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Abstract—In this paper, we consider the problem of predic-
tion of Radio Link Failures (RLF) in flying ad hoc networks
(FANETs). Many environmental factors that influence the quality
of radio wave propagation are dynamic, and thus, drones must
continually learn and update their radio link quality prediction
model while they operate online.

Online machine learning algorithms can be used to build
adaptive RLF predictors without requiring a pre-deployment
effort. To predict the RLF, we use an online machine learning
algorithm and information gathering by message-passing from
the neighbors. We propose an algorithm called ML-Net (Machine
Learning and Network algorithm) to predict RLF. To the best
of our knowledge, the combination of online machine learning
algorithms together with the message-passing algorithm has not
been used before. The proposed methodology outperforms the
state-of-the-art online machine learning algorithms.

Index Terms—Online learning, RLF prediction, UAV.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), also known as

drones or flying robots, have gained significant attention

in various real-life applications. The flying ad hoc network

(FANET) is established to leverage high-speed communica-

tions. However, due to the high mobility of UAVs in FANETs,

the network topology may continuously change, making it

challenging to establish end-to-end connections. Radio Link

Failure (RLF) prediction can help UAVs handle this issue and

improve FANET performance to ensure continuous service

availability. Accurate prediction of radio link failures (RLF)

is critical for ensuring reliable communications in flying ad

hoc networks (FANETs). However, link prediction remains

challenging due to the dynamic topology and unpredictable

mobility patterns in FANETs. Nodes can move in and out of

communication range rapidly, leading to frequent link disrup-

tions. The ability to accurately predict impending link failures

can enable proactive mitigation strategies. For example, drones

could switch to more reliable links ahead of time to prevent

packet loss and service interruptions. Link prediction also

allows optimizing routing by avoiding unstable links that are

about to fail. Furthermore, timely knowledge of upcoming link

losses enables adapting transmission parameters to maintain

connectivity. The development of link prediction techniques

tailored to the FANET environment is therefore essential for

efficient network operation and robust aeronautical commu-

nications. Machine learning holds promise for developing

adaptive, data-driven predictors that can operate in real-time

based on local interactions. This motivates our exploration

of online learning combined with message passing for high-

accuracy RLF prediction in FANETs.

Two essential characteristics should be present in RLF

predictors. First, adaptivity is critical since an RLF predictor

must cope with quality fluctuations over time, especially for

FANET. Second, plug-and-play is crucial since RLF predictors

should be applied without requiring any predeployment effort,

which might not be feasible for all deployment scenarios, even

if the effort is reduced. Online machine learning algorithms

can be used to build RLF predictors that are adaptive without

requiring predeployment effort.

Most current machine learning approaches are limited to the

traditional batch setting, where data is provided in advance

to the training process. Model selection and meta-parameter

optimization can rely on the full set of data, and training can

assume that the data and its underlying structure are static. In

contrast, online machine learning involves continuous model

adaptation based on constantly arriving data. The underlying

distribution of the data, which changes over time, presents

some primary challenges and difficulties in the dynamic envi-

ronment. Old data can become irrelevant or even detrimental

to model the current concept. Online machine learning [3]

exhibits great potential for performance improvement with

the sequential arrival of data and superiority over offline

learning, including real-time predictions and lower memory

requirements.

This paper explores the possibility of using online machine

learning algorithms together with local information gathering

by messages to predict RLF. Each drone uses only its local in-
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formation and information gathered from its neighbor. Specif-

ically, the main contributions of this paper are as follows.

1) Motivated by the characteristics of RLF predictors men-

tioned above, we propose a link failure prediction model

ML-Net, which combines the online machine learning

algorithm with a message-passing algorithm.

2) To the best of our knowledge, we pioneer the use of

the online machine learning method combined with the

message-passing algorithm for RLF prediction.

3) We conduct simulations to analyze the performance of

the ML-Net. We compare the proposed solution with

state-of-the-art techniques and perform an analysis of

simulation results. The analysis shows that the proposed

approach ML-Net achieves better performance than the

state-of-the-art methods.

