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Abstract—Data-driven  models  used  for  predictive

classification  and  regression  tasks  are  commonly  computed

using  floating  point arithmetic  preserving  accuracy  by

automatic  scaling  even  in  high  non-linear  functions.  With

respect to distributed sensor networks like the IoT, sensor data

is acquired on low-resource embedded systems and delivered to

data servers characterized by big data volumes. In specific use

cases  and  domains,  local  predictive  modelling  on  low-power

devices  is  desired  or  required.  But  heterogeneity  of  host

platforms and dynamic  programming disables  machine  code

deployment.  This  work  addresses  Tiny  ML  on  very  low-

resource devices (microcontrollers, less than 32 kB RAM and

ROM) by using a stack-based Tiny Virtual Machine providing

core  ML  operations  to  implement  Decision  Trees  (DT),

Artificial Neural Networks (ANN), and Convolutional Neural

Networks  (CNN).  VM  program  code  is  always  provided  in

textual format and compiled just-in-time to Bytecode to ensure

portability, servicability, and mobility. Two damage diagnostics

use-cases demonstrate the suitability of the VM approach, and

even time consuming computational tasks do not compromise

the overall responsiveness of the platform by using a real-time

approach.  This  work  addresses  the  underlying  integer

arithmetic operations required to implement efficient and fast

computable ML models on microncontrollers.

Index Terms—Tiny ML, Virtualization, Embedded Systems.

I. INTRODUCTION

O ADDRESS ubiquitous  computing,  edge  computing,

and distributed sensor networks, driven by a significant

increase  in  device  density  and  sensor  deployment  toward

smart and self-contained sensors,  advanced and dependable

data  processing  architectures  are  required.  Tiny  machine

learning is a new and challenging field [1]. In order to calcu-

late ML models,  high precision floating point arithmetic is

frequently used. Only integer arithmetic (8–32 bits) is offered

by  low-resource  tiny  embedded  systems,  therefore  direct

training using integer arithmetic [2] or model transformation

and freezing [3] are required, ideally on the target device itself

[4]. These issues are also addressed in our study. Ultra low-

power devices place additional restrictions on the computation

of deep learning (DL) models [5] and hardware designs are

becoming more popular [6]. An example for such a tiny low-

resource embedded system is shown in Fig. 1.

T
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Fig. 1. An example of a highly integrated and miniaturized sensor node

with a STM32 ARM Cortex microcontroller supplied entirely by an

RFID energy harvester (source with courtesy: IMSAS, B. Lüssem, Uni-

versity of Bremen). 

In this study, a real-time capable and extendable applica-

tion-specific stack virtual  machine (REXA-VM) with sev-

eral distinctive and unique features is introduced and ana-

lyzed, specifically addressing ML computations. In contrast

to  common  integer-based  ML  models  using  8  bit  scaled

arithmetic [2], this VM supports 16 and 32 bit operations.

The novelty of this work is the capability of a VM to process

common ML models delivered in text format. The program

text embeds model parameters as well the forward computa-

tion function for a specific already trained model. Virtualiza-

tion of services and data processing in embedded devices

play an important  role  in  heterogeneous network environ-

ments [7].

Another problem involves non-continuous energy supply,

such  as  that  delivered  to  the  sensor  node  from  external

sources  utilizing  RFID/NFC.  This  type  of  non-continuous

energy supply introduces severe power restrictions limiting

the set of usable microcontrollers (mainly without FPU) and

necessitates real-time data processing to the appropriate de-

gree. Running computationally expensive operations without

jeopardizing IO event handling (i.e., the device's responsive-

ness)  requires  the VM's real-time capability,  which is  not

covered in this work. It is anticipated that a REXA VM node

receives  remote  communications  over  wireless  tech-
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nology. Direct transmission of program text code to the VM 

for processing and compilation is possible.  

II  ARITHMETIC 

Linear and moreover non-linear functions are commonly 

computed using at least 32 Bit Floating Point (FP) arithme-

tic. FP bases on an exponential representation (and approx-

imation) of real numbers. Most ML models are linear or 

non-linear functions. Deep neuronal networks with non-

linear activation functions can approximate highly non-

linear models. The dynamic scaling of FP values and opera-

tions enables the computation of functions with high gradi-

ents and large value interval spans. Although, there is 16 Bit 

FP arithmetic, this reduced precision arithmetic commonly 

have no advantages over fixed point arithmetics (XP) except 

providing a higher dynamic range. The required dynamic 

range depends on the value range of the input and output 

variables as well as on latent (hidden) variables of interme-

diate functions, e.g., hidden nodes of an ANN. XP is often 

used in hardware implementations of ANNs [8] and rely on 

integer arithmetic that is the only available arithmetic on 

low-resource computers, e.g., the STM32 ARM Cortex M 

microcontroller series. XP arithmetic has the disadvantages 

of underflow and the requirement of software post-

correction (multiplication) when used on microcontrollers, 

lowering the arithmetic's performance. 

