
Open Vocabulary Keyword Spotting

with Small-Footprint ASR-based Architecture

and Language Models

Mikołaj Pudo

0000-0002-0776-4703

Samsung R&D Institute Poland, Krakow, Poland

Warsaw University of Technology, Warsaw, Poland

Email: m.pudo@samsung.com

Mateusz Wosik

0009-0002-9530-8931

Samsung R&D Institute Poland, Krakow, Poland

Email: m.wosik@samsung.com

Artur Janicki

0000-0002-9937-4402

Warsaw University of Technology, Warsaw, Poland

Email: artur.janicki@pw.edu.pl

Abstract—We present the results of experiments on minimizing
the model size for the text-based Open Vocabulary Keyword
Spotting task. The main goal is to perform inference on devices
with limited computing power, such as mobile phones. Our
solution is based on the acoustic model architecture adopted
from the automatic speech recognition task. We extend the
acoustic model with a simple yet powerful language model,
which improves recognition results without impacting latency
and memory footprint. We also present a method to improve
the recognition rate of rare keywords based on the recordings
generated by a text-to-speech system. Evaluations using a public
testset prove that our solution can achieve a true positive rate
in the range of 73%–86%, with a false positive rate below 24%.
The model size is only 3.2 MB, and the real-time factor measured
on contemporary mobile phones is 0.05.

I. INTRODUCTION

M
ACHINE learning techniques are being developed

nowadays in two distinct directions. In some appli-

cations, model sizes are constantly growing to support the

increasing number of domains. This is especially visible in the

case of large language models (LLM), in which the number

of trainable parameters reaches hundreds of billions. Those

models require tremendous amounts of computing power for

inference. However, there is also a trend pushing the bound-

aries in the opposite direction by minimizing the model sizes.

In this case, the models are designed for very specific tasks and

they are most commonly deployed on devices with a limited

amount of computing power, such as mobile phones or home

appliances.

A good example of such a specific task is keyword spotting

in an audio stream. This task aims to detect all occurrences of

the given keywords in audio data provided either in streaming

or non-streaming mode. Systems that solve keyword-spotting

tasks are usually deployed on users’ devices. Therefore, they

need to have low latency and a small memory footprint. In the

most basic case, the models are fitted to support detecting only

a fixed number of keywords (e.g., wake words in contemporary

voice assistants such as “OK Google”, “Alexa”, “Hey Siri” or

“Hi Bixby”). Such models can be minimized well, even to

sizes below 100 kB. However, users of voice assistants often

request the possibility to customize the keywords, which intro-

duces an open-vocabulary Keyword Spotting (KWS) problem.

In this case, the model needs to be much larger to support the

recognition of potentially arbitrary keywords.

In this paper, we present our solution to the KWS task

for the non-streaming mode. It is based on the acoustic

model (AM) architecture used in automatic speech recognition

(ASR). However, to fit the entire system (model and engine)

on the mobile device, we strongly reduced neural network

layer sizes and applied post-training weights quantization.

As expected, the baseline model performance was far from

satisfactory. Therefore, we applied hypothesis re-scoring with

a simple language model (LM). We also explored the idea of

using recordings generated by a text-to-speech (TTS) model

to improve performance on rare keywords not known during

AM training. It should be noted that both improvements can

be used independently of each other and can be applied to any

type of AM.

The rest of this paper is organized as follows. In Section II,

we discuss previous solutions to the KWS problem. In Sec-

tion III, we present different parts of the model architecture:

AM in Section III-A; LM together with the algorithm of

its construction in Section III-B; keyword classifier, which

makes the final decision is described in Section III-C; and

extension of this module to multiple keywords is explained in

Section III-D. All the variants of our solutions discussed in

this paper were evaluated. Results of those experiments are

presented in Section IV. Finally, we summarize this paper in

Section V and provide a selection of possible future research

directions in Section VI.

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 657–666

DOI: 10.15439/2023F8594

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 657 Thematic track: Challenges for Natural Language

Processing



II. RELATED WORK

KWS can be split into two types: query-by-text (QbyT) and

query-by-example (QbyE). In QbyT the keyword is provided

by text, while in QbyE one or more “enrollment” audio

recordings are provided during the initialization phase. Both

types of KWS were considered before.

A thorough review of QbyT solutions can be found in [1].

It should be noted that currently, the most popular testset

used to evaluate such solutions is a subset of Google Speech

Commands (GSC) [2]. It is a public dataset developed for

training and evaluating models designed for simple command

recognition. It is also used for the KWS task. GSC contains

a small number of keywords, hence it is more suited for

classification problems with a fixed number of classes rather

than open-vocabulary tasks.

Solutions designed for open-vocabulary QbyT evolved sim-

ilarly to the ASR models. There was a long phase of solutions

based on the hidden Markov model (HMM) – Gaussian

mixture model (GMM) architecture [3], [4]. Later the GMM

component was replaced by deep neural networks (DNN) [5],

[6]. Finally, with the advent of sequence-to-sequence archi-

tectures to speech processing, ideas such as connectionist

temporal classification (CTC) [7] and attention mechanism [8]

became standard solutions in KWS as well.

Present-day solutions to open-vocabulary KWS can be

based simply on CTC. In [9], the model contains three long

short-term memory (LSTM) layers and the output is at the

character level. The keyword is detected once the negative

log posterior is below a predefined threshold. LSTM-CTC

architecture is also used in [10]. However, in this case, the

model operates at the phonetic level. The keyword is repre-

sented by one or more phone sequences. During the inference

phase, those variants are compared with the hypothesis using

minimum edit distance. The decision threshold is estimated

for each keyword separately based on the training data and

the lexicon.