The remainder of this paper is organized as follows. Section

II discusses recent related studies. Section III describes the

theoretical model used to define our problem. The details

of the proposed approach are described in Section IV. In

Section V, we describe all aspects of the evaluation setup

and simulation results. Finally, we summarize our paper with

conclusions and suggestions for future research in Section VI.

II. RELATED WORK

In this study, we propose the use of online machine learning

algorithms combined with message-passing approach for pre-

dicting Radio Link Failure (RLF) in communication networks.

Several recent studies on RLF suggest using online machine

learning algorithms for prediction.

In [1], the authors studied the link quality prediction for

wireless mesh networks. They performed a performance analy-

sis of four state-of-the-art algorithms for link quality prediction

and proposed a new hybrid online algorithm for link quality

prediction based on this analysis.

The authors of [7] presented an adaptive link estima-

tor (TALENT) that uses online learning. They argued that

TALENT adapts to network dynamics better than statically

trained models without the need for advance data collection

for training the model before deployment in a real system.

The solutions follows the performance of the autoencoders

very closely with a tiny margin on very bad, very good and

intermediate link quality classes.

The study [8] introduced a framework to reduce energy and

network capacity overhead expenses by incorporating active

learning to selectively label only a portion of the samples from

the data stream. The framework also uses incremental training

batches to conserve labeling resources and updates the batches

using change detection and forgetting mechanisms to mitigate

concept drift. Experimental results showed that the framework

reduces label queries by up to 21.5% and prediction error by

up to 9% after periods of concept drift.

As a part of their work in [12], the authors looked at the

problem of predicting channel quality between vehicles in

terms of path loss, which shows strong fluctuations over time

due to the highly dynamic nature of vehicular environments.

They proposed a framework for a data-driven path loss pre-

diction model that combines the changepoint detection method

and online learning. The evaluation of the proposed framework

was done using real-world datasets.

Machine learning methods were used in [10] to predict the

short-term evolution of link quality for switching to a better

link for data transmission. The problem was modeled as a

game of prediction based on experts’ advice, using the Link-

Quality Indicator (LQI) metric. A decision-maker predicts the

LQI values, called a forecaster, who receives advice from

several experts. To predict values close to actual LQI values,

the forecaster can learn how to adapt its strategy. As a general

model, the proposed learning and prediction model can be

easily adapted to different link-quality metrics or prediction

methods.

In summary, some recent works have used online machine-

learning algorithms to predict RLF and took into consideration

the adaptability issue, see [2]. Based on these previous studies,

we propose the use of a novel method based on online machine

learning with a combination of neighbor information gathering

by a message-passing solution.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set of n UAVs (denoted as S) that are

deployed arbitrarily in a given area and may be located in

any position in R
3. The network imposed on S is connected.

We assume that the transmission power of all nodes is fixed.

We denote the transmission power of node i at time t as P t
i .

The set of nodes i’s neighbors at time t depends on the current

positions and channel gain. Based on [13], we can approximate

the path loss on link ij as follows:

Lt
ij = −10 log10 Gl

(

λ

4πdt

)2

, (1)

where Gl is the product of the transmitter and receiver antenna

field radiation patterns of LOS transmissions, dt is the distance

between a transmitter and its corresponding receiver at time

t, and λ is the operating wavelength. Thus, the path loss is

related to the transmission distance when transmitting radio

signals over a specific channel through a specific antenna.

Let N t
i be the set of neighbors of node i at time t. Formally,

N t
i is defined as:

N t
i = {j ∈ S \ i|Lt

ij ≥ θ}, (2)

where θ is a predefined parameter of the network.

A network is defined as a directed graph Gt = (S,Et),
where node i ∈ S has a directed edge (link) to each of its

neighbors according to Equation 2. The edge set Et is the

union of all directed edges among the nodes in time t, Et =
⋃

i∈S Et
i .

At each timestamp t, when node i receives a message from

node j, node i collects a set xt of metrics (features) that

describe the communication with node j at time t. Node i

adds xt to a multivariate time series that represents features

of communication with node j, denoting this multivariate time

series as Xt
ij = {x1, . . . , xt}.
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Thus, each edge etij ∈ Et has a multivariate time series

associated with it, Xt
ij . In addition, etij has an associated

binary class variable vtij ∈ {1,−1}, representing the existence

(1) or failure (-1) of the edge.

