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Abstract—This paper introduces a sophisticated multi-
dimensional sensitivity analysis, incorporating cutting-edge
stochastic methods for air pollution modeling. The study focuses
on a large-scale long-distance transportation model of air pollu-
tants, specifically the Unified Danish Eulerian Model (UNI-DEM).
This mathematical model plays a pivotal role in understanding
the detrimental impacts of heightened levels of air pollution. With
this research, our intent is to employ it to tackle crucial questions
related to environmental protection.

We suggest advanced Monte Carlo and quasi-Monte Carlo
methods, leveraging specific lattice and digital sequences to
enhance the computational effectiveness of multi-dimensional
numerical integration. Moreover, we further refine the existing
stochastic methodologies for digital ecosystem modeling. The
main aspect of our investigation is to analyze the sensitivity of
the UNI-DEM model output to changes in the input emissions of
human-induced pollutants and the rates of a number of chemical
reactions.

The developed algorithms are utilized to calculate global
Sobol sensitivity measures for various input parameters. We
also assess their influence on key air pollutant concentrations in
different European cities, considering the diverse geographical
locations. The overarching goal of this research is to broaden
our understanding of the elements influencing air pollution and
inform potent strategies to alleviate its negative impacts on the
environment.

I. INTRODUCTION

THIS paper focuses on conducting sensitivity analysis

(SA) studies in the field of air pollution modeling

[23], [26], [27], [28], [29], specifically using the Unified

Danish Eulerian Model (UNI-DEM) as a case study. UNI-

DEM is chosen for its accurate representation of relevant

chemical processes in the atmosphere. The extensive output
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data generated by UNI-DEM has been utilized in various real-

world applications, necessitating the accurate assessment of

data reliability for specific uses. The research objective is to

evaluate the dependability of the substantial volume of output

data produced by the model. The study primarily examines the

variations in hazardous air pollutant concentrations in relation

to human-made emission levels and chemical reaction rates.

When it comes to making decisions, doubts arise regarding

the reliability of large-scale mathematical models. To enhance

their reliability, the sensitivity of model outputs to variations

in model inputs caused by natural variability is studied and

analyzed. Sensitivity analysis, as defined in this paper, is

a procedure used to measure how sensitive mathematical

model outputs are to variations in input data. The input

data for sensitivity analysis in this study is obtained through

simulations of a large-scale mathematical model known as

the Unified Danish Eulerian Model (UNI-DEM). The model,

developed at the Danish National Environmental Research

Institute, covers a vast geographical area of 4800 × 4800
km, encompassing Europe and the Mediterranean fully and

parts of Asia and Africa. It accurately represents the primary

chemical, photochemical, and physical processes between the

species considered and the emissions under rapidly changing

meteorological conditions. The choice of this model for the

case study is motivated by its precise treatment of chemical

processes compared to other atmospheric chemistry models.

UNI-DEM is mathematically represented by the following

system of partial differential equations (PDE) [22]:

∂cs
∂t

= −
∂(ucs)

∂x
−

∂(vcs)

∂y
−

∂(wcs)

∂z
+

+
∂

∂x

(

Kx

∂cs
∂x

)

+
∂

∂y

(

Ky

∂cs
∂y

)

+
∂

∂z

(

Kz

∂cs
∂z

)

+

+Es+Qs(c1, c2, . . . , cq)−(k1s+k2s)cs, s = 1, 2, . . . , q,
(1)

where cs are the chemical species’ concentrations; u, v, w
are the wind components; Kx, Ky, Kz – the diffusion

coeff.; Es – the emissions; k1s, k2s – dry / wet deposition
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coeff.; Qs(c1, c2, . . . cq) – non-linear functions used to depict

the chemical reactions that occur between the species being

studied.

The Carbon Bond Mechanism (CBM-IV) chemical scheme

is utilized to account for both non-linearity and stiff-

ness. [22], [25].