The connection between KWS and ASR can be also limited

to the training phase. In [11], the model is trained using CTC

in a multi-task approach with ASR and KWS outputs. During

inference, only the KWS output is used. Such an approach is

intended to improve the model’s ability to generalize and im-

prove the performance in acoustically challenging conditions.

The solution presented in [12] is based on an audio encoder

network and a convolutional classifier. The encoder network

is trained using the ASR task. The classifier network uses

filters computed by a keyword encoder. The keyword encoder

is a bidirectional LSTM (BiLSTM) layer processing the text

keyword provided by the user.

Some solutions are based on the attention mechanism. An

ASR model composed of five LSTM layers is used in [13].

The model is trained with CTC loss but has an additional

keyword encoder and attention network which is used to direct

the prediction network towards the keyword of interest. One

of the models presented in this paper employs a phoneme

level n-gram LM, which improves the model’s performance.

An attention-based model is presented in [14]. However, this

is one of many solutions with a fixed-size output layer, hence

supporting new keywords requires retraining the model.

Another approach to supporting open vocabulary is the

on-the-fly adaptation of the model during the initialization

phase. In [15] an embedding model is pre-trained on a large

number of classes. A classification layer for specific keywords

is added on top of the embedding model and adapted using

only a handful of samples. Such classification layers can

be independent of each other and use the same embedding

model, since in the adaptation phase only the last layer is

modified. A similar solution based on a few-shot transfer

learning is described in [16]. It should be noted that usually

KWS solutions are deployed on devices with limited resources,

hence performing any type of model adaptation might be

troublesome.

Many QbyE solutions are also based on the concepts used

in the ASR. In [17] the ASR model with CTC is applied to

enrollment phase recordings. N-best phonetic level keyword

labels are stored together with their log probabilities in the

keyword model. During the inference phase, each audio is

processed with a similar ASR model. For each keyword from

the keyword model log probability is computed and added

to the final score. The keyword is detected if the score is

above a certain pre-determined threshold. Similarly in [18] a

small-footprint ASR model based on CTC is employed. In

the enrollment phase, phonetic level posteriorgrams obtained

from the model are used to build a finite-state transducer graph

(FST) that models the keywords. In the inference phase, the

audio is processed with the ASR model, and the output is

scored using the keyword model FST. Finally, the score is

compared with the threshold, which is chosen automatically

based on the enrollment recordings and negative samples

generated by rearranging each enrollment waveform. Since

both of those solutions operate on the phonetic level rather

than directly on the acoustic level, they can be treated as

converting the QbyE task to QbyT.

QbyE can be also approached on the acoustic level. In [19],

[20], [21], [22] audio embeddings are computed for both

enrollment and inference phase recordings. Distance between

those vectors is computed using different metrics and com-

pared to a predefined threshold.

III. MODEL ARCHITECTURE

The main assumption in the KWS task is that the keyword

might be any phrase, most likely not known during model

training. This means the model architecture cannot be based

on a classifier with a fixed-size softmax-type output layer. A

more elaborate solution is necessary for this problem. Fig. 1

provides a general overview of our solution. We decided to

adopt the AM architecture developed for the ASR task. To

gain high accuracy, AMs usually contain hundreds of millions

of trainable parameters. However, since KWS is simpler than

speech recognition, we decided to leverage knowledge distil-

lation to minimize the model size, but still keep the capability

of dealing with large or open vocabulary, which is the base of

658 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Audio
processing

Beam
search

Convert IDs
to subwords

Keyword
classifier

keyword

audio data

vocabularyAM

hypo
thesis

best
path

Inference phase

scores 0/1

output

Fig. 1. Overview of the baseline solution.

ASR. Our solution employs AM in a standard way to generate

frame level subwords. This is followed by a beam search to

create the best path, which is converted to the final hypothesis

using model vocabulary. The last step consists of keyword

classification, which compares the hypothesis with the given

keyword to make a final binary decision: whether a keyword

is present in the recording or not.

A. Acoustic model architecture and training

The AM used in our solution is based on monotonic chunk-

wise attention (MoChA) [23]. It is a sequence-to-sequence

model split into encoder and decoder parts, both composed of

recurrent neural layers (RNN). The encoder computes embed-

ding vectors for each frame in the audio stream. The attention-

based decoder combines and transforms those embeddings into

a series of subwords that will constitute the hypothesis. The

MoChA used in our decoder is a modification of soft attention,

designed to address the issue of real-time (online) processing.

It consists of two attention layers. The first layer uses hard

monotonic attention for each frame to determine whether the

second layer needs to be run. The second layer uses soft atten-

tion over a small sequence (“chunk”) of frame embeddings to

compute the context vector. Each chunk comprises the current

frame and several frames preceding it. The chunk length is a

model hyperparameter.

To compress the model, we use a knowledge distillation

approach, in which a small student model is trained to mimic

a large teacher model [24]. Both models are based on MoChA

architecture but differed in the sizes of the selected layers.

The teacher model encoder consists of six BiLSTM layers

with 512 units for each direction with 0.3 dropout. To reduce

the time domain size, max-pooling layers are used after each

of the three initial BiLSTM layers. The decoder consists of

one unidirectional LSTM layer with 1000 units, an embedding

layer of size 621, and a readout layer of size 1000. The decoder

also contains two attention layers of size 512 each. Chunk size

two is used for chunkwise attention. The teacher model has

50.1 million trainable parameters (34.2 million in the encoder

and 15.9 million in the decoder). It was trained jointly with

CTC loss and categorical cross-entropy loss [25]. The CTC

was used with the encoder output to encourage the model to

learn monotonic alignments. We used 0.1 label smoothing of

the output softmax distribution.

The student model has the same architecture as the teacher

model but with reduced layer sizes. Each of the BiLSTM

encoder layers has 124 units for each direction with 0.3

dropout. The decoder comprises an LSTM layer with 256

units, an embedding layer of size 156, a readout layer of size

256, and two attention layers of size 124 each. The student

model includes a total of 3.1 million trainable parameters (2.0

million in the encoder and 1.1 million in the decoder).

