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Abstract—Performing data mining tasks in the medical domain
poses a significant challenge, mainly due to the uncertainty
present in patients’ data, such as incompleteness or missingness.
In this paper, we focus on the data mining task of clustering
corticosteroid (CS) responsiveness in sepsis patients. We address
the issue and challenge of missing data by applying Game-
Theoretic Rough Sets (GTRS) as a three-way decision approach.
Our study considers the APROCCHS cohort, comprising 1240
sepsis patients, provided by the Assistance Publique–Hôpitaux
de Paris (AP-HP), France. Our experimental results on the
APROCCHS cohort indicate that GTRS maintains the trade-off
between accuracy and generality, demonstrating its effectiveness
even when increasing the number of missing values.

I. INTRODUCTION

D
UE TO its high mortality, incidence, and morbidity,

sepsis is regarded as one of the most serious diseases that

impact people’s lives. The Third International Consensus Defi-

nition for Sepsis and Septic Shock (Sepsis-3), in 2016, defined

sepsis as a “life-threatening organ dysfunction resulting from

dysregulated host responses to infection” [1]. Immunologi-

cally, the human body releases some immune chemicals into

the blood to fight the encountered infection. These released

substances cause extensive inflammation, resulting in blood

clots and leaking blood vessels. As a consequence, blood

flow is disrupted, depriving organs of nutrition and oxygen,

and hence, resulting in organ damage. The Sequential Organ

Failure Assessment (SOFA) score [2] is used to codify the

degree of organ dysfunction. It is difficult to estimate the

global burden of sepsis. The study conducted in [3], estimated

that in 2017 there were 48.9 million cases and 11 million

sepsis-related deaths all over the globe, which accounted for

almost 20% of all global deaths. There is no current diagnostic

test for sepsis.

Knowing that there are still no specific interventions to

control immune responses to invading pathogens [4], for

sepsis, researchers have looked at the biological underpinnings

of sepsis to see if there are any treatments that could help.

Because of their impact on the immune system, corticos-

teroids have received a lot of attention [5]. The hormonal

route from the hypothalamic-pituitary gland to the adrenal

glands promotes corticosteroid synthesis in sepsis [6], [7].

These hormones affect inflammation through the formation

of white blood cells, cytokines, and nitric oxide. The timing

of corticosteroid administration may be a key component in

therapy response. Short-term mortality was found to be higher

in observational studies when hydrocortisone was started later.

It is expected that corticosteroid treatment is advantageous for

sepsis patients for these reasons and that variations in dose,

timing, or duration of corticosteroid treatment may alter the

patient response to treatment differently [8].

This paper delves into the data mining task [9] of

clustering corticosteroid (CS) responsiveness in sepsis pa-

tients using the APROCCHS cohort provided by Assistance

Publique–Hôpitaux de Paris (AP-HP), France. The cohort

includes 1240 sepsis patients. A key challenge in this task

is the presence of missing data.

Grouping data with missing values is one of the primary

difficulties in clustering. There are commonly two strategies

to deal with missing values [10]. The first strategy is based on

preprocessing techniques [11]. Generally, it adopts deleting the

whole row containing missing values or replacing the missing

values based on experts’ rules [12]. Some common missing

values imputation techniques include replacing missing values

with the mean, median, or mode of the available data for that

feature [13]. The hot Deck Imputation method is replacing

missing values by randomly selecting a value from another

similar data point in the same dataset [14]. Using the values

of K-nearest neighbors in the feature space to estimate the

missing value [15]. Linear Regression Imputation aims to

predict the missing values using linear regression based on

other variables in the dataset [16].

The process of filling in missing values can potentially

introduce a significant amount of imputation bias and uncer-

tainty. It is important to recognize that missing values can

be informative and carry meaningful implications. In certain

instances, the absence of data itself can convey valuable

information or signify a particular category or state. Imputing

these missing values may result in distorting the original

meaning or introducing artificial patterns into the dataset. In

such situations, it is advisable to treat the missing values as a

distinct category or conduct a separate analysis specifically
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on the subset of data that contains missing values. Also,

imputation during preprocessing has reportedly been found

to compromise the accuracy and consistency of classification

outcomes. Thus, these methods are not recommended specif-

ically when we deal with medical data because they can bias

the medical results.

The second strategy relies on incorporating mechanisms in

the clustering model [17] which means that we will not impute

or preprocess the missing values, but the internal functioning

of the algorithm will handle automatically the missing values.