In contrast to common numerical approaches, in this 

work, XP values are replaced by in-advance dynamically 

scaled arithmetic (SA) using <value,scale> tuples. Scaling is 

only applied after an aggregating operation was performed, 

e.g., the computation of a vector product in an ANN layer, 

as illustrated in Fig. 2. This is relaxed by the fact that N Bit 

integer arithmetic (e.g., 32) is assumed at the core, but only 

M=N/2 Bit integer values (e.g., 16 Bits) are used to represent 

operands and result values. SA is used in this work to ap-

proximate complex (nested) functions. The scaling values 

are computed from data for a particular function, e.g., an 

ANN classifier. The relative approximation error increases 

with decreasing (real) values. A scaling factor can be shared 

by multiple values (e.g., vector elements), reducing memory 

requirements. 

 
┌───┬────────────┬──────────┐                        
│ s │ Mantissa   │ Exponent │       Floating Point   
└───┴────────────┴──────────┘                        
                                                     
┌────────────┬────────────┐                          
│  Integer   │ Fractional │         Fixed Point      
└────────────┴────────────┘                          
                                                     
┌────────────┐  ┌────────────┐                       
│  Integer   │  │   Scale    │      Scaled Integer   
└────────────┘  └────────────┘                       
                                                     
┌────────────┬────────────┬───────┐                  
│  Integer   │   Scale    │ Bias  │ Interval Integer 
└────────────┴────────────┴───────┘                                                    

Fig. 2. Comparison of different arithmetic classes  

 

A function F is transformed to a an integer approximation 

by: 

1. Decomposing arithmetic expressions (and functions) in 

scalable arithmetic functions; 

2. Annotating original expressions and functions with 

value intervals based on a representing test data set 

(input and output values of the composed function);  

3. Calculating the scaling factors based on the interval 

annotations and pre-defined function value range anno-

tations, e.g., a pre-defined sigmoid function. 

4. Calculating the approximation error for the test data 

(eventually modifying the functional structure or 

changing scaling factors to reduce the overall function 

error). 

The transformation process is not addressed in this work. 

Values of function variables (input, output, latent) in a spe-

cific data context and application can lie in a small interval, 

e.g., [0.11,0.12]. Pure scaling, e.g., with M=16 Bits), would 

use k=250000, but the entire integer range would be only 

[27500,30000], effectively reducing the resolution to 12 Bits 

with significantly increased approximation error. To in-

crease the usable range for integer approximations of real 

numbers, a bias offset can be introduced, approximating a 

real number by a <bias,scale,value> tuple. But this kind of 

arithmetic would require post-corrections and dedicated 

arithmetics, and scaling factors and bias must be specified 

for each particular value (in contrast, to pure scaling), in-

creasing memory storage. 

A data-driven predictive model function is composed of 

vector operations and transfer functions. The approximation 

error in such a composed and chained functional system is 

accumulative. Using linear transfer functions the error is 

linear accumulative and show no exploding gradients. But 

using non-linear functions, e.g., based on logarithmic func-

tions, the approximation error is non-linear with exploding 

gradients and underflows, at consist of approximation based 

on SA and approximation of non-linear functions itself, as 

discussed in Sec. IV.F. 

III  VIRTUAL MACHINE 

Details of the REXA VM architecture, features, capabili-

ties and the compiler can be found in the technical paper [9]. 

In the following section the ML-relevant features are sum-

marized only. The REXA-VM may be implemented in com-

pact embedded systems with a microcontroller and as little 

as 8 KB of data RAM and 16 kB of code ROM. In large-

scale and heterogeneous networks, virtualization and Ma-

chine Learning (ML) are essential for unified sensor and 

data processing [10]. A scriptable Tiny ML interface and 

signal analysis numbers utilizing 16-bit scaled arithmetic are 

two important features. This VM supports 16 and 32 bit op-

erations natively, preventing frequent arithmetic overflow 

and underflow problems. In contrast to common integer-
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based ML models using 8 bit scaled arithmetic [2], this VM 

supports 16 and 32 bit operations.  