The input to both models consists of 40-dimensional power-

mels computed over a period of 25ms with a 10ms step.

During training and inference, we applied cepstral mean

and variance normalization, which were computed over all

training samples. The model’s output consists of 500 subwords

obtained using the method described in [26]. It uses the

adaptation of byte pair encoding (BPE) to word segmentation

to generate a compact symbol vocabulary of variable-length

subword units. The vocabulary was generated from all the

transcriptions contained in the training and testing sets. 500

was chosen as the vocabulary length since this size keeps

the output model layer small and allows for more accurate

recognition of rare or out-of-vocabulary words. Four special

subwords were added to the vocabulary: <s> (beginning of

a sentence), </s> (end of a sentence), <unk> (non-speech

events or characters not included in the Latin alphabet) and

<blank> (required for CTC training).

The teacher model was trained for 23 epochs with a learning

rate equal to 1 × 10−4 in the first epoch. The learning rate

was reduced by a factor of 0.95 after every 10 consecutive

validation steps without change. Validation was done every

5000 steps. During training, we added randomly selected room

impulse response (RIR) and mixed the data with a randomly

selected noise signal with a ratio between −2 and 12 dB.

RIR dataset contains simulations of distances from one to five

meters and reverberation time between 0.2 s–0.9 s. Noise data

consisted of both internal noise dataset and AudioSet [27]. The

internal noise data contained audio from various environments

and is similar to MUSAN [28]. Moreover, the features were

augmented with SpecAugment [29] by masking one frequency

block of size eight and one time-domain block of size 50.

The student’s total loss was the weighted sum of distil-

lation loss and categorical cross-entropy loss with weights

of 0.4 and 0.6, respectively. During knowledge distillation,

we used temperature two to make teacher predictions softer.

The student model was trained for 22 epochs with a learning

rate equal to 4 × 10−4 in the first epoch. The same learning

rate scheduler and parameters were utilized during student

model training as for the teacher model. We observed accuracy

degradation while using SpecAugment during student model

training; therefore, we skipped this type of augmentation.

Both models were trained on generic ASR datasets. We used

LibriSpeech [30] (all training splits, 960 h), 1779 h of English

Mozilla Common Voice [31] (version 7.0, excluding sentences

selected for testing). Additionally, we used 4 h of audio data

not containing speech (silence or quiet noise). The sampling

rate of all audio data was 16 kHz. During training, we used

greedy decoding, while in the inference phase, we applied the

beam search algorithm with a beam size equal to four.

To further minimize student model size, we applied post-

training 8-bit quantization. This step reduced the model size

MIKOŁAJ PUDO ET AL.: OPEN VOCABULARY KEYWORD SPOTTING WITH SMALL-FOOTPRINT ASR-BASED ARCHITECTURE 659



Audio
processing

LM rescoring

Beam
search

Convert IDs
to subwords

Keyword
classifier

keyword

audio data

vocabularyAM

LM builder

BPE

boost weight

Initialization phase

hypo
thesis

best
path

Inference phase

subwords

scores

LM

scores

0/1

output

Fig. 2. Overview of the solution with static LM.

from 13MB to 3.2MB. This model achieved the following

word error rates (WER): 16.0 on LibriSpeech test-clean and

30.9 on LibriSpeech test-other.

B. Language model architecture and initialization

LM can be used to modify scores generated by AM. This

process is known as re-scoring. We decided to use a very

simple 1-gram LM, where the model is a vector of the same

length as the AM output layer size. Such a type of LM

introduces only a minor additional memory footprint and a

small increase in latency. With this kind of LM, re-scoring

consists of element-wise multiplication of the scores returned

by the AM and the LM vector. It is the initialization of weights

that is the key to a LM of this type. This step should be

performed only once for each novel keyword; hence it does

not influence latency during the inference phase.

We decided to use a very simple initialization method

which we called Static LM. In this method, LM weights are

initialized only with two values: one and boost weight which

is treated as a model hyper-parameter. A general overview of

the Static LM method is shown in Fig. 2. The BPE algorithm

is applied to the keyword with the same vocabulary as used to

convert the AM scores to obtain the hypothesis. Subwords

included in the keyword are assigned a boost weight, and

all the remaining subwords are assigned 1. Note that setting

boost weight to 1 will not change AM scores and setting boost

weight to values smaller than 1 will decrease the probability

of recognizing the keyword.

C. Keyword classifier

Generating an ASR-based hypothesis is only the first step

in the KWS solution. Based on this hypothesis, it is necessary

to decide whether the recording contains the required keyword

or not. The pseudocode of the procedure we employed for this

purpose is presented in Algorithm 1. Note that the recording

which is processed by the AM might contain more speech

data than just the keyword. To remedy this issue, we calculate

the keyword length as the number of words and compare

it with all the subsequences of the hypothesis of the same

word length. We calculate the character level normalized

Levenshtein distance between each such subsequence and the

keyword. If the distance is smaller than a predefined threshold,

the true value is returned by the system (keyword detected) and

the false value is returned otherwise (keyword not detected).

Algorithm 1 Keyword classifier algorithm

Input: keyword – custom keyword

Input: hyp – hypothesis returned by AM

Input: t – recognition threshold

1: l← len(keyword) {number of words in keyword}

2: for s ∈ {sub : sub is substring of hyp ∧ len(sub) = l}
do

3: if dist(keyword, s) ≤ t then

4: return true

5: end if

6: end for

7: return false

D. Multi-keyword classifier

In the generic text-based KWS task, the keyword is provided

by the text. However, often additional audio data can be

leveraged to improve recognition rates. This can be done for

example by requesting the user to provide a spoken version

of the keyword. Since such an approach requires additional

action from the user, we decided to pursue an automatic

solution. An overview of this method is presented in Fig. 3.