II. GLOBAL SENSITIVITY ANALYSIS – SOBOL APPROACH

Variance-based methods are frequently employed in quanti-

tative global sensitivity analysis, with the aim of assessing the

contribution of input variance (either individual or grouped) to

the overall variance of model output. Among these methods,

the Sobol approach is widely utilized [17], [5], [19]. This

approach is based on the assumption that the mathematical

model can be represented by a specific model function:

u = f(x), (2)

where x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d is the vector

of input parameters with a joint probability density function

(p.d.f.) p(x) = p(x1, . . . , xd).
The concept behind the Sobol approach involves decompos-

ing the integrable model function f into terms of increasing

dimensionality [18], [20]:

f(x) = f0 +
d

∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), (3)

where f0 is some constant.

According to Sobol [19], the ANOVA (Analysis of Vari-

ance) decomposition decompose the output variance of a math-

ematical model into components attributed to each input. The

goal is to identify which inputs contribute most significantly to

the output variance. Each input variable is given a sensitivity

index, or Sobol index, indicating its relative contribution to

the output variance.

In simple terms, the process involves running the model

multiple times with different combinations of inputs and

observing the changes in the output. The larger the change

in output for a given change in input, the more ‘sensitive’ the

model is to that input.

The expression (3), where each term is selected to fulfill the

specified condition, is referred to as the ANOVA representation

of the model function f(x):
∫

1

0

fl1...lν (xl1 , xl2 , . . . , xlν )dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d.

This condition ensures that the functions on the right-hand

side of (3) have a unique definition and f0 =

∫

Ud

f(x)dx.

The quantities

D =

∫

Ud

f2(x)dx−f2

0
, Dl1 ... lν =

∫

f2

l1 ... lν
dxl1 . . . dxlν

(4)

are referred to as total and partial variances, respectively. Simi-

lar is true for the total variance which is represented by the cor-

responding partial variances: D =
∑d

ν=1

∑

l1<...<lν
Dl1...lν .

The definition of Sobol global sensitivity indices is the

following[19], [17]:

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d}, (5)

and the total sensitivity index (TSI) of an input parameter

xi, i∈{1, . . . , d} defined by [19], [17]:

Stot
i = Si+

∑

l1 ̸=i

Sil1+
∑

l1,l2 ̸=i,l1<l2

Sil1l2+. . .+Sil1...ld−1
, (6)

where Si is named the main effect (first-order sensitivity index)

of xi and Sil1...lj−1
is the jth order sensitivity index. The

higher-order terms characterize the interaction effects between

the unknown input parameters xi1 , . . . , xiν , ν ∈ {2, . . . , d} on

the output variance. Therefore comprehensive mathematical

analysis of the global sensitivity analysis problem involves the

calculation of total sensitivity indices (6) of the corresponding

order. This calculation relies on the formulas (4)-(5), which

require the computation of multidimensional integrals.

The authors of [9] discuss which formulation of

f2

0
=

(
∫

Ud

f(x)dx

)2

(7)

is better when calculating the total variance and the Sobol

global sensitivity measures. The first approximation formula

is

f̂2

0
=

1

n

n
∑

i=1

f(xi,1, . . . , xi,d) f(x
′
i,1, . . . , x

′
i,d) (8)

and the second one is

f̂2

0
=

{

1

n

n
∑

i=1

f(xi,1, . . . , xi,d)

}2

, (9)

where x and x′ are two independent sample vectors. If one

estimates sensitivity indices of a fixed order, the expression

(8) is better (as it is recommended in [9]), and this is why we

apply it here as well.

