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Abstract—In this paper, we focus on optimizing the code for
computing the Zuker RNA folding algorithm. This bioinformatics
task belongs to the class of non-serial polyadic dynamic program-
ming, which involves non-uniform program loop dependencies.
However, its dependence pattern can be represented using affine
formulas, allowing us to automatically employ tiling strategies
based on the polyhedral method. We use three source-to-source
compilers Pluto, Traco, and Dapt based on affine transformations,
transitive closure of dependence relation graph and space-
time tiling, respectively, to automatically generate cache-efficient
codes. We evaluate the speed-up and scalability of optimized
codes and check their performance employing applying two
multi-core machines. We also discuss related approaches and
outline future work in the conclusion of the paper.

I. INTRODUCTION

RNA secondary structure prediction is a fundamental and

noticeably time-consuming problem in the biological

computing. For a given RNA sequence, the secondary non-

crossing RNA structure is predicted such that the total amount

of free energy is minimized. Smith and Waterman [1], and

Nussinov et al. [2] first defined a dynamic programming

algorithm for RNA folding. Instead of using the free energy,

the algorithms of [1], [2] aim to maximize the number of

complementary base pairs.

Zuker et al. [3] first proposed a complex dynamic program-

ming algorithm to predict the most stable secondary structure

for a single RNA sequence by computing its minimal free

energy. It uses a ”nearest neighbor” model. The algorithm

estimates of thermodynamic parameters for neighboring in-

teractions. The main idea is that the loop entropies are used

to score all possible structures and the secondary structure of

an RNA sequence consists of four fundamental independent

substructures: stack, hairpin, internal loop, and multi-branched

loop. The energy of a secondary structure is assumed to be

the sum of the substructure energies.

Zuker’s algorithm consists of two steps. The first step, which

is the most time-consuming, involves calculating the minimal

free energy of the input RNA sequence using recurrence

relations as outlined in the provided formulas. The second

step involves performing a trace-back to recover the secondary

structure with the base pairs. While the second step is not a

computationally demanding task, optimization of the energy

matrix calculation in the first step is crucial for improving the

overall performance of the algorithm [4].

Zuker defines two energy matrices, W (i, j) and V (i, j),
with O(n2) pairs (i, j) satisfying the constraints 1 ≤ i ≤ N

and i ≤ j ≤ N , where N is the length of a sequence. W (i, j)
represents the total free energy of a sub-sequence defined by

indices i and j, while V (i, j) represents the total free energy

of a sub-sequence starting at index i and ending at index j if

i and j form a pair, otherwise V (i, j) = ∞.

The main recursion of Zuker’s algorithm for all i, j with

1 ≤ i < j ≤ N , where N is the length of a sequence, is the

following.

W (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i + 1, j) (1)

W (i, j − 1) (2)

V (i, j) (3)

min
i<k<j
{W (i, k) +W (k + 1, j)} (4)

Below, we present the computation of V .

V (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eH(i, j) (5)

V (i + 1, j − 1) + eS(i, j) (6)

min
i≤i
′
≤j
′
≤j

2<i
′
−i+j−j

′
<d

{V (i′, j′) + eL(i, j, i′, j′)} (7)

min
i<k<j−1

{W (i + 1, k) +W (k + 1, j − 1)} (8)

eH (hairpin loop), eS (stacking) and eL (internal loop) are

the structure elements of energy contributions in the Zuker

algorithm.

The computation of Equations 1, 2, 3, 5, 6 takes O(n2)
steps. Equations 4 and 8 requires O(n3) steps. The time

complexity of a direct implementation of this algorithm is

O(n4) because we need O(n4) operations to compute Equa-

tion 7. This formulation as a computational kernel involves

float arrays and operations.

The computation domain and dependencies for Zuker’s re-

currence cell (i, j) are more complex than those of Nussinov’s

recurrence. Equations 3, 4, and 8 generate long-range (non-

local) dependencies for cell (i, j), while the other equations

have short-range (local) dependencies. The computation of the

element V(i’,j’) in Equation 3 spans a triangular area of several

dozens to hundreds of cells.