We employ the TTS system to generate synthetic recordings

representing the spoken version of the keyword. The number

of those recordings depends on the TTS solution and can also

be set as a parameter of the system. Each of those recordings is

processed by the AM, followed by the beam search algorithm

to generate a hypothesis. The original keyword is appended

to the hypothesis list and duplicates are removed. This list

is treated as containing additional variants of the original

keyword and is later used during inference by the keyword

classifier.

Algorithm 2 presents the multi-keyword classifier pseu-

docode. It is the extended version of the keyword classifier

described in section III-C. Once more substrings of the hy-

pothesis are selected for comparison, but this time they are

compared with each keyword from the list prepared during the

initialization phase. As previously, normalized character level

Levenshtein distance and a predefined threshold are used to

make the final decision.

The main idea behind the multi-keyword classifier is to

improve the recognition rate on keywords that are very distinct

from the phrases presented to the AM during training (eg.

named entities or other non-standard phrases). In such cases,

the AM most likely would return an incorrect hypothesis.

However, provided those errors are similar across different

samples of the same keyword, adding them to the classifier

should increase the true positive rate (TPR). Hence this idea

can be described as adding additional pronunciation variants

660 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Audio
processing

Beam
search

Convert IDs
to subwords

Keyword
classifier

keyword

audio data

vocabularyAM

Multi-keyword
builder

Audio
processing

Beam
search

TTS

Initialization phase

hypo
thesis

best
path

Inference phase

audioscores

paths

scores

keywords list

0/1

output

Fig. 3. Overview of the multi-keyword solution.

Algorithm 2 Multi-keyword classifier algorithm

Input: keywords – list of custom keywords

Input: hyp – hypothesis returned by AM

Input: t – recognition threshold

1: for keyword ∈ keywords do

2: l← len(keyword) {number of words in keyword}

3: for s ∈ {sub : sub is substring of hyp∧ len(sub) = l}
do

4: if dist(keyword, s) ≤ t then

5: return true

6: end if

7: end for

8: end for

9: return false

for the user-entered keywords. Obviously, this procedure might

also have negative results. Phrases similar to the keyword, but

different from it might be recognized with the same, wrong

hypothesis, which would result in an increase in the false

positive rate (FPR).

Note that the keywords list used by the multi-keyword

classifier can be prepared during the initialization phase;

therefore, this step does not influence inference phase latency.

The impacts of the multi-keyword approach on memory and

latency are linear with respect to the number of TTS recordings

used. However, since the multi-keyword solution requires at

most one additional string for each TTS recording, the memory

footprint is negligible. The same reasoning can be applied to

the impact on latency since Levenshtein distance calculation

is much faster than ASR decoding.

IV. EXPERIMENTS RESULTS

A. Evaluation procedure

Our solution was tested with MOCKS 1.0 testset [32] and

GSC v2 testset.

Since the AM was trained with English data, we used

en_LS_clean, en_LS_other, and en_MCV subsets of MOCKS.

Each test case is composed of two audio files and a keyword.

One of those files is treated as initialization (enrollment) phase

data and the other is treated as inference phase data. However,

since our goal is to limit the user’s interaction with the device,

we skip the initialization phase data in the case of static LM.

Furthermore, in the case of a multi-keyword classifier, we

replace the initialization phase recording with synthetic data.

We will refer to the inference phase data as test audio.

Each of the MOCKS subsets used for evaluation is split into

three distinct parts:

• positive test cases – where the test audio contains a given

keyword; we will call this part pos,

• similar test cases – where the test audio contains a

different phrase than the given keyword, but both are

close phonetically; we will call this part sim,

• different test cases – where the test audio contains a

different phrase than the given keyword and the phonetic

distance between both is large; we will call this part dif.

To present the impact of different hyperparameters on the

above-described parts of MOCKS (true positive on pos and

false positive on sim and dif ), we used recognition accuracy

as the main metric.

GSC is not suited for the open-vocabulary version of

KWS, since it contains a very limited number of keywords.

Nonetheless, we present the evaluation results of our solution

on this testset for the sake of comparison with previous

works. The most popular metric used with GSC is simply

accuracy [33]. The negative test cases should be recognized

as either _unknown_ or _silence_ special classes. The

former contains words not included in the positive classes and

the latter contains silence and non-speech events. Evaluation

on GSC is a 12-class classification problem, while our solution

is designed for the generic case of open-vocabulary classifi-

cation. To remedy this issue evaluation for the negative test

cases (labeled _unknown_ or _silence_) is performed in

the following way:

• In the initialization phase for each positive keyword we

prepare an LM and extended keywords list (if the multi-

keyword classifier is enabled).

• After audio processing is done, for each positive keyword

we perform re-scoring, apply beam search, convert the

result to the hypothesis, and finally compute the character

level Levenshtein distance between the hypothesis and the

given keyword.

• Finally, we find the minimal distance from the previous

step. If this distance is less than or equal to the threshold,

this sample is counted as a false positive and a true

negative otherwise.

We used an internally-developed end-to-end TTS system to

generate synthetic recordings for the multi-keyword classifier.

The system was composed of a neural AM and a vocoder.

