&l

Proceedings of the 18" Conference on Computer
Science and Intelligence Systems pp. 973-978

DOI: 10.15439/2023F7822
ISSN 2300-5963 ACSIS, Vol. 35

Performance assessment of OpenMP constructs and

benchmarks using modern compilers and multi-core
CPUs

Barttomiej Gawrych and Pawet Czarnul
Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology
Narutowicza 11/12, 80-233 Poland, email: pczarnul @eti.pg.edu.pl

Abstract—Considering ongoing developments of both modern
CPUs, especially in the context of increasing numbers of cores,
cache memory and architectures as well as compilers there is a
constant need for benchmarking representative and frequently
run workloads. The key metric is speed-up as the computational
power of modern CPUs stems mainly from using multiple cores.
In this paper, we show and discuss results from running codes
such as: batch normalization, convolution, linear function, matrix
multiplication, prime number test and wave equation; using
compilers such as: GNU gce, LLVM clang, icx, icc; run on
four different 1 or 2-socket systems: 1 x Intel Core i7-5960X,
1 x Intel Core i9-9940X, 2 x Intel Xeon Platinum 8280L, 2 x
Intel Xeon Gold 6130. Results can be regarded as suggestions
concerning scaling on particular CPUs including recommended
thread number configurations.

I. INTRODUCTION

ARALLEL computing has become increasingly popular

due to the widespread availability of multi- and many-
core CPUs and accelerators such as GPUs, not only in cluster
nodes, servers and workstations but also desktops and even
mobile devices. In line with the hardware developments, many
APIs are used for general purpose programming in such
environments, including: OpenMP and OpenCL for shared
memory systems with offloading to accelerators, OpenACC for
directive based accelerator programming, CUDA for NVIDIA
GPUs, Message Passing Interface (MPI) for internode commu-
nication among processes of a parallel application. OpenMP is
very important due to its relatively easy to learn directive + li-
brary based multithreaded model allowing easy parallelization
of sequential codes and support for offloading computations
to accelerators such as GPUs [1].

The contribution of this paper over the state-of-the-art
described in Section II, is assessment of OpenMP’s implemen-
tation performance for a combination of: a variety of specific
constructs and benchmarks, each of which benchmarked on
various 1 and 2 socket systems with modern multi-core Intel
CPUs and each tested using 4 compilers: GNU gcc, LLVM
clang, icx, icc, run for various data sizes. Benchmarks in-
clude: batch normalization used in deep learning, convolution
frequently used in signal processing, linear addition function
benchmark, matrix multiplication, prime number test as well
as wave equation simulation.
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II. RELATED WORK

In [2] a set of microbenchmarks derived from EPCC and
based on SKaMPI was run and analyzed on IBM SP3 and
SunFire systems. Those included OpenMP’s lock/unlock, crit-
ical section, barrier, single, parallel and parallel for directives.
Times were measured for the two systems between 1 and 8
processors showing generally much better values for the Sun
system especially showing sharp increases of times across the
ranges for IBM SP3 vs Sun for barrier, for reduction, parallel
and for single for >2 processors, critical for >4 and lock/unlock
for >5 processors. In [3] performance of a Loongson-3A SMP
quad-core system was assessed for EPCC microbenchmarks
and NPB, using: gcc, OMPi with pthreads or psthreads. Testing
parallel, for, parallel for, barrier and single for 1-4 threads,
OMPi+pthreads tested best; for critical, unlock/lock, ordered
and atomic gcc resulted in much larger overhead for 2-4
threads than the other very comparable solutions. For loop
scheduling: static OMPi+pthreads and gcc were best while
for dynamic and guided OMPi+pthread shall be preferred.
The analyzed platform was also compared to Intel i5 with
normalized (versus CPU clock) ratios for NPB (4 threads)
between 1.3 (EP) and 5.1 (CG).

Authors of paper [4] benchmarked a 72-way Sun Fire
15K multiprocessor system with several EPCC microbench-
marks including measurements of overheads of OpenMP’s
frequently used construct implementations. OpenMP directives
benchmarked included parallel, for, parallel for, barrier, single,
critical, lock/unlock, atomic, along with scheduling modes
such as static, dynamic and guided (1-128 chunk size). C
and Fortran implementations were tested using 6, 12, 24, 48,
64 and 70 threads. Generally, overheads increase expectedly
with the number of threads, in selected cases considerably
starting with a given number of threads e.g. 48+ threads for
critical, lock/unlock and atomic for the C implementation. Ad-
ditionally, overhead of approximately 20% was measured for
separate parallel+for in C and equivalent parallel+do in Fortran
compared to combined versions. For NAS parallel benchmarks
various maximum speed-ups were obtained: approximately 50
for BT and SP, 70 for LU, over 95 (superlinear) for CG, over
50 for MG and over 20 for FT.

