
Abstract—Code refactoring is supported by many Integrated

Development Environments. This paper is focused on the

automated code refactoring of C# programs. We have analyzed

more than sixty refactorings available in three popular IDEs.

We cataloged different restrictions, defects, and other quality

concerns associated with the implementation of the

refactorings, taking into account both modification of the

production code and of the corresponding test cases. An

extension to automate selected refactoring improvements has

been developed for the ReSharper platform and experimentally

verified.

Index Terms—code refactoring, unit testing, code quality,

code and test maintenance, C#.

I. INTRODUCTION

EFACTORING techniques have been proposed to im-

prove code quality [1][2]. Their effective application

can be assisted with automated tools incorporated into Inte-

grated Development Environments (IDEs). We have exam-

ined automated refactoring that can be used in programs

written in the C# programming language. We have reviewed

three environments commonly used for C# program devel-

opment, namely: Microsoft Visual Studio, JetBrains Rider,

and Visual Studio Code. The following research questions

were addressed:

R

1. Can we rely on automated refactoring, i.e. is the final

code always correct?

2. Are the unit tests corresponding to the refactored area

adjusted together with the refactoring completed?

3. Can we, in an automated way and transparently to a

developer, fix malfunctions detected in refactoring or

add any improvements?

To perform the study, a benchmark program was devel-

oped covering code variants consistent with these environ-

ments. We have found that some refactorings can be cor-

rectly applied only under certain restrictions, while others

can produce invalid code. Moreover, the test cases related to

the refactored area could be improved.

The main contributions of the paper are the following:

- A review of over 60 automated refactorings of C#

programs supported by three popular environments.

- Identification and classification of different restric-

tions, extensions, defects, and quality concerns asso-

ciated with the refactoring implementation.

- As a proof of concept, development of Refix, a proto-

type that fixes defects of selected refactorings of the

ReSharper tool-(used in JetBrains Rider 2022 and

also as a plugin applied to the Microsoft Visual Stu-

dio [3]).

The paper is structured as follows: In the next Section we

discuss the related studies. In Section 3, we give an over-

view of the refactoring consequences for code and tests in

three popular environments. A developed tool (Refix) is

briefly presented in Section 4. In Section 5, we conclude the

paper.

II.RELATED WORK

There exist many tools that help in automated refactoring

in software development and maintenance. Though, their us-

age still causes difficulties for developers, as reported in [4].

Deficiencies in the refactoring tools were mainly studied

for Java and C programs. Testing of refactoring engines [5]

found 1.4% of refactoring tasks failing for Java and 7.5% for

C. In [6], the problems of name binding and accessibility

rules in refactoring are discussed. Some problems could be

similar, but there are no studies of C#.

Another problem of refactoring implementation is its im-

pact on the test cases [7]. Many experiments related to the

test maintenance of refactored programs were performed in

Java [8], [9], [10]. In [8], it was shown that tests often re-

quire additional handling when the production code is refac-

tored. To handle this, a prototype developed in Eclipse was

discussed in [9]. In [10], refactoring of Java programs with

JUnit tests was examined. Various flaws in updating tests

were identified. RefactorPlugin was developed to correct se-

lected defects in tests and create additional tests in accor-

dance with the refactoring performed.

Refactoring in C# programs was studied as one of the as-

pects to explore similarities and differences between test and

production classes [11]. It was found that while production

classes underwent more changes, the maintenance of tests

Review of Automated Code Refactoring of C# Programs

Anna Derezińska
0000-0001-8792-203X

Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/19,

00-665 Warsaw, Poland

Email: A.Derezinska@ii.pw.edu.pl

Dawid Sygocki
Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/19,

00-665 Warsaw, Poland,

Email:

dawid.sygocki.stud@pw.edu.pl.

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 937–941

DOI: 10.15439/2023F7277

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 937 Thematic track: Practical Aspects of and

Solutions for Software Engineering

caused major problems. In the thesis [12], an extension to Vis-

ual Studio was developed, but the author focused on a new

kind of refactoring, not on fixing the existing ones. To the best

of our knowledge, improvements in the C# code and tests af-

ter refactoring were not considered.