The AM mapped sequences of phonemic labels to acoustic

features, while the vocoder mapped those features to audio

MIKOŁAJ PUDO ET AL.: OPEN VOCABULARY KEYWORD SPOTTING WITH SMALL-FOOTPRINT ASR-BASED ARCHITECTURE 661



samples. The set of phonemic labels contained language-

specific (English) symbols of phonemes, word delimiters, and

end-of-sentence marks. However, during synthesis, keywords

were stripped of those marks. Acoustic feature vectors were

derived from F0 (interpolated in unvoiced regions), mel-

spectra, and band-aperiodicity as in the case of the WORLD

vocoder [34]. The vocoder architecture was based on [35]

and AM was similar to the Tacotron 2 [36] architecture as

described in [37], with the use of the mutual information loss

(MILoss) function [38]. Audio data included in the LJ speech

dataset [39] and Hi-Fi Multi-Speaker English TTS Dataset [40]

were used to train the entire system. The vocoder was trained

separately for each voice. The AM was trained for 10 k epochs

on the entire training data, followed by 450 k epochs of each

voice-specific data.

For each keyword in MOCKS and GSC, we generated 10

synthetic recordings. We chose one male and one female voice

for the experiments with a multi-keyword classifier based on

two synthetic recordings. Two further types of experiments

with this type of classifier were performed:

1) using clean audio data;

2) using audio data mixed with background noise and

convolved with RIR.

We used the same types of noise and RIR as during AM

training.

For confidence interval estimation we used bootstrap resam-

pling of the testsets. Each testset was resampled 200 times

with replacement. The trainset and model remained fixed. In

order to provide a 95% confidence interval we calculated the

[2.5, 97.5] percentile boundaries.

B. Evaluation results

1) Impact of the boosting weight: For the purpose of testing

the impact of the static LM and different boost weights, we

performed evaluations using values from the set {2n : n ∈
{0, 1, . . . , 11}}. Note that setting the boost weight to one

means that none of the subword scores will be modified during

re-scoring and only the AM scores will be taken into account

in beam search. We treat this case as the baseline solution.

Fig. 4, 5 and 6 show acceptance rate in the function of the

threshold applied in the keyword classifier for en_LS_clean,

en_LS_other and en_MCV respectively.

Let us start the analysis of the results with boost = 1.

For threshold ∈ [0, 0.05], in all the testsets acceptance rates

in pos, sim and dif are constant. This is due to the fact

that all keywords in MOCKS are relatively short (phonetic

transcription length p ≤ 16). As long as the threshold is

greater than 0.05, acceptance rates in both pos and sim are

increasing. However, those values in the former subsets grow

slower than in the latter subsets. This means that increasing

the threshold improves the TPR, but increases the FPR even

faster. Values of acceptance rate in dif start to increase only

with threshold > 0.4 since this test set contains test cases that

are very different from the given keyword. For such test cases,

the AM returns very different hypotheses from the keyword,

even if they do not match the proper transcription. Similar

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

threshold

ac
ce

p
ta

n
ce

ra
te

in
%

pos sim dif

boost 32 boost 16 boost 8

boost 4 boost 2 boost 1

Fig. 4. Boosting results with static LM, without multi-keyword classifier,
for en_LS_clean testset.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

threshold

ac
ce

p
ta

n
ce

ra
te

in
%

pos sim dif

boost 32 boost 16 boost 8

boost 4 boost 2 boost 1

Fig. 5. Boosting results with static LM, without multi-keyword classifier,
for en_LS_other testset.

662 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

threshold

ac
ce

p
ta

n
ce

ra
te

in
%

pos sim dif

boost 32 boost 16 boost 8

boost 4 boost 2 boost 1

Fig. 6. Boosting results with static LM, without multi-keyword classifier,
for en_MCV testset.

observations also apply to cases with boost > 1, except for dif,

for which the higher the threshold, the sooner this function

starts to grow. This analysis suggests that it is safe to use

threshold = 0.

For clarity, Fig. 4, 5 and 6 show evaluation results only for

boost ≤ 32. In Fig. 7 we present evaluation results for all the

testsets and boost values up to 2048 using threshold = 0.

It should be noted that for boost ≤ 32, for all the testsets

acceptance rates in pos are growing faster than in sim. These

boost values are also accompanied by small acceptance rates

in dif in all the testsets. However, the larger the boost gets,

the faster acceptance rates in sim grow when compared to pos.

This is also accompanied by a rapid growth of those rates in

dif. This observation suggests that there is a limit for boost

after which static LM brings more harm than benefit.

We use an equal error rate (EER) to estimate the optimal

boost value. For each testset, FPR is calculated after summing

sim and dif subsets. Fig. 8 shows EER for all the testsets

and boost ≤ 128 (for higher boost values EER is growing

hence it is omitted). The width of the lines in Fig. 8 represent

confidence intervals for EER estimation. It should be noted

that the minimal EER values are located at boost equal to 32
or 64, depending on the testset. The rapidly growing value of

EER for large boost is caused by the fact that in those cases

FPR is always greater than the false negative rate (FNR). Since

there is no point for which FPR and FNR are equal, the largest

of those values is chosen as EER. Detailed values of EER for

MOCKS can be found in Table I.

Fig. 9 shows the evaluation results for different boost values

on the GSC testset using threshold = 0. Applying static

LM improves accuracy from 84.60% for the baseline model

21 23 25 27 29 211
0

20

40

60

80

100

boost

ac
ce

p
ta

n
ce

ra
te

in
%

en_LS_clean en_LS_other en_MCV
pos sim dif

Fig. 7. Boosting results with static LM, without multi-keyword classifier,
threshold 0, for MOCKS testset.

TABLE I
EER IN % FOR DIFFERENT VALUES OF BOOST ON MOCKS, WITHOUT A

MULTI-KEYWORD CLASSIFIER.

boost en_LS_clean en_LS_other en_MCV

1 30.05± 0.28 37.27± 0.26 27.30± 0.16

16 16.56± 0.24 26.04± 0.23 14.46± 0.19

32 15.18± 0.14 22.65± 0.13 14.22± 0.10

64 19.86± 0.11 20.34± 0.17 21.57± 0.12

to 95.97% at boost = 32. For higher boost values accuracy

drops rapidly. This is due to the fact that with those large

boost values the keyword subwords are favored during beam

search. Therefore the number of negative test cases recognized

as keywords grows. Detailed values of accuracy for GSC can

be found in Table II.