The REXA VM was designed especially for the deploy-

ment on low-resource microcontrollers with less than 64 kB 

RAM and low clock frequencies below 50 MHz. It utilizes a 

freely programmable ISA, but the ISA of the VM used in 

this work is closely related to the FORTH programming 

language [11]. The VM is a pure stack processor, i.e., most 

operations processing data via multiple stack memories with 

a zero-operand instruction format. The VM instruction loop 

processes Bytecode programs stored in a code segment 

(CS). 

Each VM program consists of data and instructions stored 

in a code fragment in the CS. The main user program 

memory is the code segment of the VM (CS), which is orga-

nized in byte cells and has a static fixed size. An important 

feature of the CS is the direct embedding of program data 

besides code instructions. The Bytecode is compiled just-in-

time by an integrated compiler. The VM and the compiler 

operate both incrementally, i.e., the processing time of each 

of them can be limited and scheduled, a primary feature re-

quired in single IO task programs with a main loop pro-

cessing IO events and performing computations. Since the 

ISA of stack processors consists mostly of zero-operand 

instructions, it supports fine-grained compilation at the to-

ken level. The source text can be directly stored in the code 

segment (in-place) referenced by a code frame (or any other 

data buffer, alternatively). Most instruction words can be 

directly mapped to a consecutively numbered operation 

code. 

IV  ML MODELLS 

A  Decision Trees 

Decision trees, as lightweight predictor models well suit-

ed for tiny embedded systems, can be efficiently stored in 

Linear Search Tables (LST), as introduced earlier for com-

piler parsing. 

 
┌───┬────┬─────┬──────┬─────┬────┬───┐    
│ x │ op │ len │ val1 │ bra │ .. │ x │... 
└───┴────┴─────┴──────┴──┬──┴────┴───┘    
      <                  │         ▲      
      >                  │         │      
      =                  └─────────┘      
      ~                                   
                                          
  ────┬─────┬──────┬─────┬───┬─────┐      
.. op │ len │ val1 │ bra │ y │ val │ ..   
  ────┴─────┴──────┴─────┴───┴─────┘      

Def. 1. Format of a Linear Search Tree (LST) implementing a decision 

tree  

Decision trees consist of nodes associated with input vari-

ables xj or output variables yk (and specific outcomes of a 

prediction). Directed edges connecting nodes are functional 

evaluations of a node variable.  

There are three basic operations: Binary relation (</>), 

equality (=), and nearest value approximation (≈). The data 

format is shown in Def. 1. Each slide starts with the input 

variable to be evaluated (or target for output), the operation 

applied to choices, a field specifying the number of choices, 

and value-branch pairs. Decision tress can always approxi-

mated by integer arithmetic without error accumulation or 

exploding gradient (and underflow) issues. Therefore, the 

decision tree is here the gold standard for classifications 

problems and compared with ANN implementations. 

B  Artificial Neural Network (ANN) 

An ANN consists of two parts: 

1. The data, i.e., for parameter, input, and output varia-

bles; 

2. The structure and functions processing the data. 

For the sake of simplicity, fully connected networks are 

assumed, but any irregular network structure is a sub-set of a 

fully connected structure and can be used with the following 

operational architectures, too. In contrast to common ANN 

software frameworks, REXA VM provides only core vector 

operations, as discussed later on. The parameter data is em-

bedded in a code frame by using the initialized array con-

structor. Both parameter and input/output data can be stored 

in the program code frame, shown in the next section.  

ANN computations are decomposed in vector operations 

provided by the VM platform, discussed below. It can be 

shown that the complexity and memory requirement of this 

(textual data) approach is low even for complex network 

structures. Compiled code embedding data require typically 

less than 1 kBytes of RAM. 

The principle structure of an ANN model and its forward 

computation using the vector operations discussed at next is 

shown below. There are initialized parameter arrays 

(weights, biases, and scaling factors) and latent variable 

arrays (neuron output). 

 

array input N 
array wghtsL1 { 1 2 3 .. } 
array biasL1  { 1 2 .. } 
array scaleL1 { 1 2 .. } 
array outL1 N 
.. 
: fwd  
  .. vecmul 
  .. vecadd 
  .. vecmap  
  .. 
; 

C  Convolutional Neural Networks (CNN) 

The structure of a CNN consists of different layers. A 

minimal basic layer architecture set consists of: 
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1. A convolutional layer applying a kernel filter mask to 

an input image (linear multiply-summation operation) 

producing a filtered output image; 

2. A pooling layer extracting relevant features from im-

ages by applying special filters (e.g., a maximum value 

selection); 

3. An ANN layer (commonly fully connected). 

CNN computations are decomposed in vector operations 

provided by the VM platform, discussed below. The com-

plexity and memory requirements is much higher than com-

pared with ANN implementations. Especially the ANN layer 

is connected to all elements of the arrays of the pooling lay-

er. Memory requirement is typically more than 4 kBytes, 

depending on the network structure, input dimension, and 

layer sizes. More details and evaluations can be found in the 

use-case sections. 