Examples of works belonging to this strategy are [18] which

allocated missing value objects to a cluster with a large number

of missing values and [19] which assigned objects containing

missing data to clusters based on their neighbors.

Moreover, the theory of rough sets provides a valuable

framework for analyzing incomplete information through the

use of approximations [20]. This approach allows us to delve

into the realms of uncertain and imprecise data, aiding in our

understanding of complex systems. According to the research

conducted by [21], the application of rough set theory has been

observed across various fields and domains. In [22], authors

integrated the Variable Precision Rough Set (VPRS) approach

with Bayesian principles. In [23], the idea is to combine

VPRS with fuzzy rough set methods to create flexible decision

rules. In essence, both papers share a common objective of

tackling information imprecision by employing probabilities

(within the framework of VPRS) and fuzziness (which allows

for handling partial matching of rules’ antecedents). Their

ultimate aim is to derive interpretable decision models from

the available data. Authors in [24] introduced the Learn++.MF,

an innovative ensemble-of-classifiers algorithm designed to

address the challenge of missing features in supervised clas-

sification. It creates an ensemble of classifiers, each trained

on a random subset of available features. When classifying

instances with missing values, the algorithm employs majority

voting from classifiers that were trained without the missing

features. The study demonstrates that Learn++.MF effectively

handles significant amounts of missing data, with only a

gradual decline in performance as the missing data increases.

In biomedicine and healthcare, rough set theory has been

applied for disease diagnosis [25], medical image analysis

[26], and patient profiling [27].

Focusing on the second strategy, mentioned above, and

tackling the challenge of missing data in sepsis patients’

records, we apply Game-Theoretic Rough Sets (GTRS) as a

three-way decision approach. The aim is to assign patients with

incomplete records to the appropriate clusters automatically. In

order to study the efficiency of the algorithm application on

our clinical data, we aim to answer the following research

questions:

• RQ1: How can the percentage of missing values affect

the performance of the algorithm?

• RQ2: Does the k nearest neighbors has an impact on the

results?

• RQ3: Can the percentage of increasing and decreasing

initial values of α and β influence the results?

The rest of this paper is structured as follows. Section II

presents the fundamentals of three-way decisions using GTRS.

Section III details the application of GTRS, as a three-way

decision approach for handling missing data, for clustering

CS-responsiveness in sepsis patients. The experimental setup

is introduced in Section IV. The results of the performance

analysis are discussed in Section V, and conclusions are

presented in Section VI.

II. THREE-WAY DECISIONS USING ROUGH SETS

A. Three-way clustering

The theoretical foundation of three-way clustering is based

on the theory of three-way decisions introduced by Yao [28].

Assuming the existence of a set U = {o1, o2, o3, ...} which

is referred to as the universe of objects, a clustering method

will produce a collection of sets {c1, c2, c3, ...}, where each

set ck contains a group of objects belonging to that specific

cluster. Every object oi in the set has A attributes, represented

as oi = (o1i , ..., o
A
i ), with oai indicating the value of the ath

attribute associated with the ith object.

In traditional clustering, a cluster is usually represented by

a single set, indicating that objects within the set definitely

belong to a cluster and those outside the set definitely do not

belong to it. In situations characterized by uncertainty and a

lack of information, two-way decisions are not always feasible

from a decision-making perspective, such as in the case of

clustering.

A practical and reasonable alternative is to adopt a three-

way decision approach, which introduces three options for

decision-making, rather than the traditional binary choice.

Specifically, we can decide whether an object belongs to a

cluster, whether it does not belong to a cluster, or whether

it is uncertain whether the object belongs to a cluster or not.

This concept of three-way decision-making leads to what is

known as three-way clustering.

To define three distinct regions - inside, partial, and outside

- an approach involving an evaluation function and a set of

thresholds can be employed. The evaluation function quantifies

the association or correlation between an object and a cluster,

while the thresholds set limits on this relationship for inclusion

in each of the regions. Let e(ck, oi) be an evaluation function

that represents the association between a specific cluster ck
and an object oi, and let (α, β) be a pair of thresholds. The

three regions are defined as follows.