In paper [5] the author investigated various OpenMP imple-
mentations of one of the most popular parallel programming
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paradigms — master-slave. Six versions were implemented,
based on: OpenMP locks, the tasking construct, for loop
dynamically partitioned, the latter two without and with over-
lapping merging results and data generation. Two concrete
applications were implemented: one with irregular adaptive
quadrature numerical integration and the second implementing
finding a region of interest within an irregular image. gcc
version 9.3.0 was used on two systems with: the first one
with Intel i7-7700 3.60 GHz Kaby Lake CPU and 8 logical
processors, the second one with two Intel Xeon E5-2620 v4
2.10 GHz Broadwell CPUs and 32 logical processors. All in
all, for integration the best results were obtained for tasking
and dynamic for with or without overlapping (for systems 2
and 1) while for image recognition for system 1 dynamic for
and using locks while for system 2 dynamic for (both versions)
and tasking with overlapping.

Scalability and overheads during execution of parallel code
is studied in more detail in [6] where authors distinguished 4
overhead categories such as: need for synchronization among
threads, imbalance, limited parallelism i.e. not (fully) par-
allelized code and thread management. For benchmarking
the authors used OpenMP’s version of NAS Parallel Bench-
marks (class C) characterizing presence of particular OpenMP
constructs in particular benchmarks — present mostly LOOP,
PARALLEL and PARALLEL_LOOP in all tested as well
(except PARALLEL in FT) as master in BT, LU, MG and SP;
ATOMIC in BT, EP, LU and SP; BARRIER in IS and LU;
CRITICAL in SP; SINGLE in LU. Codes were benchmarked
using between 2 and 32 threads on an 32 CPU Itanium-2
based SGI Altix machine. All in all, imbalance appeared to
be the largest overhead generally, as much as 20% for SP;
synchronization turned out to be significant for IS (largest)
and visible for LU. Thread management was noticed in IS,
MG and CG although not large.

In paper [7] authors implemented and benchmarked 3
versions of OpenMP codes for an iterative Jacobi solver for
2D structured grids, representative of geometric SPMD codes
such as for e.g. CFD applications. The code versions included:
standard shared memory OpenMP host code with parallel
and do directives, standard code augmented with target and
target data directives and code with target, target
data, teams, distribute directives. Codes were run on 2
systems: one with 2 Intel Xeon E5-2670 CPUs + 4 Intel 5110P
Phis, the other with AMD Interlagos CPU + NVIDIA K20X
GPU. For the first system (Intel compiler), offloading has been
shown to be effective, even if offloading to self case, almost
as good as the standard OpenMP code. For the second system
(Cray compiler), only standard code on CPU and offload to
GPU performed well.

In work [8] authors benchmarked OpenMP as a program-
ming API through its language constructs on the IBM Cy-
clops64 system with 160 processing cores within a single
chip. Specifically, EPCC microbenchmarks were used with
their 3 elements testing: synchronization, scheduling as well
as array directives and clauses. Overheads in terms of cycles
versus numbers of threads within the 1-128 range were tested.
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Specifically, the overhead of FOR turned out to be only
minimally higher than that of BARRIER and of PARALLEL
FOR minimally larger than that of PARALLEL. The overhead
of SINGLE is comparatively large. DYNAMIC (1) resulted in
very large overhead, especially compared to DYNAMIC for
chunk sizes 64-128 and STATIC for equivalent chunk sizes.
Additionally, overheads of PRIVATE and FIRSTPRIVATE
used in conjunction with PARALLEL add very small, mini-
mally larger for the latter.

[II. METHODOLOGY AND BENCHMARKS

Within the paper, we aim at comparative analysis of several
orthogonal aspects in terms of OpenMP applications, includ-
ing: many various benchmarks that differ in compute and
memory intensity, as well as OpenMP directives used; tests
for various input data sizes; several popular compilers: GNU
gcc, LLVM clang, icx, icc; several CPUs representing various
architectures and generations.

To evaluate performance, several programs were written
using various OpenMP directives and their combinations.
Problems benchmarked are as follows:

« Batch-Normalization — popular function used in deep

learning, especially in computer vision problems [9].