The principle structure of a CNN model and its forward 

computation using the vector operations discussed at next is 

shown below (here the first convolution and the second 

pooling layer are merged to save storage space). There are 

initialized parameter arrays (kernel weights, biases, and scal-

ing factors) and latent variable arrays (intermediate images, 

neuron outputs). 

 

array input N 
array kernL1p1 { 1 2 3 .. } 
array kernL1p2 { 1 2 3 .. } 
array kernL1p3 { 1 2 3 .. } 
array cnvtmpL1 N 
array poolL1p1 N 
array poolL2p2 N 
array poolL2p3 N 
... 
: fwd  
  ( conv & pool ) 
  .. vecconv 
  .. vecmap 
  .. vecconv  
  .. vecconv 
  .. vecmap 
  .. vecconv  
  .. 
; 

D  ML Core Operations 

ANN and CNN computations required efficient and ge-

neric vector operations crucial to implement ML on micro-

controllers. The REXA VM provides a core set of vector 

operations that can be used for the computation of ANN and 

CNN models. Training using classical error back-

propagation is currently not supported due to requirement of 

storing a suitable training and test data set. 

All the basic operations you need to implement ANNs 

and perform forward activation computations are: 

1. Element-wise vector operations (e.g., vecmul: op1vec 

op2vec dstvec scalevec ); 

2. Dot-product operation performing a sum of product 

data fusion (vecprod: veca vecb scale → number ); 
3. A folding operation for node layer computations 

(vecfold: invec wgtvec outvec scalevec ); 

4. A convolution operation for CNN computations (vec-

conv: invec wgtvec outvec scale inwidth kwidth stride 

pad). This function also serves as a pooling operation; 

5. A mapping operation applying a function elementwise 

(vecmap: srcvec dstvec func scalvec); 

6. A reduction operation applying a function to all ele-

ments returning an aggregate (vecred: vec vecoff veclen 

op); Supported functions are min, max, sum, and aver-

age; 

7. A vector reshape operation shrinking or expanding a 

vector (vecshape: srcvec dstvec scale); 

8. A generic scaling operations (vecscale: srcvec dstvec 

scalevec ). 

Vector operations commonly operate on arrays embedded 

in code frames, as shown in Def. 2. Scaling is typically ap-

plied after an aggregation operation (results of operation), 

e.g., after computing a sum of products (using 2N arithmet-

ics), to avoid overflow. Some operations use one scaling 

factor for all elements, discussed in the following section.  

 

┌─────────────┐      ┌─────────────┐    
│ array x 100 │      │ bytecode .. │    
│ array y 20  │      │             │    
│ array z { 1 │      │ <array z>   │    
│  3 4 .. }   │      │             │    
│ ...         │  =>  ├─────────────┤    
│ ...         │      │ <array x>   │    
│ ...         │      │ <array y>   │    
└─────────────┘      └─────────────┘    
<array>: [LEN:2][DATA:LEN*WORDSIZE]     

Def. 2. Initialized arrays embedded in-place in code frames and non-

initialized arrays stored at the end of the compiled code frame  

E  Vector Operations 

The core set of vector operations provided by the REXA 

VM supporting integer arithmetic ANN computations is 

summarized in Tab. 1. 

 

Vector Operation  

array <ident> <#cells> 

Allocates a data array at the end of the code segment  

array <ident> { v1 v2 .. } 

Allocates an initialized data array inside the code segment.  

vecload 
( srcvec srcoff dstvec -- ) 
Loads a data array into another array buffer. The source can be any 

external data provided by the IOS or internal embedded data.  