Inside(ck) = {oi ∈ U |e(ck, oi) ≥ α}, (1)

Outside(ck) = {oi ∈ U |e(ck, oi) ≤ β}, (2)

Partial(ck) = {oi ∈ U |β < e(ck, oi) < α}, (3)

This means that when the evaluation of an object is equal

or above the threshold α, it is considered to be part of

the Inside(ck) group. Conversely, if the evaluation is at or

below the threshold β, the object is regarded as being in the

Outside(ck) group. If the object’s evaluation falls between the

two thresholds, it is included in the Partial(ck) group. Thus,
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inclusion in distinct regions is governed by the thresholds

(α, β), and varying their settings results in different regions.

The automatic determination of these thresholds is a crucial

research topic in this context.

In this regard, and based on the work proposed in [29], we

utilize the three-way framework to handle data with missing

values which involves three steps. The overall functioning

is presented in Figure 1. Initially, the set of objects U is

partitioned into two sets: C and M . Set C comprises objects

that have no missing data, while set M contains those that

have missing values. Objects in set C are clustered using

conventional algorithms, such as K-means [30], under the

assumption that since these objects have no missing values,

the level of uncertainty is low, and conventional approaches

are more suitable for clustering such objects (Figure 1 (1)).

The second step (Figure 1 (2)) involves creating an in-

complete data set from C while maintaining a similar rate

of missing values to that of dataset U . For instance, if

30% of objects in the original dataset has missing values,

approximately 30% of objects will be randomly chosen from

C to induce missing values. This results in partitioning C into

two additional sets: the constructed dataset comprising objects

with missing values denoted as Um, and the remaining objects

in C with no missing values designated as Uc. This step assists

in selecting appropriate values for (α, β) thresholds that will

enable the clustering of objects with missing values.

The third step (Figure 1 (3)) involves determining the

inclusion of objects with missing values, denoted as M , in the

three-way framework. To employ three-way clustering on data

with missing values, it is necessary to calculate the evaluation

function e(ck, oi), as specified in Equations 1, 2, and 3. This

function measures the association between an object oi and

cluster ck and can be defined in various ways. In our case,

and as proposed in [29], we utilize an evaluation function that

is based on the proportion of nearest neighbors for object oi
that belongs to cluster ck:

e(ck, oi) =
Number of oi neighbors belonging to ck

Total neighbors of oi
(4)

In order to determine the neighbors, a specific distance

metric is required. For this example, we utilize the euclidean

distance as follows:

d(i, j) =

√

√

√

√

A
∑

a=1

(

Oa
i −Oa

j

)2
(5)

Here, oai represents the value of the ath attribute of the ith

object and any attributes with missing values are disregarded

during distance computation. By utilizing the aforementioned

distance metric, it is possible to calculate the distances of

each oi with missing values from all objects in Uc. After

sorting these distances, the nearest neighbors for each oi
can be determined. Upon sorting these distances, the nearest

neighbors can be identified. After determining the evaluation

functions, Equations 1, 2, and 3 can be employed to determine

the inclusion of objects into one of the three regions.

The goal of this approach is to enhance the clustering quality

of data containing missing values. In this regard, two metrics

need to be calculated based on the thresholds (α, β) as follows:

Accuracy(α, β) =
Correctly clustered objects

Total clustered objects
, (6)

Generality(α, β) =
Total clustered objects

Total objects in U
(7)

where Accuracy refers to how well we cluster objects with

missing values, whereas generality refers to the fraction of

objects that were clustered in the first place. Thus, as defined

in [29], this goal can be approached from the perspective of

a trade-off between accuracy and generality of the clustering.

B. Game theoretic rough sets

GTRS is based on a game-theoretic concept and formulation

to estimate thresholds of the three-way decisions [31], [32].

The thresholds are interpreted based on a trade-off solution

between numerous criteria used to analyze rough sets in a

game scenario [33], [32]. Specifically, to increase the overall

quality of three-way decisions, GTRS formulates strategies

for players in the form of adjustments in thresholds. Each

player contributes to the game by configuring the thresholds

in order to optimize the game’s benefits/rewards and utilities.

The overall goal of a game in GTRS is to choose appropriate

thresholds for three-way decisions with respect to the available

criteria and presented information.

In GTRS (Figure 1 (4)), a typical game consists of three

main elements: (i) game players, (ii) strategies, and (iii) payoff

or utility functions. These components are usually defined as

a tuple {P, S, u}, where [34]:

• Game players: The game players are denoted by a set

P . The players in the game are selected to reflect the

overall purpose of the game.