III. A NEW OPTIMIZATION METHOD FOR SA

Let us take into account a multidimensional integration task

in dimension s:

I(f) := I =

∫

Us

f(x)dx. (10)

We introduce the quadrature formula

IN (f) =
1

N

N
∑

i=1

f(xi), (11)

where PN = x1, x2, . . . , xN , xi ∈ [0, 1)s are the nodes for

the integration of the formula. The selection of these nodes is

critical because it establishes the discrepancy of the sequence

and the precision of the quadrature. For equation (11), the

integration nodes that we will employ are [13], [14]:

xk =

({

kz1
N

}

,

{

kz2
N

}

, . . . ,

{

kzs
N

})

, k = 1, 2, . . . , N,

(12)
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where N represents the quantity of nodes, z is an s-

dimensional generating vector of the lattice set and a = a−[a]
is the fractional part of a. Now, the equation (11) with nodes

(12) and generators z is referred to as rank-1 lattice rules

[2]. We will adopt a particular category of rank-1 lattice: the

symmetrized lattice (SL).

We put forth a unique SL, defined in the following manner.

In the unidimensional scenario, we set up a function, appro-

priate for periodic integrand functions, to be used with a non-

periodic function F by applying the SL to the function

L(x) =
(

F (x) + F (1− x)
)

/2,

in a single dimension. For the two-dimensional situation, the
function L is established as

L(x1, x2) =
(

F (x1, x2) + F (x1, 1 − x2) + F (1 − x1, x2) + F (1 − x1, 1 − x2)
)

/4.

The definition of the function L(x1, . . . , xs) is extrapolated

for s dimensions:

L(x1, . . . , xs) =

2−s
∑

ε∈0,1s

F
(

ε1x1+(1−ε1)(1−x1), . . . , εsxs+(1−εs)(1−xs)
)

.

(13)

The terms over which the summation takes place can be envi-

sioned as vertices of a parallelotope, with diagonals converging

at the point (1/2, 1/2, . . . , 1/2) ∈ [0, 1]s. Formula (13) is

identical to

L(x1, . . . , xs) =
∑

ε∈0,1s

F
(

x
ε1
1
(1− x1)

1−ε1 , x
ε2
2
(1− x2)

1−ε2 , . . . , x
εs
s (1− xs)

1−εs
)

.

The lattice we will use in our study are defined as follows.

The first one is a rank one lattice rule with prime number of

points and with product weights, which symmetrized version

would be denoted by SL-1pt. The next lattice is a rank

one lattice rule with prime number of points and with order

dependent weights, which symmetrized version would be

designated with SL-1od. These two lattice rules have variant

with number of points, which is a prime power instead of

prime itself, and we would denote them with SL-1expt and

SL-1exod, respectively. The last lattice that would be used

is a polynomial rank one lattice sequence in base two and with

product weights, designated by SL-2poly.

IV. SENSITIVITY STUDIES WITH RESPECT TO EMISSION

LEVELS

In this section, we report the findings of the Sensitiv-

ity Analysis performed on the output of UNI-DEM, with

particular attention paid to the monthly average ammonia

concentrations in Milan, Italy. This analysis scrutinizes how

alterations in anthropogenic emission data, employed as input,

impact these concentrations.

The input is composed of 4 distinct constituents

E = (EA,EN,ES,EC):

E
A − ammonia (NH3);

E
S − sulphur dioxide (SO2);

E
N − nitrogen oxides (NO + NO2);

E
C − anthropogenic hydrocarbons.

The domain under examination is the 4-dimensional hyper-

cube [0.5, 1]4.

The primary determinant of ammonia output concentrations

is the emission of ammonia itself, accounting for approx-

imately 89% in Milan. The next most influential factor is

the emission of sulphur dioxide, contributing around 11% to

ammonia output. This depiction of first- and second-order sen-

sitivity indices for ammonia in Milan was established through

the use of correlated sampling as part of Sobol’s variance-

based approach for multidimensional sensitivity analysis. This

was done to compute all potential sensitivity measures and

investigate the impact of the selected four groups of air

pollutant emissions on the concentration of three key air

pollutants.

This signifies the degree to which ammonia emissions

directly affect ammonia concentrations, emphasizing the need

for effective monitoring and management of these emissions.