 

 

370 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



 

 

 

Vector Operation  

vecscale 
( srcvec dstvec scalevec -- ) 
Scales the source data array with scaling factors from the scale 

array and stores the result in the destination array. Negative scaling 

values reduce, positive values expand the source data values.  

vecadd,vecmul 
( op1vec op2vec dstvec scalevec -- ) 
Adds two vectors element-wise with an optional result scaling 

(value 0 disables scaling). Both input and the destination vectors 

must have the same size. Constant down-scaling of all elements is 

provided by a negative scaling value (instead of vector reference).  

vecfold 
( invec wgtvec outvec scalevec -- ) 

Performs a folding operation ivec × wgtvec with a given filter. The 

weights vector wgtvec must have the size ||invec||*||outvec||.  

vecconv 
( invec wgtvec outvec scale inwidth wgtwidth 
stride pad -- ) 
Performs a two-dimensional kernel-based convolution operation 

ivec ⊗ wgtvec. The width of the input and kernel matrix (still a 

linear array) must be provided, the width of the output and the 

heights are computed automatically from the vector lengths. If 

wgtwidth is negative, a pooling operation is performed. The wgtvec 

argument provides then the height of the filter and the operation to 

be performed.  

vecmap 
( srcvec dstvec func scalevec -- ) 
Maps all elements from the source array onto the destination array 

using an external (IOS) or internal (user-defined word) function, 

e.g., the sigmoid function.  

vecred 
( vec vecoff veclen op -- index value / valueL 
valueM ) 
Reduces a vector to a scalar value. Supported operations are min 

(1) and max (2) returning position and value, mean (4) and average 

(8) returning a double word value.  

 

TAB. 1. BASIC VECTOR ANN FUNCTIONS OPERATING ON EMBEDDED OR 

EXTERNAL ARRAY DATA (E.G., THE SAMPLE BUFFER)  

 

Vector operations always operate on single data words 

(16 bit), but internally 32 bit arithmetic is used to avoid 

over- and underflows. To scale to signed 16 bit integer, 

some of the operations use a scale factor or scale factor vec-

tor (negative scale values reduce, positive expand the values 

by the scale factor) to avoid overflows or underflows in fol-

lowing computations, similar to scaled tensors in [4,12]. 

Vector operations can access arrays stored in code frames or 

provided externally by the host application (e.g., a signal 

buffer). 

The vecconv operation can be used for convolutional and 

pooling layers (pooling is used if wgtwidth is negative and 

the wgtvec value contains the weight matrix height com-

bined with the pooling function selector). The application of 

an activation function must be done separately using the 

vecmap operation, e.g., by applying a sigmoid function to all 

elements of a vector. 

The computation of these operations are defined by the 

following formulas: 
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  (1) 

F  Activation Functions 

There are different transfer (activation) that are used in 

ANN and CNN modells, mosr prominent examples are: 

• Linear function (linear) without x- and y-limits 

• Logistic or sigmoid function (sigmoid) with y-limit=[-

1,1] 

• Tangents hyperbsolic function (tanh) with y-limit=[-

1,1] 

• Rectifying linear unit (relu) with one-side open y-

limit=[0,∞) 

The linear and relu functions can be directly implemented 

with integer arithmetic without loss of accuracy (except due 

to integer discretizing). The highly non-linear sigmoid and 

tanh functions require an appropriate approximation by us-

ing a hybrid approach of the usage of a (compacted) look-up 

table (LUT) and interpolation. The tanh function can be 

neglected since it can be replaced in most cases by the sig-

moid function without loss of generalization (of course, pri-

or to training). 

Trigonometric functions and functions composed of trig-

onometric functions are implemented with segmented linear 

and non-linear look-up tables. For example, the error of the 

discrete sigmoid function is always less than 1%, while only 

requiring 30 bytes of LUT space and less than 10 unit opera-

tions, as shown in Alg. 1. These software functions can be 

immediately implemented in hardware, too. The LUTs are 

computed with Alg. 2. 

 
static ub1 sglut13[] = { <24 values> }; 
static ub1 sglut310[] = { <6 elements> }; 
// y scale 1:1000 [0,1], x scale 1:1000 
sb2 fpsigmoid(sb2 x) { 
  sb2 y; 
  ub1 mirror=x<0?1:0; 
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  if (mirror) x=-x; 
  if (x>=10000) return mirror?0:1000; 
  if (x<=1000) { 
    y = 500+(((x*231)/1000)); 
    return mirror?1000-y:y; 
  } else if (x<3000) { 
    ub2 i10 = ((fplog10((x/5)|0)/2))-65; 
    y = ((sb2)sglut13[i10])+731; 
    return mirror?1000-y:y; 
  } else { 
    ub2 i10 = ((fplog10((x/10)|0)/10))-14; 
    y = ((sb2)sglut310[i10])+952; 
    return mirror?1000-y:y; 
  } 
  return 0; 
} 
static ub1 log10lut[] = { <100 values> } 
// x-scale is 1:10 and log10-scale is 1:100 
sb2 fplog10(sb2 x) { 
  sb2 shift=0; 
  while (x>=100) { shift++; x/=10; }; 
  return shift*100+(sb2)log10lut[x-10]; 
} 