• Strategies: In the game, each player contributes by

playing different strategies. The set of strategies available

to player i is denoted by Si. All possible strategy sets

are denoted by the following Cartesian product: S =
S1 × S2 × . . . × Sn, where S contains ordered pairs of

the form (s1, s2, . . . , sn) such that s1 ∈ S1, s2 ∈ S2 and

sn ∈ Sn. Each ordered pair in S is called a strategy

profile and represents a certain situation encountered in

a game.

• Payoff functions or utility: The payoff function, also

called utility, for the players are defined via a set u =
(u1, . . . , un); where each ui represents a real-valued

utility function for player i and it maps the strategy

profiles to real values (ui : S 7→ ℜ). The payoffs reflect

the utilities of performing or selecting a specific strategy.

Every player in a game seeks to execute a strategy that

maximizes its payoff. The players’ strategies, on the other

hand, have an impact on their opponents’ payoffs. The game

solution is used to select a balanced and trade-off point based

on all players’ utilities. The Nash equilibrium is generally used

to determine game solution or game outcome in GTRS.
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Let us consider a strategy profile s−i =
(s1, s2, . . . , si−1, si+1, . . . , sn). s−i is a strategy profile

of all the players in the game except player i, and which

can be further denoted as s = (si, s−i). This means that all

the players except i are committed to play s−i and player i

choosing si. The strategy profile (s1, s2, . . . , sn) = (si, s−i)
is a Nash equilibrium, when [35],

∀i, ∀s
′

i ∈ Si, ui(si, s−i) ≥ ui(s
′

i, s−i), where(s
′

i ̸= si) (8)

This means that for all players i, their respective strategies,

i.e., si is the best response to s−i. In other words, a strategy

profile constitutes a Nash equilibrium when no player is

benefited from changing his/her strategy alone. The description

presented above formulates a game in GTRS. It is to be noted

that we may not be able to reach effective thresholds that

meet the demands of the underlying applications with a single

and non-repeated game. We, therefore, need to play the game

several times; where in each play the goal is to keep modifying

and refining the thresholds until we attain certain performance

goals; e.g., a balance between accuracy and generality. The

GTRS seeks an appropriate design of the threshold levels that

are used in the three-way decisions framework, presented in

Section II-A, by forming a game and applying concepts such

as game solution and repeating games.

III. APPLICATION

A. Data Source

RECORDS1 is a European research project that aims to

quickly detect whether a patient is sensitive or resistant to the

treatment of sepsis with corticosteroids. The project’s clinical

trial is an adaptive clinical trial that evaluates the efficacy

of biomarkers and machine learning algorithms in defining

patients’ corticosteroid resistance, with the goal of optimizing

their management. The project has adopted a distinctive ap-

proach to effectively analyze the severity of sepsis cases by

collecting data on patients’ demographics, health outcomes,

and samples. This data collection has resulted in the creation

of a first sepsis cohort, known as APPROCHS, which serves

as an exceptional resource for medical research.

The paper considers the APROCCHS cohort that has been

provided by the Assistance Publique–Hôpitaux de Paris (AP-

HP) which is the university hospital trust operating in Paris,

France, and its surroundings. It is the largest hospital system

in Europe and one of the largest in the world. The goal of the

cohort is to allow the investigation of qualitative interactions

between clinical phenotypes and survival benefits or harms

from corticosteroids (CS), i.e., to permit defining sensitivity

and resistance to CS.

B. Data Description

The APROCCHS cohort gathers 1240 adult septic shock

patients who are treated with or without CS. Each patient

1https://www.fhu-sepsis.uvsq.fr/rhu-records-4

is characterized by 5645 features, also, called risk factors

reflecting characteristics until Day 90.

Data were collected with a specification indicating whether

the patients were treated with corticosteroid or with a placebo.

A placebo is a substance or treatment that is given in the same

manner as an active drug or treatment being tested but does

not have any active ingredients or therapeutic effects [36].

C. Data Pre-processing

In this section, we explain the different data pre-processing

tasks that we have performed on the APROCCHS cohort,

namely: feature selection, data enrichment, data labeling and

data cleaning.

1) Feature selection: Because sepsis is a time-sensitive

disease, the likelihood of survival is significantly increased

by early detection and treatment. This study focuses on using

variables accessible at the earliest stage, especially at Day

0 of hospitalization, for predicting patients’ responsiveness

to corticotherapy in order to optimize accurate intervention.