Now we can formally define our problem. Given the current

Xt
ij , we wish to determine whether the edge eij will fail or

not in the following timestamp (namely, at t+ 1).

IV. ML-Net

In this section, we describe the proposed ML-Net approach.

We combine the machine online learning algorithm with the

network structure algorithm to cope with RLF prediction

in the next timestamp. We suggest using the expression

S(Xt
ij ,m

t
i←j) which approximates the probability that the

edge etij will fall in the next timestamp.

S(Xt
ij ,m

t
i←j) =











αP̂r(vt+1

ij = −1|Xt
ij) + (1− α)mt

i←j , Message from node

j was received

P̂ r(vt+1

ij = −1|Xt
ij), otherwise

(3)

where 0 ≤ α ≤ 1, mt
i←j is the message sent by j to

i including the belief of node j about vtji, and P̂ r(vt+1

ij =
−1|Xt

ij) is the probability that edge eij will fail in timestamp

t+ 1 given multivariate time series Xt
ij . We use on the shelf

online machine learning algorithm to calculate P̂ r(vt+1

ij =
−1|Xt

ij) (in Section V-A we will broadly describe the pro-

posed algorithms).

mt
i←j =











αP̂r(vt+1

ji = −1|Xt
ji) + (1− α)mt

j←i, Message from node

j was received

P̂ r(vt+1

ji = −1|Xt
ji), otherwise

(4)

Due to the fact that the Gt = (S,Et) is a directed graph, then

the following scenario may occur: the edge eti,j exists but the

edge etj,i does not exist. In this scenario, mt
i←j may arrive but

mt
j←i cannot arrive. In Figure 1 we can see an example of

this scenario.

Fig. 1: Directed edges.

A B C D E

F G H I

J

mt
B←A mt

C←B mt
D←C mt

E←D

mt
F←A mt

G←B mt
H←C mt

I←D

mt
J←Fm

t
J←G mt

J←H
mt

J←I

mt
I←E

Fig. 2: Illustration of Message-Passing Algorithm

Figure 2 showcases a random graph with 10 nodes (A-J),

representing entities in a system. The directed edges between

nodes symbolize the flow of messages, demonstrating the

operation of the message-passing algorithm. The labels on the

arrows, mt
ij , represent the messages passed from node i to

node j at time t. This graph serves as a visual representation

of the algorithm’s functioning in a system with multiple

interacting components.

Algorithm 1 ML-Net Algorithm

1: Input: Node i, current time t, set of neighbors N t
i , link

features Xt
ij

2: Output: Link failure prediction S(Xt
ij ,m

t←j
i )

3: Hyperparameters: α

4: for j ∈ N t
i do

5: if msgreceived(j, t) then

6: m
t←j
i = αP̂ (vt+1

ij = −1|Xt
ij) + (1− α)mt←i

j

7: else

8: m
t←j
i = P̂ (vt+1

ij = −1|Xt
ij)

9: end if

10: S(Xt
ij ,m

t←j
i ) = αP̂ (vt+1

ij = −1|Xt
ij) + (1− α)mt←j

i

11: end for

12: return S(Xt
ij ,m

t←j
i )

The ML-Net algorithm shows the key steps for combining

online machine learning with message passing to predict link

failures. For each neighbor j, node i first checks if a message

was received from j at time t. If so, i updates its belief about

the i → j link failing using both its own prediction and j’s

belief from the message. This allows propagating information

through the network. If no message is received, i relies only

on its own link prediction. Finally, the algorithm returns the

combined prediction score S for each link i → j based on

the updated beliefs. This demonstrates how ML-Net leverages

both local online learning models and information exchange

with neighbors to achieve accurate real-time RLF prediction

in dynamic FANET environments.

A. Notations

The notations used in this paper are summarized in Table

I. Also, Table I contains further notation defined below in the
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paper.