2) Impact of the multi-keyword classifier: The main moti-

vation for applying a multi-keyword classifier should be the

increase in TPR, which ideally would not be accompanied by

the increase of FPR. Our experiments show that this is not the

case for MOCKS. Fig. 10 shows the evaluation results using

en_LS_clean for multi-keyword classifiers initialized with 2

and 10 clean TTS recordings. Those results are compared to

a single-keyword classifier solution. Furthermore in Table III

we present exact evaluation results (acceptance rate) for each

English testset in MOCKS. For clarity we limit those results

to boost = 1 (no LM) and boost = 32, since this value gave

the highest results as shown in Section IV-B1.

We observed that the improvement in acceptance rate on pos

was larger than a similar increase on sim and dif only for small

boost values. This difference was very small for the multi-

keyword classifier initialized with two synthetic recordings.

However, with 10 such recordings, the improvement of the

acceptance rate on pos was almost 2 pp. larger than on sim.

MIKOŁAJ PUDO ET AL.: OPEN VOCABULARY KEYWORD SPOTTING WITH SMALL-FOOTPRINT ASR-BASED ARCHITECTURE 663



20 21 22 23 24 25 26 27

15

20

25

30

35

boost

eq
u

al
er

ro
r

ra
te

in
%

en_LS_clean en_LS_other en_MCV

Fig. 8. Boosting results with static LM, without multi-keyword classifier,
for MOCKS testset.

21 23 25 27 29 211

85

90

95

boost

ac
cu

ra
cy

in
%

static LM (no multi)

static LM + multi 2 x TTS

static LM + multi 2 x noisy TTS

Fig. 9. Boosting results with static LM, with and without multi-keyword
classifier, for GSC testset.

As soon as boost = 8 multi-keyword classifier introduced a

larger increase in acceptance rate on sim than on pos, which

was visible in all testsets. Mixing synthetic recordings with

background noise and RIR did not improve the situation. The

increase in acceptance rate on pos was smaller than on sim.

Evaluation results on GSC with a multi-classifier show

a similar increase in accuracy (0.78 pp –2.3 pp depending

on the boost). This improvement seems to be insignificant,

nonetheless, it should be noted that it is gained in the range

of 85%–96%. At this level of accuracy, even a minor increase

in this metric means a substantial reduction in the number of

TABLE II
ACCURACY IN % FOR DIFFERENT METHODS ON GSC.

method accuracy

boost 1 (baseline) 84.60
boost 1 + multi 2 x TTS 85.13
boost 1 + multi 2 x noisy TTS 86.09

boost 32 95.97
boost 32 + multi 2 x TTS 96.07
boost 32 + multi 2 x noisy TTS 96.75

20 21 22 23 24 25 26
0

20

40

60

80

100

boost

ac
ce

p
ta

n
ce

ra
te

in
%

no multi multi 2 x TTS multi 10 x TTS
pos sim dif

Fig. 10. Boosting results with static LM, with and without multi-keyword
classifier, for en_LS_clean testset.

errors.

V. DISCUSSION AND CONCLUSIONS

Two major observations can be drawn from our experiments:

1) The increase of boost in static LM improves TPR,

however, the larger the boost gets, the more dominant

the increase of FPR compared to the increase of TPR.

2) The multi-keyword classifier introduces a positive im-

pact on TPR only for very low boost values, while for

high values of boost, however, the increase of FPR is

much larger than the increase of TPR.

Using boost = 32 seems to be the right choice in gen-

eral cases since this value resulted in the minimal EER

in en_LS_clean and en_MCV and the largest accuracy in

GSC. However, it should be noted that EER was minimal in

en_LS_other with boost = 64, hence there is no universal

value for this parameter.

The positive impact of the multi-keyword classifier is es-

pecially visible with the increased number of TTS recordings

for each keyword. This number can be potentially unbounded,

but a rule of thumb suggests using only a small amount

(not exceeding 10) of such recordings. This suggestion is

based on the observation that the longer the list of additional

664 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE III
ACCEPTANCE RATE IN % FOR DIFFERENT METHODS ON MOCKS.

en_LS_clean en_LS_other en_MCV

method pos sim dif pos sim dif pos sim dif

boost 1 (baseline) 48.39 1.28 0.00 28.56 1.12 0.00 50.29 1.34 0.00
boost 1 + multi 2 x TTS 49.78 2.47 0.01 29.98 1.90 0.02 51.56 2.38 0.02
boost 1 + multi 10 x TTS 52.65 3.96 0.02 31.89 3.01 0.03 52.88 3.70 0.02
boost 1 + multi 2 x noisy TTS 50.88 3.81 0.05 30.76 2.94 0.07 52.94 3.83 0.04
boost 1 + multi 10 x noisy TTS 54.80 7.73 0.11 34.85 5.89 0.17 56.22 7.48 0.11

boost 32 84.15 22.01 4.79 73.05 21.10 4.96 86.40 24.16 5.40
boost 32 + multi 2 x TTS 84.66 23.17 4.95 73.46 21.92 5.12 86.82 25.44 5.58
boost 32 + multi 10 x TTS 85.55 24.90 5.22 74.45 23.61 5.46 87.46 27.10 5.82
boost 32 + multi 2 x noisy TTS 85.04 24.70 5.45 73.92 23.40 5.65 87.43 27.09 5.94
boost 32 + multi 10 x noisy TTS 86.54 29.22 6.24 76.14 27.46 6.65 88.52 31.18 6.59

keyword variants, the more likely the chance of false positive

acceptance of phrases similar to the given keyword.