« Convolution — method commonly used in signal process-
ing, but also very popular in computer vision problems.
This benchmark tests the parallelization of five nested
loops and how collapse directive and its parameters are
impacting performance.

« Linear function — performing multiplication and addition
to each element of the array (y = a * x + b), testing if
OpenMP’s SIMD directive affects the execution time of
the program.

o Matrix multiplication — we used implementation with
O(n3) complexity and parallelization with OpenMP’s
schedule (static) and collapse directives.

o Prime number test — implementation, which divides
number by all numbers from 2 to y/n, has been chosen in
order to compare schedule clauses that are static, guided,
and dynamic.

« Wave equation — benchmark testing the performance
impact of using the parallel directive both within and
outside of the time step loop (making the parallel
directive called only once).

The experiments were carried out to test the performance of
specific OpenMP implementations with an increasing number
of threads for varying issue sizes, as well as the effect of
various work-sharing directives. Multiple iterations of bench-
marks were performed using sizes that were selected based
on subjective criteria in order to conduct operations on various
sizes, from small to large. The number of rounds was adjusted
so the fastest execution of full benchmark measurement took
longer than 1 second. Apart from measuring average time of
a single run, our testing framework also calculated standard
deviation which can be found on GitHub [10], along with
full compilation configuration and compiler flags used for each
platform.
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IV. EXPERIMENTS
A. Testbed environments

Table I details tested systems with configurations imposed
by the production environments.

CPU S/CIT Operating System RAM
a) | Xeon Gold 6130 2/16/32 | Ubuntu 18.04.3 LTS 256 GB
b) | Xeon Platinum | 2/28/56 | CentOS Linux 7 (Core) 192 GB
8280L
¢) | Core i7-5960X 1/8/16 Ubuntu 18.04.5 LTS 16 GB
d) | Core i9-9940X 1/14/28 | Ubuntu 20.04.2 LTS 128 GB

TABLE I
CONFIGURATION USED TO BENCHMARK OPENMP IMPLEMENTATIONS (S -
SOCKETS, C - CORES, T - THREADS)

Table II presents compilers and OpenMP versions which
were used to evaluate the performance. Our intention was to
compile with the latest stable OpenMP release available for
each compiler at the time.

Compiler Compiler Version | Name of | OpenMP ver-
OpenMP lib sion in CMake
GNU GCC 10.2.0 libgomp.so 4.5
LLVM Clang | 11.1.0 libomp.so 5.0
ICX 12.0.0 libiomp5.so 4.5
1CC 20.2.2.20210228 libiomp5.so 5.0
TABLE T

BENCHMARKED OPENMP IMPLEMENTATIONS

B. Tests

Within the following tests, we present speed-ups versus
the number of threads executing a particular benchmark, in
selected cases for several variants and settings.

1) Batch-Norm: With the small problem size for Batch-
Norm, the best performance improvement was achieved on
processor (b) - peak performance was observed using only 32
threads and it was 25 times faster than sequential run. Using
only 32 threads also gives the best result on processor (a),
for the rest, using all available threads constituted an optimal
solution.

With increased size the best performance for all examined
CPUs was achieved using all available threads (Figure 1).
The rapid performance loss that occurs when employing one
more thread than half of those available is an interesting phe-
nomenon — at this point, hyper-threading begins to function.
Despite this problem, performance increases linearly when
using more and more threads. This does not apply to the
result of the GCC compiler on machine (b) where performance
started to decline progressively once more than 32 threads
were used.

2) Convolution: Results from Figure 2 demonstrate how
crucial it is to employ the collapse clause when appropriate.
If CPUs have enough threads to consume the first loop entirely,
the rest of available threads will be idle. Using the collapse
clause generates many more tasks which can be distributed
among different threads, which results in better scalability
than without this clause — characteristic speed-up when using
divisible number of threads in relation to the iteration count
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Fig. 1. Results of Batch-Norm with size N=32, C=2048, H=7, W=7

of first loop no longer exists. Overall, deciding whether it is
always better to use 2-level or 3-level collapsing cannot be
done, as it depends on the used compiler and the machine —
e.g. for the Clang compiler on machine (a), best improvement
is for collapse(2), but on machine (b) for collapse(3).

The results performed for N=256, H=112, W=112, ker-
nel=3x3 indicate that when the first level loop has a large
enough number of iterations to distribute tasks for each thread
it is worthwhile to consider not using the collapse clause
at all. It can be observed on machine (c¢) with GCC compiler
and machine (d) ICC compiler.