The impact of using the ReSharper tool on the results of

test runs, builds, and version control commands was exam-

ined in [13]. Experiments on Enriched Event Stream Dataset

led to a higher rate of failure builds and higher percentage of

commits. ReSharper was also studied in some research and

was claimed to be popular among developers [14].

III. REVIEW OF REFACTORING

In the refactoring review, we have checked whether an au-

tomated refactoring provides a valid transformation of the

code and whether the corresponding unit tests are correctly

modified. We focused on three different IDEs that support re-

factoring of C# programs:

1) Refactoring embedded in Microsoft Visual Studio 2022,

i.e. MVS without additional extensions.

2) JetBrains Rider 2022, and the same refactoring engine used

in the ReSharper plugin applied to MVS [3][15].

3) Visual Studio Code with an addition to support the C# lan-

guage (ms-dotnettools.csharp).

A. Benchmark for Refactoring Review

Analysis of the effects of refactoring was assisted by a

benchmark program [16]. We have developed it to cover a set

of refactoring examples and the corresponding unit tests. The

production code was developed in three versions related to

IDEs mentioned above.

The benchmark also encompasses three variants of a set of

unit tests corresponding to the popular unit test frameworks

that support C#: MSTest, NUnit, and xUnit.net.

B. Comparison of the Refactoring Capabilities

We have reviewed the way of implementation of all refac-

torings that were supported in the mentioned environments.

As a result, we made recommendations on many refactorings.

They were classified into the following four categories:

1. Extension (E): the refactoring implementation is ex-

tended in comparison to its basic meaning [1].

2. Restriction (R): the implementation of the refactor-

ing is restricted compared to its basic meaning.

3. Defect (D): a fault was detected in the refactoring

implementation that should be fixed, as it causes the

project not to compile. This situation is often associ-

ated with a “conflict”, i.e. a warning reported by an

IDE after an attempt of a refactoring.

4. Quality concern (Q): a shortcoming occurs that

does not cause a compilation error or another im-

provement to the code and tests could be suggested.

In Tables I and II, we summarize all refactorings imple-

mented in three environments. The last three columns corre-

spond to Microsoft Visual Studio - MVS, JetBrains Rider

(also ReSharper) – R/R, and Visual Studio Code – VSC, ac-

cordingly. The sign ‘-’ denotes that the refactoring is not sup-

ported in the environment. If the refactoring was imple-

mented, the character ‘+’ shows that no recommendations

were related to it. Otherwise, a combination of letters (E, R,

D or Q) signifies the recommendation categories associated

with the refactoring. The assigned recommendations are dis-

cussed in the subsequent subsections.

C. Review of Refactoring in Visual Studio

Here, we deal with the refactorings embedded directly in

MVS 2022. Those supported by the Resharper extension, of-

ten applied to MVS, are discussed in the next subsection.

Restrictions (R):

- In #43 and #44. The move method and move field re-

factoring is limited to static members.

Defects (D):

- In #2. In synchronization of a namespace and a folder

name, the using directive in tests could be not up-

dated. The situation was rare and this defect can be

treated as a minor one.

- In #14. In the conversion between a property and get

method, the refactoring does not consider references to

the transformed property present in the object initiali-

zation. In this case, a warning is shown.

- In #43 and #44. It refers to moving a field or a method.

A static class can be indicated as an internal one.

Therefore, its members are not accessible in the test

project. One of the popular conventions is the applica-

tion of an attribute to make these internal types acces-

sible and structural testing possible. Hence, the im-

provement of this defect is of low priority.

Quality improvements (Q):

- In #39 and #40. When a method or a field is pulled up

to the base class, other descendant classes could be

checked in terms of these member occurrences.