Evaluation of MOCKS and GSC with a multi-keyword

classifier shows that there is a significant difference in both

testsets. With MOCKS at boost = 32 adding 10 keyword

variants increases FPR on sim more than TPR on pos. On

the other hand with GSC at boost = 32 and 10 keyword

variants we still observe improvement in accuracy. This can

be explained by the fact that GSC contains short phrases and

the negative samples are very different from the keywords in

terms of character level Levenshtein distance. On the contrary,

MOCKS contains longer phrases and a subset of negative

samples similar to the keywords, hence they are difficult

to distinguish. This means that adding additional keyword

variants also increases the probability of false acceptance in

this subset (sim). This analysis also leads to the conclusion

that a multi-keyword classifier is an effective solution as long

as one does not expect to deal with such challenging negative

cases.

It might seem that a solution with accuracy equal to 96.75%
on GSC is far behind the current leading architecture which

was evaluated on this testset and gained 98.37% [41]. Still,

it should be noted that our solution is designed for a far

more complex task. GSC contains a very limited amount of

keywords, all very short and distinct from each other. Finally,

there are no challenging negative test cases in GSC. On the

other hand, our solution is designed for the open-vocabulary

case, in which the model needs to deal with keywords that

are very similar to each other. Hence the evaluation results

on MOCKS are much more informative and the decrease in

accuracy on GSC evaluation is the cost paid for much broader

generalization.

VI. FUTURE WORK

In the future, we plan to work on methods that automatize

the selection of the optimal boost value. Furthermore, setting

specific boost values for different keywords might have posi-

tive results on evaluation results. Another intriguing research

direction is using a combination of clean and noisy TTS

recordings as ensembles in the multi-keyword classifier. This

way it might be possible to reduce FPR without impacting

TPR.

REFERENCES

[1] I. López-Espejo, Z.-H. Tan, J. H. L. Hansen, and J. Jensen, “Deep spoken
keyword spotting: An overview,” IEEE Access, vol. 10, pp. 4169–4199,
2022. doi: 10.1109/ACCESS.2021.3139508

[2] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018. [Online]. Available: https://arxiv.org/abs/1804.03209

[3] J. Rohlicek, W. Russell, S. Roukos, and H. Gish, “Continuous hidden
markov modeling for speaker-independent word spotting,” in Interna-

tional Conference on Acoustics, Speech, and Signal Processing,, 1989.
doi: 10.1109/ICASSP.1989.266505 pp. 627–630 vol.1.

[4] J. Wilpon, L. Miller, and P. Modi, “Improvements and applications
for key word recognition using hidden markov modeling techniques,”
in Proc. International Conference on Acoustics, Speech, and Signal

Processing (ICASSP 1991), 1991. doi: 10.1109/ICASSP.1991.150338
pp. 309–312 vol.1.

[5] I.-F. Chen and C.-H. Lee, “A hybrid HMM/DNN approach to key-
word spotting of short words,” in Proc. Interspeech 2013, 2013. doi:
10.21437/Interspeech.2013-397 pp. 1574–1578.

[6] S. Panchapagesan, M. Sun, A. Khare, S. Matsoukas, A. Mandal,
B. Hoffmeister, and S. Vitaladevuni, “Multi-Task Learning and Weighted
Cross-Entropy for DNN-Based Keyword Spotting,” in Proc. Interspeech

2016, 2016. doi: 10.21437/Interspeech.2016-1485 pp. 760–764.

[7] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: Labelling unsegmented sequence data
with recurrent neural ’networks,” in Proc. 23rd International Confer-

ence on Machine Learning (ICML 2006), vol. 2006, 01 2006. doi:
10.1145/1143844.1143891 pp. 369–376.

[8] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” Advances in neural

information processing systems, vol. 28, 2015.

[9] K. Hwang, M. Lee, and W. Sung, “Online keyword spotting with a
character-level recurrent neural network,” 2015.

[10] Y. Zhuang, X. Chang, Y. Qian, and K. Yu, “Unrestricted Vocabulary
Keyword Spotting Using LSTM-CTC,” in Proc. Interspeech 2016, 2016.
doi: 10.21437/Interspeech.2016-753 pp. 938–942.

[11] S. Sigtia, P. Clark, R. Haynes, H. Richards, and J. Bridle, “Multi-
task learning for voice trigger detection,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2020).
IEEE, may 2020. doi: 10.1109/icassp40776.2020.9053577

[12] T. Bluche and T. Gisselbrecht, “Predicting Detection Filters for Small
Footprint Open-Vocabulary Keyword Spotting,” in Proc. Interspeech

2020, 2020. doi: 10.21437/Interspeech.2020-1186 pp. 2552–2556.

[13] Y. He, R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin, and I. Mc-
Graw, “Streaming small-footprint keyword spotting using sequence-
to-sequence models,” in Proc. IEEE Automatic Speech Recog-

nition and Understanding Workshop (ASRU 2017), 2017. doi:
10.1109/ASRU.2017.8268974 pp. 474–481.

[14] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword Transformer: A
Self-Attention Model for Keyword Spotting,” in Proc. Interspeech 2021,
2021. doi: 10.21437/Interspeech.2021-1286 pp. 4249–4253.

[15] A. Awasthi, K. Kilgour, and H. Rom, “Teaching Keyword Spotters to
Spot New Keywords with Limited Examples,” in Proc. Interspeech 2021,
2021. doi: 10.21437/Interspeech.2021-1395 pp. 4254–4258.

MIKOŁAJ PUDO ET AL.: OPEN VOCABULARY KEYWORD SPOTTING WITH SMALL-FOOTPRINT ASR-BASED ARCHITECTURE 665



[16] M. Mazumder, C. Banbury, J. Meyer, P. Warden, and V. J. Reddi, “Few-
Shot Keyword Spotting in Any Language,” in Proc. Interspeech 2021,
2021. doi: 10.21437/Interspeech.2021-1966 pp. 4214–4218.