Specifically, from the initial pool of 5645 features –which

reflects features from Day 0 until Day 90–, and by focusing

only on features at Day 0, we were able to carefully choose a

selection of 24 critical attributes following significant consul-

tation with the respected medical specialists at APHP. This

selection procedure entailed careful study and examination

of each feature’s relevance and significance in regard to our

research with respect to the guidance and experience of the

APHP healthcare experts.

The collected data is divided into two categories: static

and dynamic. The first category includes information on the

patient’s current condition as well as personal information such

as identification number, sex, weight, age, origin, date of hos-

pitalization, and whether or not an antibiotic was administered

before Day 0. These traits are noted at the time of admis-

sion and remain constant during hospitalization. The second

category consists of dynamic elements that can be captured

once or more times daily during hospitalization and are related

to patient vital signs and laboratory testing. Admission type,

infection date, infection place, and examination type are a few

examples of dynamic characteristics that have only been once

recorded. These data are often gathered before administering

treatment. The sequential organ failure assessment (SOFA)

score [37], ventilation, vasopressor use, and prescribed therapy

dose are a few examples of characteristics that were recorded

during the whole hospital stay and are associated with patients’

responsiveness to treatment.

2) Data enrichment: Data enrichment relies on the process

of adding new variables based on pre-existing ones in order

to further explain the data and increase the precision of

prediction algorithms. It improves detecting previously hidden

relationships and patterns in the data. Following the guidelines

of the APHP medical specialists, we generated the variable

AR_INF_Type, which represents the source of infection and

which was obtained from the diagnosis date and the hospital

admission date variables. Furthermore, the values of the corti-

sol variable have been adjusted using a dataset that was given
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by medical professionals and provides appropriate values for

this characteristic. For a proper diagnosis and treatment plan,

it is essential to know whether a patient received an antibiotic

before being brought to the hospital. The medical staff’s choice

of the proper doses for the patient during their hospital stay

will depend on this information, in addition to the machine

learning model. A new feature entitled “ANTIBIOTIC" was

created in order to acquire this information. A value of 1 of

this characteristic implies that the patient took an antibiotic

while a value of 0 means that he/she did not. The new variable

“ANTIBIOTIC" comprises information on 690 patients who

did not receive antibiotics prior to admission to the hospital

and 550 patients who did.

3) Data labelling: For a patient who is enrolled in the

study on Day 0, either corticosteroid medication or a placebo

is administered every 4 to 6 hours while a number of features

that indicate the patient’s improvement are tracked. Daily

feature values are recorded while each patient is observed for

90 days. The APHP healthcare experts have created precise

standards for figuring out whether a patient would benefit from

corticotherapy or not. Patients are specifically categorized as

cortico-sensitive (i.e., responders) if all four of the following

conditions are satisfied after 14 days of therapy:

• The patient survived.

• For at least 24 hours, there has been no vasopressor

treatment.

• For at least 24 hours, the patient has been off of mechan-

ical ventilation.

• The SOFA score is under 6.

The patient is generally considered cortico-resistant or a non-

responder if the conditions are not satisfied, which is regarded

a negative therapy response. As a result, the label is set to

1 or 0, indicating whether or not the patient reacted to the

therapy on Day 14. Finally, patients who did not adhere to

the aforementioned rule were eliminated from the cohort,

leaving 1234 patients. This was done to preserve the integrity

of our data and in accordance with the guidelines provided

by medical specialists. The distribution of patients in the

APPROCCHS cohort is shown in Table I.

4) Data cleaning: Particularly in important domains such

as health, data cleaning and feature engineering are crucial

steps in the data analysis process. These aspects have a

significant impact on the decision-making process and the per-

formance and accuracy of machine learning models. Dealing

with the raw sepsis data that was gathered presented multiple

challenges for this investigation. The APROCCHS cohort has a

low rate of duplicate data, but in order to have accurate results

with the three-way approach clustering, we have dropped

duplicated patients. As a result, 1233 sepsis cases were still

included in the cohort.

D. Three-way clustering with Game-theoretic rough sets

In this section, the application of the three-way cluster-

ing with GTRS, recently proposed in [29], is demonstrated

using the pre-processed APROCCHS cohort. The objective

is to cluster sepsis patients into two groups to reflect their

responsiveness or not to CS while the model internally handles

missing values.