- In #39, #40, and #54. While a method or a field is

pulled up, or when a superclass is extracted, we could

consider using the base class where possible. The re-

factoring can be followed by another refactoring #38.

D. Review of Refactoring in ReSharper

Among the solutions discussed, the ReSharper engine, used

in JetBrains Rider and as an extension in MVS, provides the

largest number (64) of automated refactorings. Below, we list

the recommendations passed on to these refactorings.

Extensions (E):

- In #31. The change of signature refactoring can be ap-

plied not only to a method but also properties, indexers

and constructors. Moreover, two alternative forms of

the transformation are available: change signature and

transform parameters.

Restrictions (R):

- In #8. The refactoring to make a member static can be

completed only if the method takes an instance as a

parameter.

938 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

- In #43. The refactoring of move method is restricted,

because the target class has to be a parameter of the

moved method. It does not pertain to static methods.

- In #52. The extract class refactoring includes only a

variant in which the reference to the new class remains

in the old one. The test cases remain unchanged, alt-

hough they could have been modified by changing the

subject of the tests to the new class.

- In #53 In the inline class refactoring, the absorbed

class is required to include reference to the target class.

In the following cases, a refactoring could provoke errone-

ous behavior.

TABLE II.

COMPARISON OF AUTOMATED REFACTORING FOR C# PROGRAMS

No Refactoring Environment

MVS R/R VSC

1 Safe delete - Q -

2 Sync namespace and folder name D + +

3 Sync a type and filename + + +

4 Convert an abstract class to

interface/vice versa

- + -

5 Convert anonymous type to class + + +

6 Convert anonymous type to tuple + - D

7 Convert extension method to

plain static/vice versa

- + -

8 Make member static + R -

9 Use expression body or block

body for lambda expression

+ + -

10 Convert anonymous function to

local one

- + -

11 Convert local function to method + + +

12 Make local function static + - -

13 Replace constructor with factory

method

- + -

14 Convert get method to property/

and vice versa.

D D D

15 Convert method to indexer/vv. - + -

16 Convert between auto property

and full property

+ + R

17 Encapsulate field + + Q

18 Replace loop with pipeline + + +

19 Convert between for loop and

foreach statement

+ + +

20 Simplify LINQ expression + + -

21 Convert between regular string

and verbatim string literals

+ + +

22 Simplify string interpolation + + -

23 Use pattern matching + + -

24 Convert if statement to

switch statement or

expression

+ + R

25 Convert switch statement

to switch expression

+ + -

26 Split or merge if statements + + +

27 Simplify conditional expression + + -

28 Use explicit type + + -

29 Use new() + + -

30 Copy type - Q -

31 Change signature/Transform

parameters

+ ED

Q

-

32 Add null checks of

parameters

+ + E

33 Introduce parameter + + +

34 Introduce parameter object - + -

35 Invert conditional expressions

and AND/OR operators

+ + +

36 Invert if statement + + +

TABLE I.

COMPARISON OF AUTOMATED REFACTORING (CONTINUATION)

No Refactoring Environment

MVS R/R VSC

37 Invert Boolean - Q -

38 Use base type where possible - + -

39 Pull up method Q Q -

40 Pull up field Q Q -

41 Push down method - D -

42 Push down field - D -

43 Move method RD R -

44 Move field RD + -

45 Move a type to a matching file + + +

46 Move to folder - + -

47 Move type to another namespace - + -

48 Remove dead code + + -

49 Remove unused references + - -

50 Extract method + Q +

51 Inline method + Q -

52 Extract class + R -

53 Inline class + R -

54 Extract superclass Q + DQ

55 Extract interface + + +

56 Extract members to partial class - + -

57 Introduce field - + -

58 Wrap, indent and align + + +

59 Sort using declarations + + -

60 Introduce local variable + + +

61 Move declaration near reference + + +

62 Rename + + +

63 Change member or internal type

visibility to public/ internal/

protected/ private protected/

private

- D -

64 Change type visibility to public/

internal

- + -

65 Change to virtual/ non-virtual - D -

66 Change to abstract/ non-abstract - D -

67 Make method override/Add

new keyword

- + -

ANNA DEREZINSKA, DAWID SYGOCKI: REVIEW OF AUTOMATED CODE REFACTORING OF C# PROGRAMS 939

Defects (D):

- In #14. When converting between a property and get

method, references to the transformed property that are

present in the object initialization are invalid. To signal

this problem, the refactoring tool creates a warning.