Listing 1 shows the affine loop nest for finding the mini-

mums of the V and W energy matrices.
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Listing 1. Zuker’s recurrence loop nest

f o r ( i = N−1; i >= 0 ; i − −){
f o r ( j = i +1 ; j < N; j ++) {

f o r ( k = i +1; k < j ; k ++){
f o r (m=k +1; m < j ; m++){

i f ( k− i + j − m > 2 && k− i + j − m < 30)
V[ i ] [ j ] = MIN(V[ k ] [m] + EL ( i , j , k ,m) , V[ i ] [ j ] ) ; / / Eq . 3

}
W[ i ] [ j ] = MIN ( MIN(W[ i ] [ k ] , W[ k + 1 ] [ j ] ) , W[ i ] [ j ] ) ; / / Eq . 8
i f ( k < j −1)

V[ i ] [ j ] = MIN(W[ i + 1 ] [ k ] + W[ k + 1 ] [ j −1 ] , V[ i ] [ j ] ) ; / / Eq . 4
}
V[ i ] [ j ] = MIN( MIN (V[ i + 1 ] [ j −1] + ES ( i , j ) , EH( i , j ) , V[ i ] [ j ] ) ; / / Eq . 1 ,2
W[ i ] [ j ] = MIN( MIN ( MIN ( W[ i + 1 ] [ j ] , W[ i ] [ j − 1 ] ) , V[ i ] [ j ] ) , W[ i ] [ j ] ) ; / / Eq . 5 ,6 ,7

}
}

In this paper, we focus on studying the performance of

tiled Zuker loop nests codes generated by chosen automatic

optimizers based on the polyhedral model.

Loop tiling, also known as loop blocking or loop partition-

ing, is a program transformation technique used in compiler

optimization to enhance cache utilization and improve the per-

formance of loop-based computations [5]. It involves dividing

a loop into smaller, tile-sized sub-loops or blocks that fit into

the cache effectively. The main idea behind loop tiling is to

exploit spatial locality, which refers to accessing data elements

that are close together in memory. By dividing a loop into

smaller tiles, the loop iterations within each tile can reuse

data elements, reducing cache misses and improving memory

access patterns.

The polyhedral model represents loop nests as polyhedra

with affine loop bounds and schedules. It enables advanced

loop transformations and analysis of data dependences. By

leveraging this model, compilers can automatically optimize

loops, improve performance (especially locality employing

loop tiling), and exploit parallelism [6].

II. RELATED WORK

The Zuker kernel, as well as the Nussinov RNA folding,

involves mathematical operations over affine control loops

whose iteration space can be represented by the polyhedral

model [7]. However, the Zuker RNA folding acceleration

is still a challenging task for optimizing compilers because

that code is within non-serial polyadic dynamic programming

(NPDP), which is a particular family of dynamic programming

with non-uniform data dependences, and it, as mentioned

above, is more difficult to be optimized [8]. In addition,

the loop structure of Zuker’s algorithm is definitely more

complicated for automatic tiling strategies than that of Nussi-

nov’s algorithm, i.e. the loops are quadruple nested with

more instructions which also implies a larger number of data

dependencies (including non-uniform ones).

There are other RNA folding numerical approaches which

can be presented within the polyhedral model. To enhance the

accuracy of structure prediction for a given RNA sequence,

the algorithm devised by Zhi J. Lu and colleagues in 2009

incorporates the concept of Maximum Expected Accuracy

(MEA), utilizing base pair and unpaired probabilities [9]. This

method employs a Nussinov-like recursion, drawing upon the

probabilities obtained through John S. McCaskill’s algorithm

[10]. Numerical sources and aspects of the Nussinov, Zuker,

and MEA algorithms can be found in the NPDP Benchmark

Suite [11]. It is a collection of NPDP tasks which cannot

be effectively optimized using commonly employed tiling

strategies, such as diamond tiling [12], [13].

An interesting cache-efficient manual solution for Nussi-

nov’s RNA folding algorithm was proposed by Li and col-

leagues in [14]. Using lower and unused part of Nussinov’s,

they changed column reading to more efficient row reading.

Diagonal scanning exposes parallelism in the output code.