1) Missing data description and handling: The only data

pre-processing step that was not applied so far to the APROC-

CHS cohort is the task of handling missing values. As previ-

ously mentioned in Section I, the fact of imputing (replacing)

or deleting the tuples containing missing values may signifi-

cantly influence the conclusions drawn from the applied data

mining task; specifically when it comes to a sensitive and

critical domain as such is the medical domain. Pre-processing

missing values may jeopardize the quality and reliability of the

machine learning results; which is in our case the clustering

task. As mentioned in Section I, a more appropriate and

suitable strategy, to handle missing values, is to equip the

clustering model with a mechanism able to handle data with

missing values. In our study, this will be achieved by applying

GTRS for three-way clustering.

However, it is still important to mention that, with respect

to the medical experts’ guidelines, some missing values had

to be filled based on the following received recommendations:

• Risk factors which are tied to the vasopressor treatment,

life status, mechanical ventilation, and SOFA score: Re-

place the missing value found at Dayi using the same

non-missing value which is registered at Dayi−1. This

is explained by the fact that if the value has not been

registered at Dayi then this means that there has been

no change in the patient’s risk factor at Dayi−1.

• The label: To ensure the data’s integrity and in accor-

dance with the guidelines of medical experts, some pa-

tients have been updated from cortico-sensitive to cortico-

resistant.

By applying these guidelines, the APROCCHS cohort still

witnesses some missing values. These are distributed over 7

risk factors which are tied to the KNAUS score indicating the

impact of a disease (i.e., sepsis) on the patient’s activities,

the MACCABE score indicating the presence of an additional

fatal disease and its severity, the SOFA score in the last 3 hours

after admission to intensive care, the body temperature at the

entrance to the unit of intensive care, the severity index, the

glycemic index, and the blood lactate level.

These will be taken care of at the GTRS clustering model

level instead of modifying the data itself, i.e., will neither be

imputed nor deleted; as will be explained in the next sections.

2) Game formalization: As described in Section II-B, the

players, the strategies, and the payoff or utility functions,

are the three components which are needed to be defined to

analyze problems with GTRS. The game formalization is as

follows:

a) The objective of the game: The aim of this game is to

improve the clustering performance of datasets with missing

values. As stated in [29], this objective can be achieved by

balancing the accuracy and generality of the clustering, as

described by Equations 6 and 7.

b) The players: The game’s ultimate objective and goal

should be reflected in the players. In this regard, the players

in this game present the clustering’s accuracy and generality
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TABLE I
DISTRIBUTION OF PATIENTS IN APPROCCHS

Cohort APPROCCHS

Group Features Sensitive/Improved Resistant/Not improved Total

Corticosteroid 233 379 612
Placebo

5645
213 409 622

Total 5645 446 788 1234

Characteristic APPROCHS randomized controlled trial

features. Let A denote player Accuracy and let G denote the

player Generality. P = {A, G} represents the player’s set.

c) The strategies: The strategies denote the different

actions that a player can take in a game. To maximize

her/his rewards/benefits, each player adopts a strategy. As

demonstrated in [29], when different thresholds are used in the

game, the properties of accuracy and generality are influenced

differently. Consequently, changes and variations in thresholds

can be considered as feasible strategies. Three strategies are

considered in our context:

• Decreasing the threshold α — defined as (α ↓)

• Increasing the threshold β — defined as (β ↑)

• Decreasing α and increasing β simultaneously — defined

as (α ↓ β ↑)

d) The utility functions: The outcomes of choosing a

specific strategy are measured using a payoff function. The

utility function is defined to reflect a player’s potential perfor-

mance gains or benefits from pursuing a specific strategy. As

previously mentioned, different threshold values effect the two

players A and G. Considering a certain strategy profile, say

(sm, sn) leading to thresholds (α, β), the associated payoffs

of the players are described as follows:

uA(sm, sn) = Accuracy(α, β), (9)

where uA is the payoff function of player A, and

Accuracy(α, β) is defined in Equation 6, and

uG(sm, sn) = Generality(α, β), (10)

where uG is the payoff function of player G, and

Generality(α, β) is defined in Equation 7.

For player A and player G, a value of 1 refers to a maximum

utility while a value of 0 reflects a minimum payoff.