Symbol Meaning

S Set of drones

Lt
ij Path loss between receiver j

and transmitter i

n Size of set S, n = |S|
K The set of sources and destination

in the network

Gt = (S,Et) Directed graph that represents the
network in timestamp t

Xt
ij multivariate time series associated

with measures from link ij

Pi The transmission power

vtij Binary variable represented the link

failure between node i to j in time t

etij Edge between node i to j in time t

mt
i←j Message sent by j to i (contains vtji)

TABLE I: Summary of notations used in this paper

V. EXPERIMENTAL SETUP

Simulation is the most reliable and cost-effective approach

to examining the performance of real-world problems. For

performance evaluation of the proposed technique, OMNET++

[15] is used as the primary tool for FANET environment

generation and routing protocol implementation. This section

describes the data generation process. Let K represent the set

of the source and destination pairs within the network that

should communicate.

We simulated the network for |S| = 20 and for |K| = 3. In

Figure 3 we can see an example of a network with 20 UAV’s

and |K| = 3.

The routing protocol we chose to use is AODV (Ad-Hoc

On-Demand Distance Vector) [14]. This protocol is designed

for wireless and mobile ad hoc networks and has been broadly

adopted for FANETs. Next, we present the schemes for

comparison and the evaluation metrics.

A. Schemes for Comparison

In the following, we briefly describe the state-of-the-art

online machine learning algorithms and their hyperparameters

used in this paper to compare with ML-Net. These algorithms

were selected as the comparison baseline solutions due to their

advanced nature.

1) The Extremely Fast Decision Tree (EFDT) [9]: EFDT

constructs a tree incrementally. The EFDT seeks to select and

deploy a split as soon as it is confident the split is useful and

then revisits that decision, replacing the split if it becomes

evident that a better split is available. The EFDT learns rapidly

from a stationary distribution, and eventually, it learns the

asymptotic batch tree if the distribution from which the data

are drawn is stationary. We chose a EFDT with the following

hyperparameters: grace period of 200 and split confidence of

1e−7.

Fig. 3: Example of network with 20 nodes and 3 pairs of

source and destination.

2) Adaptive Random Forest (ARF) [4]: ARF algorithm for

the classification of evolving data streams enables the Random

Forests algorithm for evolving data stream learning. There are

effective resampling methods and flexible operators in ARF

that can cope with different types of concept drifts without

requiring complex optimizations for different data sets. We

chose a ARF with the following hyperparameters: grace period

of 50, lambda is 6, max features are 3, split confidence of 0.01,

and tie threshold of 0.05.

3) Hoeffding Tree Classifier (HTC) [6]: This method in-

volves determining an upper bound for the learner’s loss based

on the number of examples used in each step of the algorithm.

In this algorithm, the number of examples required for each

step is minimized while ensuring the model performance is not

significantly different from the one obtained from an infinite

dataset. We chose a HTC with the following hyperparameters:

grace period of 200, min samples reevaluate of 20, split

confidence of 1e−7, and tie threshold of 0.05.

4) Streaming Random Patches Classifier (SRPC) [5]: The

Streaming Random Patches algorithm is a machine learn-

ing technique that involves randomly selecting subsets or

”patches” of data from a continuous stream of input. These

patches are used to train and update a model iteratively

over time, allowing the model to adapt and learn from new

incoming data.
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B. Evaluation Metric

We use the following performance metrics to evaluate the

performance of different machine learning algorithms:

1) Precision: The ratio of the number of true positives

over the total number classified as positive. In the context

of our problem, it is the ratio of correctly predicted link

failures versus the total number of link failures predicted. The

precision value is computed as follows:

P =
TP

TP + FP

, (5)

where P is the precision value, TP is the number of “true

positives,” and FP is the number of “false positives.”

2) Recall: The ratio of the number of data points associated

with link faults correctly classified over the total the number

of data points associated with link faults that have occurred.