[17] L. Lugosch, S. Myer, and V. S. Tomar, “Donut: Ctc-based query-by-
example keyword spotting,” arXiv preprint arXiv:1811.10736, 2018.

[18] B. Kim, M. Lee, J. Lee, Y. Kim, and K. Hwang, “Query-by-example
on-device keyword spotting,” in Proc. IEEE Automatic Speech Recog-

nition and Understanding Workshop (ASRU 2019), 12 2019. doi:
10.1109/ASRU46091.2019.9004014 pp. 532–538.

[19] J. Huang, W. Gharbieh, H. S. Shim, and E. Kim, “Query-by-
example keyword spotting system using multi-head attention and
soft-triple loss,” in Proc. IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2021), 2021. doi:
10.1109/ICASSP39728.2021.9414156 pp. 6858–6862.

[20] J. Huang, W. Gharbieh, Q. Wan, H. S. Shim, and H. C.
Lee, “QbyE-MLPMixer: Query-by-Example Open-Vocabulary Keyword
Spotting using MLPMixer,” in Proc. Interspeech 2022, 2022. doi:
10.21437/Interspeech.2022-11080 pp. 5200–5204.

[21] S. Settle, K. Levin, H. Kamper, and K. Livescu, “Query-by-Example
Search with Discriminative Neural Acoustic Word Embeddings,” in
Proc. Interspeech 2017, 2017. doi: 10.21437/Interspeech.2017-1592 pp.
2874–2878.

[22] G. Chen, C. Parada, and T. N. Sainath, “Query-by-example keyword
spotting using long short-term memory networks,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2015), 2015. doi: 10.1109/ICASSP.2015.7178970 pp. 5236–
5240.

[23] C. Chiu and C. Raffel, “Monotonic chunkwise attention,” CoRR, vol.
abs/1712.05382, 2017. [Online]. Available: http://arxiv.org/abs/1712.
05382

[24] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, p.
1789–1819, jun 2021. doi: 10.1007/s11263-021-01453-z

[25] S. Kim, T. Hori, and S. Watanabe, “Joint ctc-attention based end-
to-end speech recognition using multi-task learning,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2017), 03 2017. doi: 10.1109/ICASSP.2017.7953075 pp. 4835–
4839.

[26] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” CoRR, vol. abs/1508.07909, 2015.
[Online]. Available: http://arxiv.org/abs/1508.07909

[27] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2017),
2017. doi: 10.1109/ICASSP.2017.7952261 pp. 776–780.

[28] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise
corpus,” arXiv preprint arXiv:1510.08484, 2015.

[29] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,

and Q. V. Le, “SpecAugment: A Simple Data Augmentation Method
for Automatic Speech Recognition,” in Proc. Interspeech 2019, 2019.
doi: 10.21437/Interspeech.2019-2680 pp. 2613–2617.

[30] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An asr corpus based on public domain audio books,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2015), 2015. doi: 10.1109/ICASSP.2015.7178964 pp. 5206–
5210.

[31] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer,
R. Morais, L. Saunders, F. M. Tyers, and G. Weber, “Common voice: A
massively-multilingual speech corpus,” in International Conference on

Language Resources and Evaluation, 2019.
[32] M. Pudo, M. Wosik, A. Cieślak, J. Krzywdziak, B. Łukasiak, and

A. Janicki, “MOCKS 1.0: Multilingual open custom keyword spotting
testset,” in Proc. Interspeech 2023, in press.

[33] “Keyword spotting on google speech commands,” https:
//paperswithcode.com/sota/keyword-spotting-on-google-speech-
commands, 2023, [Online; accessed 19-May-2023].

[34] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-based
high-quality speech synthesis system for real-time applications,” IEICE

Transactions on Information and Systems, vol. E99.D, pp. 1877–1884,
07 2016. doi: 10.1587/transinf.2015EDP7457

[35] J.-M. Valin and J. Skoglund, “A Real-Time Wideband Neural Vocoder
at 1.6kb/s Using LPCNet,” in Proc. Interspeech 2019, 2019. doi:
10.21437/Interspeech.2019-1255 pp. 3406–3410.

[36] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan, R. A. Saurous, Y. Agiomvrgian-
nakis, and Y. Wu, “Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions,” in Proc. IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP 2018), 2018. doi:
10.1109/ICASSP.2018.8461368 pp. 4779–4783.

[37] N. Ellinas, G. Vamvoukakis, K. Markopoulos, A. Chalamandaris, G. Ma-
niati, P. Kakoulidis, S. Raptis, J. S. Sung, H. Park, and P. Tsiak-
oulis, “High Quality Streaming Speech Synthesis with Low, Sentence-
Length-Independent Latency,” in Proc. Interspeech 2020, 2020. doi:
10.21437/Interspeech.2020-2464 pp. 2022–2026.

[38] P. Liu, X. Wu, S. Kang, G. Li, D. Su, and D. Yu, “Maximizing mutual
information for tacotron,” ArXiv, vol. abs/1909.01145, 2019.

[39] K. Ito and L. Johnson, “The LJ speech dataset,” https://keithito.com/LJ-
Speech-Dataset/, 2017.

[40] E. Bakhturina, V. Lavrukhin, B. Ginsburg, and Y. Zhang, “Hi-Fi Multi-
Speaker English TTS Dataset,” in Proc. Interspeech 2021, 2021. doi:
10.21437/Interspeech.2021-1599 pp. 2776–2780.

[41] R. Vygon and N. Mikhaylovskiy, “Learning efficient representations for
keyword spotting with triplet loss,” in Speech and Computer, A. Karpov
and R. Potapova, Eds. Cham: Springer International Publishing, 2021.
ISBN 978-3-030-87802-3 pp. 773–785.

666 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