Alg. 1. Range-segmented and LUT-based implementation of the sig-

moid function with less than 1% approximation error (using approxi-

mated LUT-based log10 function)  

The LUT tables can be computed as follows: 

 10log10lut log 100 : ,0 99
10

i
int i i
    = ∈ ≤ ≤   

    
   (2) 

The fpsigmoid function LUTs are computed iteratively using 

the fplog10 function, described by the following pseudo 

code algorithm Alg. 2: 

sglut13 := [] 
for x=1 to 2.95 step 0.05 do 
  i10 := int(fplog10(int(x*1000/5))/2)-65 
  if sglut13[i10] = undefined then 
    sglut13[i10] := int(sigmoid(x)*1000)-731 
  endif 
done 
sglut310 := [] 
for x=3 to 9.9 step 0.1 do 
  i10 := int(fplog10(int(x*1000/10))/10)-14 
  if sglut310[i10] = undefined then 
    sglut310[i10] := int(sigmoid(x)*1000)-952 
  endif 
done 

Alg. 2. Computation of the LUTs for the scaled integer sigmoid func-

tion  

The accuracy (relative error) of the sigmoid approxima-

tion is plotted in Fig. 3 with an input and output scaling fac-

tor of 10000 (i.e., 1:10000). For x > -3 the error is below 5% 

and decreases to 1% in average. Only for x < -3 the relative 

error increases significantly due to the integer resolution. 

 

Fig. 3. Relative discretization error of scaled integer LUT-interpolated 

approximation of the sigmoid function  

V  EVALUATION 

Computation time results for ANN and CNN models are 

shown in Fig. 4 and 5. The code size required to store static 

and dynamic model parameters are shown in Fig. 6 and 6. 

Two different host platforms were tested: A generic i5 x86 

clocked @2900 MHz (during test) and a STM32F103C8 

microcontroller clocked @72 MHz with 20 kB RAM. All 

tests are processed by the operational same REXA VM. The 

computation time was normalized to the CPU clock fre-

quency to enable comparison between different platforms. 

The REXA VM provided a code segment with 6k words 

capacity and a data stack with 256 words. The VM was 

compiled with GNU CC (gcc version 7), and the ARM-

STM32 version was compiled with the Arduino software 

toolkit. With the configuration described above, 3 kB RAM 

remains for the VM program stack, which is sufficient. The 

REXA VM allocates memory only statically on the heap, 

there is no dynamic memory allocation during run-time. 

The computational times were plotted against the number 

of neurons (ANN) and cells (CNN). The number of cells of 

a CNN is the sum of the static parameters and dynamic vari-

ables.  
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Fig. 4. Normalized computation times for ANNs of different size (with 

two, three, and four layers) and two different host platforms (Generic i5 

x86 @2900 MHz and STM32F103C8 @72MHz) as a function of neu-

rons. The computation time is approximately linear with the number of 

neurons (independent of network layer structure) 

.  

 

Fig. 5. Normalized computation times for CNNs of different size (with 

one and two convolution-pooling layer pairs) and two different host 

platforms (Generic i5 x86 @2900 MHz and STM32F103C8 @72MHz) 

as a function of cells (product of parameters and variables). The com-

putation time grows about O(n-log(n)) with the number of cells n.  

 

Fig. 6. Code size of ANN as a function of the number of neurons.  

 

 

 

 

Fig. 7. Code size of CNN as a function of the number of cells.  

 

The performance test shows the suitability of a low-

resource microcontroller to store and compute small and 

medium sized ANN and even smaller CNN models. The 

forward (inference) computation time is always below one 

Second, typically about 10-100 ms with 16 MHz clock fre-

quency. The required code space (including model data and 

code) is below 10 kBytes, typically about 1-2 kBytes. The 

ARM Cortex M processor under performs by a factor of 5 

compared with a x86 processor, which is well known. 

VI USE CASES 

A  Damage detection with an ANN 

In this use-case, aggregated feature variables derived 

from time-dependent Ultrasonic signals (Guided Ultrasonic 
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Waves, GUW) from multi-path measurements were used to 

predict a damage in a composite materials and to estimate its 

location. Details can be found in [13]. The processing archi-

tecture is shown in Fig. 8. 