The recall value is given by

R =
TP

TP + FN

(6)

3) F1-Score: The F1-Score is the harmonic average of the

precision and recall values. It takes a value in [0, 1]. Higher the

value of F1-Score, the better the performance of the machine

learning technique. It is computed as follows:

F1 =
2P ·R

P +R
(7)

4) Cohen’s kappa- κ : Cohen’s kappa measures the agree-

ment between two raters who each classify N items into C

mutually exclusive categories the Cohen’s kappa formula can

be written as:

κ =
2(TP · TN − FN · FP )

(TP + FP ) · (FP + TN ) + (TP + FN ) · (FN + TN )
(8)

C. Features

This section provides an exploratory data analysis of key

features in the communication system. Visualizations are uti-

lized to understand feature distributions and relationships in

the data.

1) Time: This feature represents the elapsed time since the

start of the simulation or experiment. It captures the

dynamics of the communication system over time.

2) IdTransmitter: This categorical feature identifies the

transmitter for each signal received. It allows the model

to capture any specific characteristics related to individ-

ual transmitters.

3) 64-QAM SNR: These features represent the Signal-to-

Noise Ratio (SNR) for the 64-level Quadrature Ampli-

tude Modulation (64-QAM) scheme. SNR is a measure

of signal quality, with higher values generally indicating

better quality.

4) 64-QAM BER: These features represent the Bit Error

Rate (BER) for 64-QAM. BER is another measure of

signal quality, with lower values indicating fewer errors

and therefore better quality.

30 28 26 24 22 20 18
Log of Power Reception

0

500

1000

1500

2000

Fr
eq

ue
nc

y

Log of Power Reception Distribution

Fig. 4: Distribution of Log Received Power

5) powR: This feature represents the power of the received

signal. It is a critical factor in communication systems,

as a stronger received signal usually implies a better

communication link.

6) angle between: This feature represents the angle be-

tween the transmitter and receiver. The relative orienta-

tion between these devices can affect the signal strength

and thus the link quality.

7) Link: This is the target variable that we want to predict.

It is a binary variable representing the quality of the

communication link, with ’1’ indicating a good link and

’0’ indicating a bad link. This allows us to frame the

problem as a binary classification task.

These features provide a comprehensive description of

each signal reception event, capturing information about the

transmitter, signal quality, received signal power, and relative

device orientation. This enables construction complex models

to predict the communication link quality.

Figure 4 shows the histogram that presents the distribution

of the logarithm of the received Power Reception. The x-axis

shows the log power values, and the y-axis shows the fre-

quency. The kernel density estimate smooth line approximates

the probability density function.

The log transformation handles skewed data by making

the distribution more symmetric. The log-transformed power

distribution appears Gaussian, concentrated around -26.

The KDE peak indicates the most frequent log power

value. The distribution spread provides insights into power

variability. This transformation can help modeling techniques

assume normality.

Figure 5 is a histogram that shows the distribution of angles

between transmitters and receivers. The x-axis represents the

angle from 0 to 180 degrees. The y-axis represents the

frequency. This reveals common orientations in the simulation.

The overlaid Kernel Density Estimate (KDE) approximates

the distribution. It assists in identifying shape characteristics

like peaks. These insights are key to understanding angle

variability and its potential impact on system performance.

The heatmap presented in Figure 6 illustrates feature cor-

relations. Each cell shows the correlation coefficient between

feature pairs. Cool colors indicate negative correlations. Warm
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colors indicate positive correlations. Neutral colors indicate

minimal correlation.

This visualization identifies relationships between features.

It assists in feature selection by highlighting potential redun-

dancies.

D. Evaluation and Numerical Results

We evaluate the proposed method using data collected from

simulations implemented in OMNET++ [15]. As part of our

simulation, we randomly deployed 20 drones and randomly

selected three pairs of source destinations from these drones

as shown in Figure 3 for an example. The drones run the

AODV routing protocol.

Each node participating in communication extracts the

following parameters (features) when receiving a message

from its neighbor: reception power, transmission power, SINR,

modulation, location, and orientation. Features collection does

not require particular messages. Simulation runs for 3000
seconds, during which the link failure is collected.

Table II summarizes the parameters used by us in the

simulation.

We first used the schemes from Section V-A to predict RLF

so that we could compare our method with their performance.