- In #31. In the refactoring of transform parameters, the

transformation of a method with an out parameter to

an expression is incorrect. In the method body, an as-

signment of the already missing parameter exists, and

therefore the program cannot compile.

- In #41 and #42. After the push down refactoring, the

tests of the modified base class do not compile any

more. They should also be refactored and moved to the

appropriate descendant class to which a method or a

field was pushed down. The analogous problem is in

the pull up refactoring.

- In #63. In the refactoring that changes a member or in-

ternal type visibility, the corresponding tests are not

modified accordingly. In dependence of the qualifier

used, private in particular, the final project could

not compile.

- In #65 and #66. After the addition or deletion of the

virtual or abstract modifiers, the correspond-

ing tests are not updated. They either need to be de-

leted or adjusted by changing their subject.

Other improvements in refactoring (Q) could be suggested:

- In #1. In the refactoring of safe delete, several lines

with references to a deleted element are also removed.

Therefore, it could be beneficial to remove empty or

pointless corresponding tests.

- In #30. Refactoring the type copy could also require

modification of the corresponding tests. They could ei-

ther be duplicated or enhanced by applying para-

metrized tests according to the refactored type.

- In #31. Depending on the details of the change signa-

ture refactoring, we could update the tests. For exam-

ple, if a list of parameters was shortened, some varia-

bles could be deleted from a test case; if a parameter

was added, a variable with a default value could be in-

troduced in a test case, etc.

- In #37. If a Boolean value is inverted, an Assert could

be changed to do tests more legible, e.g., substitute

Assert.True(!value) with Assert.False

(value). However, the exact behavior could be dif-

ferent in dependence on the test library used.

- In #39 and #40. This refers to tests after a method or a

field pull up. For example, the corresponding tests

could be moved to the base class if they have no de-

pendencies on the original class and if the base class is

not an abstract one.

- In #50. After an extract method refactoring, a new

method appears. The creation of new test cases, e.g.,

automated test generation, could be considered.

- In #51. After applying an inline method, the tests of

the method remain and their code is merged with the

tested method. Consequently, a code duplication en-

counter. The useless tests could be deleted.

E. Review of Refactoring in Visual Studio Code

The number of refactorings supported by Visual Studio

Code (VSC) was the smallest among the three environments.

As refactoring variants, two restrictions and one extension

were identified.

Extension (E):

- In #32. When parameters are of the string type, ad-

ditional checks could be applied using the IsNul-

lOrEmpty method.

Restrictions (R):

- In #16. In conversion between an auto and full prop-

erty, only one direction of the conversion is supported.

An auto property can be converted to a full property,

but the vice versa transformation is not possible.

- In #24. Conversion from the if instruction to the

switch instruction or expression is restricted. It can

only be applied in cases where relations in consecutive

if statements refer to the same variable.

The following defects (D) were recognized:

- In #6. In conversion from an anonymous type to a tu-

ple, if an object table that has a transformed anony-

mous type is created using the shortened inscription

new[] then a compilation error occurs. This could be

avoided by using the full description in the form new

object[] or by casting to the object type for one of

the initialization elements.

- In #14. When converting between a property and a

get method, references to a refactored property that

are used in an object initialization are not updated.

- In #54. The extract superclass refactoring does not take

into account dependencies on other fields or methods.

If in an extracted method, a reference to a member of

the original class exists, a compilation error can arise.

Two quality improvements (Q) were recommended:

- In #17. When a field is encapsulated, visibility of the

resultant field is always set to private and of a prop-

erty set to public. The transformation does not take

into account the initial modifiers.