The role of sulphur dioxide emissions, albeit smaller, also

needs to be taken into account due to their noticeable in-

fluence. Using multidimensional sensitivity analysis aids in

comprehensively understanding the role of various emissions

in air pollution, thereby enabling more targeted strategies to

mitigate these issues. The results provide a foundation for

future work aimed at improving air quality, informing policy

decisions, and guiding future research into pollution control

methods.

The relative error estimation for quantities f0, the overall

variance D, the first-order (Si) and the total (Stot

i ) sensitivity

indices is exhibited in Tables I, II, III, correspondingly. f0 is

represented by a 4-dimensional integral, whereas the remain-

ing quantities are denoted by 8-dimensional integrals, drawing

upon the concepts of the correlated sampling technique to

compute sensitivity measures in a robust manner (refer to [9],

[20]). Four distinct stochastic methods utilized for numerical

integration are displayed in separate columns in the tables.

4 6 8 10 12

n (powers of 2)

10
-8

10
-6

10
-4

10
-2

re
la

ti
v
e
 e

rr
o
r

Relative error of f
0

0.048

Crude

Sobol

Halton

SL-1pt

SL-1od

SL-1expt

SL-1exod

SL-2poly

4 6 8 10 12

n (powers of 2)

10
-8

10
-6

10
-4

10
-2

10
0

re
la

ti
v
e
 e

rr
o
r

Relative error of D 0.0002

Crude

Sobol

Halton

SL-1pt

SL-1od

SL-1expt

SL-1exod

SL-2poly

Fig. 1. Relative errors for the calculation of f0 ≈ 0.048 (left) and D ≈
0.0002 (right)

When examining the model function f0 with a sample size

of n = 212, the most effective algorithm appears to be SL-

1EXPT. This can be observed from the results given in Table I,

which highlight outcomes for the maximum sample count.

When considering the total variance D for the same number

of samples, SL-1OD comes out on top, as can be seen

in Table II, which presents findings for the highest sample

amount.
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Sensitivity studies with respect to emission levels
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Fig. 2. Relative errors for the calculation of the small in value SIs

TABLE I
RELATIVE ERROR FOR THE EVALUATION OF f0 ≈ 0.048.

n Crude Sobol Halton SL-1PT SL-1OD SL-1EXPT SL-1EXOD SL-1POLY

2
4 7.9e-02 2.0e-02 1.0e-03 6.4e-04 1.1e-04 9.5e-05 9.5e-05 5.9e-04

2
6 1.7e-02 5.0e-03 2.5e-03 1.4e-04 7.1e-06 5.9e-06 5.9e-06 3.7e-05

2
8 1.7e-02 1.2e-03 6.7e-04 8.9e-06 4.5e-07 3.7e-07 3.7e-07 2.3e-06

2
10 1.2e-03 3.1e-04 2.5e-04 5.6e-07 2.8e-08 2.3e-08 2.3e-08 1.4e-07

2
12 3.1e-03 7.8e-05 1.4e-04 3.5e-08 1.7e-09 1.5e-09 1.5e-09 9.0e-09

Regarding Sensitivity Indices (SIs), the optimal method is

SL-1EXOD, as evident in Table III.

The efficiency and results of these algorithms can be further

examined in Figures 1 and 2. The latter focuses particularly

on SIs with smaller values, providing a more detailed look

into their performance.

From the data displayed in Table III, it is evident that

the SL-1EXOD algorithm enhances results in a majority of

scenarios, particularly in determining the low-value sensitivity

indices S2, S4, Stot

2
, and Stot

4
. These specific instances hold

substantial significance as they play a crucial role in ascertain-

ing the dependability of the model outcomes.