The compression mechanism is implemented using [11]. We

calculate P̂ r(vt+1

ij = −1|Xt
ij) using all the schemes for

500 1000 1500 2000 2500 3000
Time [S]

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

alpha =0.1
alpha =0.2
alpha =0.3
alpha =0.4
alpha =0.5
alpha =0.6
alpha =0.7

Fig. 7: α selection for ML-Net

comparison, estimate the RLF by Eq. 3, and provide the

performance for each of the cases.

Figure 7 shows the performance of ML-Net as a function

of α. The x-axis represents the time of the simulation, and the

y-axis represents the accuracy of the RLF prediction. As we

can learn from the figure, the accuracy of the RLF prediction

generally increases as we increase the value of α. This is

because a larger value of α gives more weight to the node’s

own information and less to its neighbor’s information. We

can also see that when α is very small, the algorithm is overly

influenced by the neighbors’ information, and the predictions

may not be accurate enough. On the other hand, when α is

very large, the algorithm may not be able to adapt quickly

to changes in the network topology due to a lack of influence

from the neighbors’ information. Based on Figure 7, we chose

the alpha value to be 0.6, as it strikes a balance between the

node’s own information and its neighbor’s information and

achieves the best accuracy value.

Parameter Value

Number of drones 20
Simulation Playground Size 800 × 800 m2

Bandwidth 2MHz

σ 10−3

Power 1.4mW

λ 10dB

SINR threshold 4dB

α 0.6
Speed N (200, 0.001)mps

TABLE II: Simulation Configuration

We provide a detailed explanation of the performance

analysis of ML-Net with different online learning algorithms

in calculating P̂ r(vt+1ji = −1|Xtji). To evaluate the per-

formance of our proposed approach, we compare it with other
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Fig. 8: κ achieved by schemes for comparison versus ML-Net

existing schemes (see subsection V-A). The evaluation is based

on several performance metrics, including precision, recall,

accuracy, Cohen’s kappa, and F1.

Figures 9, 10, 11 and 12 demonstrate the performance of

ML-Net with different online learning algorithms in calcu-

lating P̂ r(vt+1ji = −1|Xtji). We observe that the proposed

method outperforms the comparison schemes, regardless of

the online learning algorithm used. This indicates that our

approach is not dependent on the specific online learning

algorithm utilized to calculate P̂ r(vt+1ji = −1|Xtji).
Specifically, the evaluation was carried out using several

performance metrics. Precision refers to the fraction of cor-

rectly identified negative instances among all the predicted

negative instances. The recall is the fraction of correctly identi-

fied negative instances among all the actual negative instances.

Accuracy refers to the fraction of correctly predicted instances

among all the instances. Cohen’s kappa is a statistical measure

of inter-rater agreement between two raters for categorical

items. Variable F1 is the harmonic mean of precision and

recall.

The results of the performance analysis are depicted in the

figures mentioned above. The results show that the proposed

approach outperforms the comparison schemes in terms of

all the performance metrics evaluated. Therefore, we can

conclude that ML-Net is an effective method for calculating

P̂ r(vt+1ji = −1|Xtji) in an online learning setting.

To summarize, we see that ML-Net outperforms, for each

of the evaluation metrics, the previously known scheme that

achieves the best performance for this metric.

VI. CONCLUSIONS

This paper addresses the critical issue of Radio Link Fail-

ures in FANETs, which stands as a significant challenge re-

quiring innovative solution. We propose a novel approach that

combines online machine learning algorithms with message-

passing, a technique that has not been explored in this context

before. Our proposed solution, known as ML-Net, significantly
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Fig. 10: Precision achieved by schemes for comparison vs.

ML-Net

outperforms the best existing competitors across all evaluation

metrics, indicating the immense potential of this approach in

addressing real-time prediction challenges in communication

networks.

Our obtained results are highly promising and suggest that

this novel combination of online learning algorithms and

message-passing algorithms has the potential to revolutionize

the field of FANETs and pave the way for more effective

and efficient communication networks in the future. Also, it

would be interesting to analyze analytically the influence of

parameter α.
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