The method is known also as Transpose technique. In our

previous paper [15], we adopted the Transpose to optimize

Zuker’s code. In equations 4 and 8, there are not cache-

efficient column reading of the W array, W [k + 1][j] and

W [k + 1][j − 1], respectively. The transpose method changes

these array accesses to the row reading and adds the following

statement W [col][row] =W [row][col] to make a transposed

copy of the cells in the lower-left triangle.

Zhao et al. [16] improved the Transpose method and per-

formed the experimental study of the energy-efficient codes

for Zuker’s algorithm. The approach based on the LRU cache

model requires about half as much memory as does Li’s

Transpose. However, the authors did not present parallel codes

for the ByBox strategy and any automatic optimization was not

proposed.

Pluto is a widely-used, advanced tool for optimizing C/C++

programs through the use of polyhedral code generation. It

transforms the source code into parallelized, coarse-grained

code that is optimized for data locality, primarily using the

affine transformation framework (ATF). This state-of-the-art

source-to-source compiler is highly regarded in the field for

its effectiveness in improving the performance of parallel

software. Unfortunately, Pluto fails to achieve maximal code

locality and performance for the well-known NPDP problems

[8]. It is unable to tile the innermost loop of Nussinov’s RNA

folding, which is a key to cache locality optimization [7], [17].
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It cannot produce parallel code for the McCaskill probabilistic

RNA folding kernel [18]. For the Zuker code presented in

Listing 1, the approach is unable to tile the 3rd loop nest.

Authors of Pluto, Bondhugula and et al. [7] presented dy-

namic tiling for the Zuker’s optimal RNA secondary structure

prediction [7]. 3-d iterative tiling for dynamic scheduling is

calculated using reduction chains. Operations along each chain

can be reordered to eliminate cycles in an inter-tile dependence

graph. Their approach involves dynamic scheduling of tiles,

rather than the generation of a static schedule.

Wonnacott et al. introduced 3-d tiling of “mostly-tileable”

loop nests of RNA secondary-structure prediction codes in

paper [17]. This approach extracts non-problematic statement

instances in the loop nest iteration space, i.e., those that can be

safely tiled by means of well-known techniques. The remind-

ing statement instances should be run serially to preserve all

the dependences available in the loop nest. Unfortunately, the

approach is limited to serial codes only. The idea is presented

only for simpler Nussinov’s RNA folding which maximizes

the number of complementary base pairs.

In past, we developed the tiling technique [8] aimed to

transform (corrects) original rectangular tiles into target ones,

which are valid under lexicographic order. Tile correction

is performed by means of the transitive closure of loop

dependence graphs. Loop skewing is used to parallelize code.

We achieved a higher speed-up of generated tiled code in

comparison with that produced with state-of-the-art source-to-

source optimizing compilers. However, the transitive closure

is a NP-difficult problem and is not always computable in

general case.

Tiling correction [8] and Four-Russian RNA Folding [19]

were deeply studied by Tchendji and et al. and they proposed

a parallel tiled and sparsified four-Russians algorithm for

Nussisov’s RNA Folding [20]. They claim that this approach

computation is more cache-friendly because it applies the

blocks of Four-Russians mustered into parallelogram-shaped

tiles. The experimental study for CPUs and massively GPUs

architectures shows the out-performance in comparison to

the results of [8] and [19]. Although, the authors considered

manually the Nussinov loop nest only, they promised to study

other NPDP problems in future.

The space-time loop tiling approach presented in paper

[21] generates target tiles using the intersection operation

to sets representing sub-spaces and time slices is applied.

Each time partition comprises independent iterations, which

can be executed in parallel while time partitions should be

enumerated in lexicographical order. The presented approach

is a continuation of the work on space-time tiling, which

shows promising possibilities in developing new polyhedral

optimizing compilers. The codes were generated with the Dapt

compiler introduced in paper [22].

III. EXPERIMENTAL STUDY

To carry out experiments, we used a machine with a

processor AMD Epyc 7542, 2.35 GHz, 32 cores, 64 threads,

128MB Cache, and machine with a processor Intel Xeon Gold

TABLE I
EXECUTION TIMES (IN SECONDS) FOR AMD EPYC 7542 AND 64

THREADS.