V. SENSITIVITY STUDIES WITH RESPECT TO CHEMICAL

REACTIONS RATES

This section analyzes the sensitivity of the concentration

levels of ozone in the atmosphere above Genova, Italy, with

respect to modifications in the reaction rates of specific

chemical reactions entailed in the condensed CBM-IV model

TABLE II
RELATIVE ERROR FOR THE EVALUATION OF THE TOTAL VARIANCE

D ≈ 0.0002.

n Crude Sobol Halton SL-1PT SL-1OD SL-1EXPT SL-1EXOD SL-1POLY

2
4 1.8e+00 6.1e-02 1.3e+00 4.4e-02 7.2e-03 7.9e-03 6.9e-03 2.2e-01

2
6 5.1e-01 1.2e-02 2.2e-01 1.7e-03 4.7e-04 4.7e-04 4.9e-04 1.4e-02

2
8 2.1e-01 2.5e-03 9.3e-02 1.2e-04 4.8e-07 3.1e-05 3.1e-05 8.5e-04

2
10 4.4e-02 4.8e-05 1.5e-02 5.5e-06 1.2e-08 1.7e-06 1.5e-06 5.3e-05

2
12 1.3e-01 3.4e-05 8.1e-03 4.3e-07 1.1e-08 1.2e-07 1.1e-07 3.4e-06

TABLE III
RELATIVE ERROR FOR ESTIMATION OF SENSITIVITY INDICES OF INPUT

PARAMETERS USING DIFFERENT QUASI-MONTE CARLO APPROACHES

(n = 2
12).

SI EQ Crude Sobol Halton SL-1PT SL-1OD SL-1EXPT SL-1EXOD SL-1POLY

S1 9e-01 1.1e-03 5.7e-07 8.8e-04 4.8e-07 5.1e-08 1.7e-08 8.3e-09 3.3e-06
S2 2e-04 2.3e+00 1.5e-02 1.3e-01 1.4e-05 1.2e-04 3.2e-05 1.1e-05 1.2e-05
S3 1e-01 1.2e-02 1.2e-04 8.7e-03 6.1e-07 6.2e-07 1.4e-08 1.1e-08 2.7e-05
S4 4e-05 5.5e+00 2.5e-02 1.9e+00 8.7e-03 1.8e-04 2.3e-04 1.9e-06 9.7e-06

Stot

1
9e-01 1.9e-03 1.6e-05 1.2e-03 4.7e-07 4.2e-08 1.9e-08 9.1e-10 3.3e-06

Stot

2
2e-04 3.1e+00 2.0e-02 1.9e-01 6.3e-06 9.9e-05 2.7e-05 7.8e-06 1.2e-05

Stot

3
1e-01 1.6e-02 6.0e-05 5.8e-03 7.4e-07 7.0e-07 2.8e-07 8.4e-08 2.7e-05

Stot

4
5e-05 1.1e+01 4.3e-02 1.7e+00 7.2e-03 1.4e-04 1.9e-04 8.3e-06 1.1e-05

([22]). Notably, reactions # 1, 3, 7, 22 (time-dependent) and #

27, 28 (time independent) are the primary focus. The simplified

formulas for the chemical reactions are as follows:

[#1] NO2 + hν =⇒ NO +O;
[#3] O3 +NO =⇒ NO2;
[#7] NO2 +O3 =⇒ NO3;
[#22] HO2 +NO =⇒ OH +NO2;
[#27] HO2 +HO2 =⇒ H2O2;
[#28] OH + CO =⇒ HO2.

The domain under examination is the 6-dimensional hypercube

[0.6, 1.4]6).

The findings from our analysis, with a focus on the reactions

as described by the CBM-IV scheme, led to several important

insights. Reaction rates #1, 3, and 22 have a profound impact

on O3 concentrations, making them extremely influential in

this context. On the other hand, reaction rates #7 and 27, while

not as dominant, still hold a noticeable significance. Contrarily,

the influence of reaction rate #28 can be deemed negligible.

In other words, the study has found that there are clear

relationships between specific reaction rates and O3 concen-

trations. While the reactions #1, 3, and 22 play a leading

role, reactions #7 and 27 still contribute to a certain extent.