- In #54. After extracting a superclass, a new base type

is used instead of its descendant, where possible.

F. Summary of the Review

In general, the level of refactoring correctness in the envi-

ronments is similar. Calculating the ratio of the number of re-

factorings classified as a defect (D) to the number of all refac-

torings supported by the IDE we obtained 9% for the pure

MVS, 11% for JetBrains Rider (and the same for ReSharper),

and finally 12% for VSC.

We observed that some defects are specific to selected en-

vironments, while others are common to different IDEs. For

example, the same problem of converting a property and a

get() method in #14, occurs in all three tools. Furthermore,

940 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

similar quality issues refer to pull up refactoring (#39, #40) in

the environments in which they are implemented.

The recommendations relate to the modification of the pro-

duction code but also to the corresponding unit tests. Consid-

ering the defects identified in Rider/ReSharper, 5 out of 7 de-

fects refer to test cases. Moreover, all 8 quality issues consid-

ered in this environment suggest improvements in the tests.

In summary, the first and second research questions ad-

dressed in the Introduction, have negative answers. We can-

not always rely on automated refactoring, and tests associated

with the refactored area are often inadequately handled.

IV. AUTOMATED FIXING OF REFACTORING DEFECTS (REFIX)
Based on the analysis provided, we propose an approach to

extend automated refactoring. The tool should correct se-

lected defects and improve the quality of code and tests.

We have selected the ReSharper tool to be enhanced. This

platform supports a large number of refactorings, can be used

in at least two popular environments, and can be extended

with plugins. As a proof of concept, an extension Refix was

designed and implemented [16].

The Refix extension integrates with the ReSharper plat-

form and can react when a refactoring is executed. If required,

an additional “fixing” activity is undertaken. Currently, it sup-

ports improvements of defects related to refactorings #14,

#31, #41, and #42, as described in Sect.III.D.

Refix has been tested on JetBrains Rider 2022.1.2 and

MVS 2022 Community Edition with ReSharper 2022.1.2.

The benchmark developed to assess refactoring in different

environments was also used in the evaluation of the Refix tool

(Sect.III.A). It was run with Refix in both environments men-

tioned above. Unit tests from all three test libraries were used

in experiments. Refactoring with Refix was completed cor-

rectly, according to expectations.

Furthermore, the evaluation of Refix was based on three

real programs derived from the GitHub platform [16]. The ex-

periments were carried out using JetBrains Rider. Unit tests

of the projects were run with the xUnit.net framework.

The detailed description of the prototype, and its experi-

mental evaluation are beyond the scope of the paper.

V. CONCLUSION

After analyzing automated refactorings of C# supported in

three popular IDEs, we have made a set of recommendations.

Several malfunctions were recognized that influenced the re-

sulting code and tests. In particular, some refactorings deliver

code that does not compile. The environments significantly

differ in the number of supported transformations, but their

general realization quality is at a similar level. Moreover, we

have recognized the same or similar problems that referred to

the same refactorings in different environments.

Three frameworks for unit tests (MSTest, NUnit, and

xUnit.net) were applied in all considered environments. We

have not noticed any differences in using the frameworks, as

far as the problems of refactored programs are concerned.

A prototype tool has been developed to automate code re-

pair after refactoring [16]. The Refix plugin can be used in

JetBrains Rider or MVS with the ReSharper extension. The

tool was evaluated using the benchmark and some real pro-

grams from GitHub. Due to the prototype developed and its

preliminary evaluation, we could positively answer the third

research question. In the future, the tool could be extended to

cover the remaining defects and other quality concerns.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code. 2nd ed.

Addison-Wesley, 2018.