3) The trade-off between accuracy and generality:

a) Determining the Nash equilibrium: The game is

viewed as a competition between the accuracy and generality

measures of clustering. This is highlighted in Table II, where

the table’s rows refer to the strategies of player A and the

columns refer to the strategies of player G. Each cell in

Table II corresponds to a strategy profile, (sm, sn), where

sm represents player A’s strategy and sn represents player

G’s strategy. The goal of each player is to choose a strategy

that configures the (α, β) thresholds in order to maximize

her/his utility. uA(sm, sn) and uG(sm, sn) are the payoffs for

players A and G, respectively, according to the strategy profile

(sm, sn).
The logic in a game is that a player chooses a strategy with

a larger payoff over other strategies with a lower payoff. For

the two-player game under consideration, a strategy profile

will be Nash equilibrium, with respect to the definition given

in Equation 8, if,

Accuracy : ∀sm ∈ SA, uA(sm, sn) ≥ uA(s
′

m, sm), (11)

where (s
′

m ̸= sm), and

Generality : ∀sn ∈ SG, uG(sm, sn) ≥ uG(sm, s
′

n), (12)

where (s
′

n ̸= sn). This signifies that no player will gain from

changing her/his strategy other than the strategy specified by

the profile (sm, sn).
b) Determining the changes in the thresholds: Essen-

tially, there are four ways for changing the thresholds (α, β)
[29]:

1) A single player proposes to decrease the value of α —

denoted as (α−);
2) Both of the two-game players propose to decrease the

value of α — denoted as (α−−);
3) A single player proposes to increase the value of β —

denoted as (β+);
4) Both of the two-game players propose to increase the

value of β — denoted as (β ++);

These four ways can be used to associate threshold pairs

with a certain strategy profile. For example, a strategy profile

with (s2, s2) which is equal to (β ↑, β ↑) is represented as

(α, β ++), since player A and player G propose to increase

the value of β.

4) The learning mechanism defining the values of the

thresholds: A single game run has minimal utility in terms of

finding appropriate values for the (α, β) thresholds. A learning

process will emerge as a result of iteratively changing the

thresholds with the goal of improving the payoffs for the

players. In this regard, the learning rule or criterion is based

on the relationship between threshold modification and the

influence on the players’ utility. This relationship is used to

define the four variables (α−, α − −, β+, β + +). This is

accomplished through the use of an iterative game.

Let (α, β) be the initial thresholds for a particular iteration

of an iterative game. As previously mentioned, the Nash

equilibrium will be utilized to compute and decide the game

solution as well as the associated thresholds; which will be

denoted as (α′, β′). The four variables (α−, α−−, β+, β++)
are calculated based on a fixed percentage of either increasing

or decreasing the strategies’ values in every iteration. For

example, if the initial values of (α, β) = (1, 0), the percentage

of increasing and decreasing the strategies is equal to 5%, and
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TABLE II
PAYOFF TABLE FOR THE GAME.

Generality (G)
s1 = α ↓ s2 = β ↑ s3 = α ↓ β ↑

Accuracy (A)
s1 = α ↓ uA(s1, s1), uG(s1, s1) uA(s1, s2), uG(s1, s2) uA(s1, s3), uG(s1, s3)
s2 = β ↑ uA(s2, s1), uG(s2, s1) uA(s2, s2), uG(s2, s2) uA(s2, s3), uG(s2, s3)

s3 = α ↓ β ↑ uA(s3, s1), uG(s3, s1) uA(s3, s2), uG(s3, s2) uA(s3, s3), uG(s3, s3)

a strategy profile with (s1, s2) which equals to (α ↓, β ↑)
is represented as (α−, β+). The new values of (α, β) =

(0.95, 0.05). The process can be halted once a satisfactory level

of performance has been attained.

IV. EXPERIMENT SETUP

In this section, we will present a comprehensive description

of the experimental setup for the three-way clustering with

the GTRS approach to cluster Corticosteroid sensitivity with

missing values.

A. Considered cohort

The used APROCCHS cohort includes patients who re-

ceived corticotherapy and placebo treatment. A total number of

1233 patients is maintained after selecting the most important

features, applying data enrichment, labeling the data, and

deleting the duplicates (1 duplicate raw was found in the

data and was deleted). In our preliminary study, and based

on a ranking strategy, we worked with only 10 risk factors,

presented in Table III, among the 24 features. The initial

APROCCHS dataset contains 26 instances having missing

values (i.e., 2%) which will form the set M .