This information suggests that these specific reactions could

be potential targets for strategies to reduce O3 concentrations.

However, the role of reaction #28 appears to be minimal, sug-

gesting that efforts aimed at this reaction are likely to be less

effective. These observations provide a better understanding of

the dynamics involved in O3 concentrations, paving the way

for more effective and targeted air pollution control strategies.

The estimated relative error for the values f0, total variance

D, and a subset of the sensitivity indices are detailed in Tables

IV, V, and VI, correspondingly.

The parameter f0 is depicted by a 6-dimensional integral,

while the remaining quantities being examined are shown by

12-dimensional integrals, in line with the correlated sampling

principle.
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Relative error of D 0.0025
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SL-1expt

SL-1exod
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Fig. 3. Relative errors for the calculation of f0 ≈ 0.27 (left) and D ≈ 0.0025
(right)

In the case of the model function f0, the optimal algorithm

turns out to be the SL-1EXPT, with SL-1EXOD coming in as

the second-best choice, as evidenced by the results displayed

in Table IV. When dealing with a sample size of n = 212 for

the total variance D, the top-performing algorithm is SL-1OD,

as demonstrated by the results shown in Table V for the largest
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Sensitivity studies with respect to chemical reactions rates
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Fig. 4. Relative errors for the calculation of the small in value SIs

TABLE IV
RELATIVE ERROR FOR THE EVALUATION OF f0 ≈ 0.27.

n Crude Sobol Halton SL-1PT SL-1OD SL-1EXPT SL-1EXOD SL-1POLY

2
4 4.4e-02 5.5e-03 8.3e-04 1.4e-02 1.0e-03 1.1e-04 1.1e-04 1.3e-02

2
6 1.1e-02 1.6e-03 2.0e-03 3.5e-03 6.3e-05 7.0e-06 7.0e-06 8.3e-04

2
8 1.2e-02 2.9e-04 6.3e-04 2.2e-04 3.9e-06 4.4e-07 4.4e-07 5.2e-05

2
10 6.8e-03 7.5e-05 3.7e-04 1.4e-05 2.5e-07 2.7e-08 2.7e-08 3.2e-06

2
12 7.2e-03 1.9e-05 8.6e-05 8.5e-07 1.5e-08 1.7e-09 1.7e-09 2.0e-07

number of samples. In terms of the Sensitivity Indices (SIs),

SL-1EXPT proves to be the most efficient method, closely

followed by SL-1POLY and SL-1OD. This is clearly shown

in Table VI. The algorithms’ performance can be visually

inspected through Fig. 3 and 4, with the latter emphasizing

the SIs of smaller values.

As evidenced by Table VI, the SL-1EXPT algorithm im-

proves outcomes in most instances, most notably for the

lower-valued sensitivity indices S5, Stot

5
, S15, and S45. These

indices are particularly significant as they greatly impact the

trustworthiness of the model’s outcomes.

VI. CONCLUSION

We have examined the computational effectiveness of vari-

ous stochastic methodologies for multi-dimensional numerical

integration in relation to relative error and computational

resources. The subject of this study is the sensitivity analysis

of the output from the UNI-DEM model to changes in input

emissions of anthropogenic contaminants and alterations in a

selection of chemical reaction rates.

We scrutinize the impact of emission levels on key air

pollutants, specifically ammonia, ozone, ammonium sulphate,

and ammonium nitrate.

The computational experiments reveal that the optimization

methods developed are amongst the most effective stochastic

strategies currently available for determining sensitivity in-

dices, particularly for the most challenging task – assessing

the least value sensitivity indices, which are crucial for the

dependability of the model’s outcomes.

