

maximum number of cones that cover a region (rows). We

show the results up to N = 3 because larger values do not

lead to results significantly different from the ones obtained

with N = 3.

Fig. 6. Probability of detection obtained with three algorithms w.r.t. budget
for different values of FOV portion (columns) maximum number of cones
that cover a region (rows).

First, we see that the upper bound provided by the relaxation

is far larger than the optimal probability of detection. This

9
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bound is not very informative. To get a more informative

bound, we should solve the convex program corresponding

to the relaxation with gradient techniques.

Our analysis demonstrates a correlation between the mag-

nitude of N and the disparity in performance between the

greedy algorithm and RPSM. When applied to a large area

of interest, both algorithms exhibit similar performance for

N = 1. An increment of N to 3 causes a slight enhancement in

the greedy algorithm’s performance by 4%, whereas RPSM’s

performance concurrently diminishes.

Conversely, when the area of interest is smaller, the perfor-

mance difference between the two algorithms becomes greater.

Increasing the N value from 1 to 3 in this context brings

mutual benefits: a significant 17% increase for the greedy

algorithm and a modest 3% improvement for RPSM.

In the context of the search of a stationary target, the

increase in N almost does not benefit RPSM due to its inherent

constraint of allocating substantial effort to regions with low

probability of detection. Conversely, the greedy algorithm

derives significant advantages from such increases in N .

B. Moving target search

In this section, we evaluate the performance of our algo-

rithms in the context of the moving target search.

1) Interest of increasing N for the moving target search: In

Figure 7, we first observe the mean completion time (referred

by ”meantime” in the remaining of this section) obtained with

FAB+dynamic programming w.r.t budget for different values

of N . We observed comparable results across different values

of horizon, and the difference of performance between the

algorithms are best observed for larger values of horizon. We

therefore isolate the results for a horizon of 10.

Fig. 7. Meantimes w.r.t. budget obtained with FAB + dynamic programming
for N= 1,2,3 for different values of FOV portion.

In our observations, an increase in the value of N induces

a decrease in the meantime. Specifically, for a smaller area of

interest, we witness a 6% enhancement in efficiency when

N is incremented from 1 to 2, followed by a further 2%
improvement as N increases from 2 to 3. This trend shows

the diminishing benefits of increasing N .

2) Meantime for different algorithms: In Figure 8, we

compare the meantimes obtained with FAB+greedy algorithm,

FAB+dynamic programming and RPSM w.r.t. budget, for a

fixed horizon = 10. we observe it for different sizes of area of

interest.

Fig. 8. Comparison of meantimes obtained with different algorithms (the red
line is behind the blue line)

Our analysis reveals that the meantimes of plans computed

by FAB coupled with dynamic programming and FAB with the

greedy algorithm are remarkably similar. Indeed, in 0.45% of

the instances, their results are identical.

The mean absolute error in meantime between FAB +

greedy algorithm and FAB + dynamic programming is

marginal, at 0.002 timesteps (1 timestep = 7 seconds in our ex-

periments, so 0.014 seconds). The peak recorded performance

advantage of FAB + dynamic programming over FAB + greedy

method amounted to 5.25% of the computed meantime (1.15
seconds gained).

We observed that the adaptation of RPSM to moving target

search always performs worse than FAB, especially when the

area of interest is small.

3) Comparison of computation times: In Figure 9, we

observe the mean computation times of FAB + dynamic

programming and FAB + greedy for different values of N ,

w.r.t. the horizon.

Fig. 9. Computation times for FAB + dynamic programming and FAB +
greedy algorithm for different values of N

We observe that FAB + greedy algorithm is several order

of magnitudes faster to compute the allocation plan than

FAB + dynamic programming. FAB + greedy is often under

1s while FAB + dynamic programming can take several

dozens of minutes. Consistently with the worst case time

complexity, we also observe that the computation time of the

dynamic programming algorithm increases faster with N than

the computation time of the greedy algorithm. In a context

where allocations must be computed in real time, the greedy

algorithm therefore provides a good approximation of the

10
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plan computed with FAB + dynamic programming in a very

reasonable amount of time. Furthermore, there is a tradeoff to

be made between plan quality and computation time as using

higher values of N affects both significantly.

4) Search for targets with different movement models: In

Figure 10, we observe the meantime of plans for different

target moves w.r.t. the budget. We isolate the experiments

where horizon = 10 and the area of interest is small. Indeed,

these are cases when the difference between the results are

best observed.

Fig. 10. Meantime for different target types

We can see that when we have a prior on the target direction,

it is easier to detect it when it is approaching us and harder

when it is receding. When the target moves like a drone and

we do not have a prior on its direction, the meantime lies

between the meantimes for the two type of jet moves. Note

that in the case of a receding target, our model is optimistic

because we do not consider ground echoes. Overall, when the

target is a jet and we have a prior on its direction, the prior

heavily impacts the meantime.

VII. CONCLUSION

We proposed an optimal algorithm and a fast heuristic for

the problem of search of a stationary target with a radar

by considering overlapping cones of observation and discrete

effort. This allowed us to compute better plans in diverse con-

texts for moving targets. We also proposed a detection model

for the radar which is more realistic than the ones generally

used in the literature. Those algorithms were compared in

different scenarios for the search of stationary and moving

targets. The experiments showed that the realistic detection

model gives allocation plans that are significantly different

from the one that was previously used in the literature. Using

overlapping cones observations led to a notable improvement

of the solution obtained. The use of the greedy approximation

gave very close to optimal solutions for the stationary search

and reduced drastically the computation time for the search of

a moving target. Finally, we demonstrated that a prior on the

target’s direction heavily impacts the mean completion time

of the plan.

Future work should consider further theoretical and practical

issues. Among them is the complexity of the stationary target

search problem. Live experimentations of such algorithms in

real conditions remain to be done in order to demonstrate their

maturity. Also, other modern important issues are related to

the more general problem of searching and tracking multiple

targets with multiple assets like e.g. jet fighters and remote

carriers embedding different types of active and passive sen-

sors.
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