 

 

Fig. 8. Multi-path GUW measurement and data processing for damage 

detection (classification and location regression)  

 

The feature variables were computed from the signal hull, 

mainly by analyzing the first main maximum (position and 

width). The hull signal was computed using (1) the analyti-

cal signal via the Hilbert transform (using FFT) and (2) by 

applying a rectifier and low-pass filter. Only the second 

method can be implemented on the STM32 microcontroller. 

Assuming six measuring paths and the two most significant 

feature variables normalized peak position and peak height, 

additionally using a measure temperature and the base fre-

quency of the pitch signal, the feature vector consists of 14 

variables in total. This scaled feature vector is the input for a 

simple ANN (three layers, one hidden, typical layer struc-

ture [14,8,2], sigmoid activation functions). The output of 

the ANN provided an estimation of the x- and y-coordinates 

of the damage location (or close to 0 if there is no damage 

detected). This is a hybrid classification and regression 

model. If only classification is required, one output neuron 

is sufficient. 

The ANN with a [14,8,1] layer structure providing a bina-

ry damage classification was trained and transformed to the 

proposed integer numerics requiring about 1k Bytes code 

size, shown in Ex. 1. 

 
( Layers: 14,8,2 #neurons:24 ) 
array input 14 
( Layer I ) 
array wghtsI { 329 -499 ... 10 400 } 
array biasI { -764 389 ... -907 -405 } 
array scaleI { -3 9 ... 5 9 } 
array actI 14 
( Layer H1 ) 
array wghtsH1 { 622 -790 ... 708 248 } 
array scaleH1 { 0 5 ... -4 7 } 
array actH1 8 
( Layer O ) 
array wghtsO { 869 939 ... 785 910 } 

array biasO { 252 -565 } 
array scaleO { 4 5 } 
array output 2 
( Input data is stored in input ) 
( Output data is stored in output ) 
: forward 
  ( Layer I ) 
  input wghtsI actI scaleI vecmul 
  actI biasI actI 0 vecadd 
  actI actI $ sigmoid 0 vecmap 
  ( Layer H1 ) 
  actI wghtsH1 actH1 scaleH1 vecfold 
  actH1 biasH1 actH1 0 vecadd 
  actH1 actH1 $ sigmoid 0 vecmap 
  ( Layer O ) 
  actH1 wghtsO output scaleO vecfold 
  output biasO output 0 vecadd 
  output output $ sigmoid 0 vecmap 
; 

Ex. 1. REXA VM program for an ANN classifier for damage prediction 

from 14 aggregate feature variables and two output variables (parame-

ter values are only for illustration)  

 

The ANN requires only 620 Bytes in the CS memory of 

the REXA VM. The computation time (prediction) is about 

1 ms/MHz (Intel x86 i5, i.e. 0.5μs @2900 MHz) and about 5 

ms/MHz (STM32 ARM Cortex).  

B  Damage detection with a CNN 

Similar to the previous use-case, single-path Ultrasonic 

time-dependent measuring signals are used to predict a dam-

age in a composite material. In contrast to the previous ex-

ample, no strong aggregate feature variables could be identi-

fied. Instead, a discrete wavelet transform using high- and 

low-pass filters are used to decompose the sensor signal into 

wavelet coefficients (first 5 levels were chosen). The output 

of the filters (detail and approximation) are decimated by a 

factor of two, retaining only the even samples, since each 

filter output contains half of the frequency content, but an 

equal amount of samples as the input signal. With increasing 

level the number of data elements decreases by a factor 2. 

To provide the output of multiple levels in matrix form, the 

higher levels are expanded. Here, we shrink the lower levels 

to the number of elements of the highest level (5). The orig-

inal signal window contained about 2000 samples, finally 

providing only 50 data points for the fifth DWT decomposi-

tion layer. All DWT vectors are combined into a 50 × 5 el-

ements matrix, treated as a two-dimensional spectogram 

image. The processing architecture is shown in Fig. 9. 

A simple CNN was used to classify signals and predict 

damages. The CNN consists of one convolution layer with 

three filters (3 × 3 pixel), striding and padding set to two, 

output applied to a relu function, followed by one max-

pooling layer (striding=2, padding=0). Finally, a soft-

max/fully connected two-neuron layer performs the classifi-

cation (sigmoid activation function). The REXA VM pro-

gram is shown in Ex. 2. 
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Fig. 9. Single-path GUW measurement and data processing using a 