3) Matrix Multiplication: For matrix-vector multiplication,
in the case of desktop processors — (c) and (d), the results
are satisfying and linear improvement can be observed for all
compilers. Using the collapse clause has neither beneficial
nor negative effect there. However, in server type CPUs
differences show up. On machine (a) using the collapse
clause causes performance degradation for every compiler.
On machine (b) linear speed-up was disrupted by occurred
anomalies after using more than 28 threads, which indicates
the use of the second NUMA node.

For small square matrix-matrix multiplication desktop CPUs
scale well and only a characteristic performance drop be-
comes apparent when hyper-threading comes into play. For
configuration (a) and (b) compilers ICC and ICX allow good
scaling and positive effect of using the collapse clause can
be observed. For other configurations, scaling is much more
irregular - especially for Clang on machine (b).

Increasing the size by an order of magnitude in each
dimension causes all configurations but (b) to suffer from
using hyper-threading as performance drops dramatically. Ad-
ditionally, differences between using or not-using collapse
construction are not visible for this size. The best scaling can
be observed for configuration (b), but again, with anomalies
visible in Figure 3 - when using HT threads.

4) Linear function: Tests performed for size=10000 showed
very limited speed-ups. When the size is two orders of
magnitude larger, the results are significantly better. In this
example, letting the OpenMP implementation to determine
chunk size automatically produces far better results than using
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the static clause with a manually set chunk size. When it
comes to the SIMD construction, in almost all cases it does
not matter, but using this clause is beneficial when using ICC,
but only on machine (d).

5) PrimeTest: Testing whether a given number is prime or
not with a plain algorithm produces unbalanced amounts of
work for particular threads. Results for size=10000 show that
using the guided scheduling clause is the most stable one for
every compiler. Poor performance for dynamic scheduling is
visible for GCC and ICC for configurations (a), (b) and (d), but
not for configuration (c), where it gives the best improvement.
Another interesting observation is that a characteristic perfor-
mance drop when CPU starts using hyper-threading vanished
with the usage of guided scheduling.

For larger vectors of numbers to test, charts in Figure 4
are reasonably smooth and regular. Differences between using
the dynamic and guided clauses are not visible and in
the end, almost every configuration achieves the same level
of parallelization when using all threads (except for dynamic
scheduling using GCC and ICC compilers). Performance drop
for static scheduling and hyper-threading still appears.

6) Wave Equation: The final benchmark determines
whether it is better to place the parallel directive within
or outside of a time-step loop, as the second iteration depends
on first iteration’s results. Results shown in Figure 5 are
ambiguous. In most cases placing the parallel directive
together with work-sharing for-loop gives better results. One
exception to this appears on machine (b) when compiling with
Clang — the chart is very irregular, but it is clear that placing
parallel outside of the time-step loop produces better results.

For the larger sizes of the problem (N=5000, M=5000,
T=100 tested) the differences are smaller and for desktop
CPUs are almost not visible. Similar conclusions can be
drawn for the server CPU from configurations where charts
are overlapping each other. Only for configuration (a) some
differences occurs — slightly better performance is observed
when parallel clause is inside time-step loop, but scaling is
then more irregular.

V. SUMMARY AND FUTURE WORK

Results show that no single best compiler nor OpenMP
implementation can be chosen. In many cases compilers
showed similar speed-up patterns on charts, however they dif-
fered in speed-up values. Different results and rankings were
collected for various problems and various sizes of problems
— consequently best configurations need to be considered on
a case by base basis. In line with expectations, better scaling
was achieved for bigger data sizes of problem — that suggests
that data size must be large enough to get satisfying speed-
ups. Often for small data sizes better performance can be
achieved by using relatively few cores. It is especially visible
when comparing desktop CPUs (a small number of cores)
with server CPUs (a large number of cores) — in some cases
exceeding a certain number of used cores caused degradation
of performance. Consequently, it is recommended to bench-
mark own program with different OpenMP implementations

in a production environment to get the best results in terms of
performance before final deployment.

For future work, it would be valuable to benchmark the
workloads also under power caps and determine performance-
energy trade-offs [11] including optimization goals EDP, EDS
as well as percentage wise performance loss for energy gains.
Additionally, other benchmarks would also be of interest,
such as: parallel similarity measure computations for large
vectors [12] or image processing [13].
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