Size Classic Transpose Pluto TileCorr Space-time

1000 26.90 3.31 3.26 7.88 1.80

1500 132.87 14.08 12.33 25.97 8.22

2000 415.15 42.65 30.99 58.70 22.33

2500 1013.99 100.60 69.19 118.45 53.08

3000 2093.22 202.43 137.49 217.01 109.73

3500 3871.90 370.90 245.93 356.61 201.75

4000 6589.03 626.56 407.87 578.37 342.78

4500 10544.30 998.58 644.83 874.90 550.97

5000 15686.70 1515.55 977.20 1272.33 853.73

TABLE II
EXECUTION TIMES (IN SECONDS) FOR INTEL XEON GOLD 6240 AND 36

THREADS.

Size Classic Transpose Pluto TileCorr Space-time

1000 27.31 4.28 2.96 6.87 2.23

1500 135.38 17.16 19.54 29.53 14.29

2000 393.88 43.56 23.87 41.75 18.55

2500 954.87 102.06 50.39 85.09 40.95

3000 1970.48 206.51 97.42 156.89 81.35

3500 3644.10 378.81 180.23 266.01 151.19

4000 6209.09 654.14 300.47 426.64 259.77

4500 9944.50 1048.81 489.30 649.73 416.07

5000 15133.74 1589.30 819.77 968.87 634.46

6240, 2.6GHz (3.9GHz turbo), 18 cores, 36 threads, 25MB

Cache. The optimized codes were compiled by means of the

GNU C++ compiler version 9.3.0 with the -O3 flag.

Tests were conducted using ten randomly generated RNA

sequences with lengths ranging from 1000 to 5000. Discussion

in papers [8], [14] shows that cache-efficient code performance

does not change based on strings themselves, but it depends

on the size of a string.

We compared the performance of tiled codes generated with

the presented approaches i) Pluto parallel tiled code (based on

affine transformations) [23], ii) tile code based on the Space-

time technique [21] generated with Dapt, iii) tiled code based

on the correction technique TileCorr [8] generated with Traco,

iv) Li manual cache-efficient implementation of Zuker’s RNA

folding Transpose [14]. All codes are multithreaded within the

OpenMP standard [24].

The tile size 16×16×1×16 for Pluto code was chosen

empirically (Pluto does not tile the third loop) as the best

among many sizes examined. The tile 16×16×16×16 size for

tile correction technique was chosen according to paper [15].

For the space-time tiled code, we chose the same tile sizes.

Our preliminary empirical testing did not yield improved tile

sizes for this algorithm.

Table 1 presents execution times in seconds for ten sizes of
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Fig. 1. Speed-up for AMD Epyc 7542 and 64 threads.

Fig. 2. Speed-up for Intel Xeon Gold 6240 and 36 threads.

RNA sequence using AMD Epyc 7542. Problem sizes from

1000 to 5000 (roughly the size of the longest human mRNA)

were chosen to illustrate advantages for smaller and larger

instances. Output codes are executed for 64 threads. We can

observe that the presented space-time tiling approach allows

for obtaining cache-efficient tiled code, which outperforms

significantly the other examined implementations for each

RNA strands lengths. The second most efficient code is loop

tiling produced by the Pluto compiler. Figure 1 depicts the

speed-up for times presented in Table I.

Table 2 presents execution times in seconds using two

processors Intel Xeon E5-2695 v2 and 48 threads. The pre-

sented space-time tiling strategy outperforms strongly the

other studied techniques for all RNA strands lengths. Trans-

pose technique allows us to obtain faster code than the ATF

tiled code and the tile correction code with this machine.

Figure 2 depicts speed-ups for time executions in Table 2.

At the address https://github.com/markpal/zuker, all source

codes used in the experimental study are available.

IV. CONCLUSION

Summing up, the space-time tiled code we introduced

allows for improved and scalable performance on both of the

multi-core processors, regardless of the number of threads or

problem size. The output codes were generated automatically

based on the input serial code. The space-time tiling strategy

implemented within the polyhedral compiler Dapt appears

to be a promising solution for optimizing NPDP tasks, and

we plan to examine its use on other NPDP bioinformatics

problems.
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