TABLE V
RELATIVE ERROR FOR THE EVALUATION OF THE TOTAL VARIANCE

D ≈ 0.0025.

n Crude Sobol Halton SL-1PT SL-1OD SL-1EXPT SL-1EXOD SL-1POLY

2
4 1.6e+00 3.7e-01 9.3e-01 2.0e-01 1.4e-02 1.8e-02 8.3e-03 4.8e-01

2
6 1.0e+00 1.0e-02 3.3e-01 3.2e-01 4.9e-05 3.3e-04 3.5e-03 3.0e-02

2
8 3.3e-01 6.7e-03 2.7e-02 2.0e-02 1.8e-04 1.6e-04 3.8e-04 1.9e-03

2
10 3.0e-01 1.2e-03 5.0e-02 1.0e-03 3.8e-08 2.4e-05 1.3e-04 1.4e-04

2
12 9.2e-02 1.8e-04 2.8e-03 6.4e-05 2.0e-07 3.0e-06 8.2e-06 7.0e-06

TABLE VI
RELATIVE ERROR FOR ESTIMATION OF SENSITIVITY INDICES OF INPUT

PARAMETERS USING DIFFERENT QUASI-MONTE CARLO APPROACHES

(n = 2
12).

SI EQ Crude Sobol Halton SL-1PT SL-1OD SL-1EXPT R1L-1EXOD SL-1POLY

S1 4e-01 4.9e-04 1.8e-04 2.4e-02 6.0e-05 7.6e-07 2.2e-06 9.3e-06 9.9e-06
S2 3e-01 2.9e-01 4.5e-04 3.0e-02 6.2e-05 4.9e-06 2.6e-06 8.1e-06 5.4e-06
S3 5e-02 2.3e-01 4.3e-03 8.2e-02 1.5e-03 5.7e-05 2.1e-06 5.9e-06 1.4e-04
S4 3e-01 3.1e-01 1.1e-03 3.3e-02 9.7e-05 3.6e-07 3.4e-06 8.7e-06 6.7e-06
S5 4e-07 1.3e+02 1.5e+02 7.1e+02 3.6e-03 1.5e-02 2.4e-04 1.0e-04 4.2e-03
S6 2e-02 8.2e-01 1.0e-02 4.1e-02 1.0e-05 2.4e-05 4.3e-05 4.6e-04 1.7e-06

Stot

1
4e-01 2.7e-02 1.3e-04 1.5e-02 6.3e-05 1.1e-06 1.8e-06 9.5e-06 9.0e-06

Stot

2
3e-01 3.4e-01 3.1e-04 3.9e-02 6.4e-05 5.3e-06 2.8e-06 8.9e-06 5.0e-06

Stot

3
5e-02 1.6e-01 9.7e-05 7.6e-02 1.4e-03 5.4e-05 1.4e-06 6.3e-06 1.4e-04

Stot

4
3e-01 3.7e-01 6.1e-04 2.7e-02 1.0e-04 1.3e-06 2.9e-06 9.6e-06 5.7e-06

Stot

5
2e-04 1.8e+00 5.6e-01 6.4e-01 1.1e-04 5.6e-04 1.7e-05 3.1e-05 2.6e-04

Stot

6
2e-02 9.6e-01 6.6e-04 5.7e-02 1.7e-05 2.7e-05 4.5e-05 4.4e-04 3.9e-07

S12 6e-03 3.9e+00 2.1e-04 3.6e-01 8.4e-05 5.6e-06 4.7e-06 1.6e-05 4.2e-06

S14 5e-03 2.0e+00 1.1e-02 1.9e-01 2.2e-04 1.2e-05 1.4e-05 1.6e-05 3.3e-05
S15 8e-06 7.3e+00 6.2e-02 1.7e+00 9.7e-05 1.3e-05 4.3e-06 1.8e-05 1.1e-05
S24 3e-03 1.6e+00 5.7e-03 1.6e-01 2.0e-04 3.1e-05 4.2e-06 6.1e-05 2.6e-06

S45 1e-05 1.8e+01 1.1e+00 1.6e+01 4.5e-04 3.6e-03 2.1e-05 4.6e-05 4.8e-06

These findings are of considerable significance for environ-

mental conservation and the credibility of future predictions.
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