CNN for damage detection  

 
( Layers: conv,pool,fc ) 
array input 250 
( Layer 1 conv ) 
array cK0L1 { -612 -692 ... 962 -467 } 
array cK1L1 { -214 832 ... -644 -455 } 
array cK2L1 { 764 -275 .. 978 600 } 
array cSL1 { 817 390 572 } 
array cOL1 104 
( Layer 2 pool ) 
array pO0L2 12 
array pO1L2 12 
array pO2L2 12 
( Layer 3 fc ) 
array fW0L3P0 { -468 -905 ... -632 518 } 
array fW0L3P1 { -147 -932 ... -275 872 } 
array fW0L3P2 { -327 -798 ... -61 -621 } 
array fW1L3P0 { -126 894 ... -818 -870 } 
array fW1L3P1 { 488 -408 ... 963 -887 } 
array fW1L3P2 { -519 963 .. 895 -170 } 
array fAL3 12 
array fBL3 { -746 -776 } 
array fSL3 { 1 3 } 
array fOL3 2 
array output 2 
( Input data is stored in input ) 
( Output data is stored in output ) 
: forward 
  ( Layer 1 conv ) 
  ( merged with Layer 2 pool ) 
  input cK0L1 cOL1 cSL1 0 cell+ @ 50 3 2 2 vec-
conv 
  cOL1 cOL1 $ relu 0 vecmap 
  cOL1 256 3 + pO0L2 0 26 -3 2 0 vecconv 
  input cK1L1 cOL1 cSL1 1 cell+ @ 50 3 2 2 vec-
conv 
  cOL1 cOL1 $ relu 0 vecmap 
  cOL1 256 3 + pO1L2 0 26 -3 2 0 vecconv 
  input cK2L1 cOL1 cSL1 2 cell+ @ 50 3 2 2 vec-
conv 
  cOL1 cOL1 $ relu 0 vecmap 
  cOL1 256 3 + pO2L2 0 26 -3 2 0 vecconv 
  ( Layer 3 fc ) 
  pO0L2 fW0L3P0 fAL3 0 vecmul 
  fAL3 0 12 8 vecreduce 
  pO1L2 fW0L3P1 fAL3 0 vecmul 

  fAL3 0 12 8 vecreduce 
  pO2L2 fW0L3P2 fAL3 0 vecmul 
  fAL3 0 12 8  vecreduce 
  2+ 2+ fSL3 0 cell+ @ 2ext 2/ 2red sigmoid 
  fOL3 0 cell+ ! 
  pO0L2 fW1L3P0 fAL3 0 vecmul 
  fAL3 0 12 8 vecreduce 
  pO1L2 fW1L3P1 fAL3 0 vecmul 
  fAL3 0 12 8 vecreduce 
  pO2L2 fW1L3P2 fAL3 0 vecmul 
  fAL3 0 12 8 vecreduce 
  2+ 2+ fSL3 1 cell+ @ 2ext 2/ 2red sigmoid 
  fOL3 1 cell+ ! 
; 

Ex. 2. REXA VM program for a CNN classifier for damage prediction 

from 50 × 5 feature variables (DWT spectogram) and two output varia-

bles (parameter values are only for illustration)  

 

The CNN requires only 1500 Bytes in the CS memory of 

the REXA VM, fitting into a STM32F103C8 (20 kBytes 

RAM). The computation time (prediction) is about 30 

ms/MHz (Intel x86 i5, i.e. 10µs @2900 MHz) and about 150 

ms/MHz (STM32 ARM Cortex).  

Due to the high integration level and the minimization of 

components the measuring data is characterized by noise 

(analog and digital sources), drift, and a superposition by 

environmental signals (main AC line, e.g.). Despite the data 

quality limitations, a damage prediction accuracy about 95% 

can be achieved by the CNN. Considering the low complexi-

ty of the CNN, the results showing the suitability of even 

simple data-driven classifier models processed directly by a 

material-integrated sensor node with a low-resource micro-

controller. 

VII  CONCLUSION 

The stack-based REXA VM was introduced targeting 

CPUs with integer arithmetic only and providing virtualiza-

tion and a unique set of vector operations used to compute 

Artificial and Convolutional Neural Networks under high 

resource constrains. It could be shown that even with less 

than 20 kBytes of RAM memory (simple) CNNs can be 

computed. The VM has a built just-in-time text-to-Bytecode 

compiler. A ML model is provided on programming level 

with a mix of data and computational statements. The VM 

uses a shared code segment for program text and compiled 

Bytecode with embedded data without necessity to have a 

dynamic memory management (heap). The computational 

times for medium sized ANNs and small CNNs are about 1-

300 ms/MHz, reasonable for sef-powered sensor networks. 

The source code of the REXA VM can be downloaded from 

github [14]. 
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