[2] A. A. B. Baqais and M. Alshayeb, “Automatic software refactoring: a
systematic literature review,” Software Quality Journal, vol. 28, 2020,

pp. 459-502, http://dx.doi.org/10.1007/s11219-019-09477-y

[3] “ReSharper: The Visual Studio extension for .NET developers by Jet-

Brains,” 2023, https://www.jetbrains.com/resharper/, [Online, Ac-

cessed 20 Jan 2023]

[4] A. M. Eilertsen and G. C. Murphy, “The usability (or not) of refactoring

tools,” in Proc. IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER), 2021, pp. 237-248.

http://dx.doi.org/10.1109/SANER50967.2021.00030

[5] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov,

“Systematic Testing of Refactoring Engines on Real Software Pro-
jects,” in Proc. ECOOP 2013 – Object-Oriented Programming, LNCS

vol 7920. Springer, Berlin, Heidelberg. 2013, pp. 629–654,

https://doi.org/10.1007/978-3-642-39038-8_26

[6] M. Schäfer, A. Thies, F. Steimann, and F. Tip, "A Comprehensive Ap-
proach to Naming and Accessibility in Refactoring Java Programs,"

IEEE Transactions on Software Engineering, vol. 38, no. 6, 2012, pp.

1233-1257, http://dx.doi.org/10.1109/TSE.2012.13

[7] Y. Kashiwa, K. Shimizu, B. Lin, G. Bavota, M. Lanza, Y. Kamei, and

N. Ubayashi, “Does refactoring break tests and to what extent?” in
Proc. IEEE International Conference on Software Maintenance and

Evolution (ICSME), 2021, pp.171-182,

http://dx.doi.org/10.1109/ICSME52107.2021.00022

[8] Y. Gao, H. Liu, X. Fan, Z. Niu, and B. Nyirongo, “Analyzing refactor-

ing' impact on regression test cases,” in Proc. IEEE 39th Annual Com-

puter Software and Applications Conference (COMPSAC), vol. 2,

2015, pp. 222-231, http://dx.doi.org/10.1109/COMPSAC.2015.16

[9] H. Passier, L. Bijlsma, C. Bockisch,, “Maintaining unit tests during re-

factoring,” in Proc. 13th International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, no. 18, 2016, pp.1-6.

http://dx.doi.org/10.1145/2972206.2972223

[10] A. Derezinska, O. Sobieraj, “Enhancing unit tests in refactored Java

programs,” in Proc. 18th Inter. Conf. on Evaluation of Novel Ap-

proaches to Software Engineering - ENASE, Scitepress, 2023, pp. 734-

741, http://dx.doi.org/10.5220/0011997800003464

[11] M. Gatrell, S. Counsell,S. Swift, R. M. Hierons, and X. Liu, “Test and
production classes of an industrial C# system: a refactoring and fault

perspective,” in Proc. 41st Euromicro Conference on Software Engi-

neering and Advanced Applications, 2015,

http://dx.doi.org/10.1109/SEAA.2015.40

[12] M. Linka, “Visual Studio refactoring and code style management tool-
set,” M.S. thesis, Charles University in Prague, 2015.

[13] E. Firouzi and A. Sami, "Visual Studio automated refactoring tool

should improve development time, but ReSharper led to more solution-

build failures," in IEEE Workshop on Mining and Analyzing Interaction

Histories (MAINT), Hangzhou, China, 2019, pp. 2-6,

http://dx.doi.org/10.1109/MAINT.2019.8666936

[14] S. Amann, S. Proksch, S. Nadi, and M. Mezini, "A study of Visual Stu-

dio usage in practice,” in Proc. IEEE 23rd International Conference on

Software Analysis Evolution and Reengineering (SANER), vol. 1, pp.

124-134, 2016.

[15] “Rider: The Cross-Platform .NET IDE from JetBrains,” 2023,

https://www.jetbrains.com/rider/, [Online, Accessed 20 Jan 2023]

[16] Refix, https://galera.ii.pw.edu.pl/~adr/Refix/ [Online , Accessed 30

July 2023]

ANNA DEREZINSKA, DAWID SYGOCKI: REVIEW OF AUTOMATED CODE REFACTORING OF C# PROGRAMS 941