B. Experimental Plan, Tests, and Tools

Our experimental protocol is divided into three stages. The

first stage focuses on simulating data with missing values

that aims to answer the question of the performance of the

algorithm when adding more missing values. The second stage

is devoted to exploring the impact of a parameter of the

algorithm. Specifically, we study the impact of changing the

value K of the nearest neighbors component which is part of

the evaluation function e(ck, oi) (see Section II-A). Finally,

in the third stage, various percentages of the strategies’ initial

values are considered to study the influence of these values on

the obtained results. Below is an outline of the three stages:

• Experiment 1: We evaluated the performance of the three-

way clustering approach by using in each experiment

several percentages of the missing values. As a first

investigation, the algorithm was tested on four differ-

ent missing data versions. The rate of missing values

randomly chosen in this regard is based on 5%, 10%,

15%, and 20%. This experiment will enable us to respond

to the following research question (RQ1): How can the

percentage of missing values affect the performance of

the algorithm?

• Experiment 2: The aim of this experiment is to explore

the k nearest neighbors used in calculating the evaluation

function to investigate its impact on the results. For this

purpose, we choose to work with k = 5 and k = 7.

Conducting this experiment will lead us to answer the

following question (RQ2): Does the k nearest neighbors

has an impact on the clustering results?

• Experiment 3: We assessed the choice of the strategies’

initial values percentages and their effect on the obtained

results. In this experiment, the algorithm takes as input a

different set of α−, α−−, β+ and β ++. In our case,

we tried to decrease α and increase β by 7% having

initial values of α− equals to 0.93, α−− equals to 0.86,

β+ equals to 0.07, and β + + equals to 0.14, and by

10% having initial values of α− equals to 0.90, α − −
equals to 0.80, β+ equals to 0.10, and β + + equals

to 0.20. By carrying out this experiment, we will be

able to respond to the following question (RQ3): can the

percentage of increasing and decreasing initial values of

α and β influence the results?

Although the number of iterations is not defined, a maxi-

mum number is given to prevent the algorithm from continuing

in an endless loop if it does not converge. While setting

a maximum iteration of 20, the algorithm often converged

between 3 and 4 iterations, based on the APROCCHS cohort.

As for the clustering part, the k-means algorithm was used

with k=2.

V. RESULTS AND DISCUSSION

A. Experimental results of GTRS approach

The results obtained from different GTRS-based approach

runs with the various percentages of missing values inputs are

shown in Tables IV – VII. The tables present the following

observations:

• From Table IV (and similarly to all other Tables V –

VII), it can be observed that in most runs the algo-

rithm converge in the third iteration. We can also see

how the thresholds are altered across the game’s several

iterations and how this affects generality and accuracy.

For the experiment with 5% missing values, the initial

thresholds of (α, β) = (1, 0) are set before the game

starts, resulting in an accuracy of 0.98 and a generality

of 0.88. However, in the second iteration, the accuracy

and generality are still the same, while the threshold α is

decreased and β increased by 0.14. For the experiment

with 10% missing values, the accuracy is stable while

the generality increased from 84% to 93%. For 15% and

20% missing values, we can notice a slight decrease in

the accuracy (for 15% missing values: from 1 to 98%,

for 20% missing values: from 99% to 96%) with an
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Fig. 1. Main functioning of the three-way clustering with Game-theoretic rough sets

TABLE III
CONSIDERED SET OF RELEVANT FEATURES AT DAY 0

Reference Description Format

DATINF Diagnosis date Precision = JJ/MM/YYYY, Min = DATHOSP (Hospital ad-
mission date), Max = Current date

SITINF Infection location 0 = Lung, pleura, 1 = Peritoneal, 2 = Urogenital, 3 = Central
Nervous System (CNS), 4 = Endocarditis, mediastinum, 5 =
Sepsis, 6 = Soft tissue, 7 = Bones and joints, 8 = Other

SEX Indicates patient sex 1 = Male, 2 = Female

PATWGHT Indicates the weight of the patient Min = 36, Max = 154

ORIGIN Indicates the patient ORIGIN 1 = City, 2 = Hospital, 3 = Institution

AGE Indicates patient age Min = 18, Max = 97

KNAUS_J0 Activity and medical follow-up in the six months
prior to admission

1 = Stage D Major activity restriction due to illness, including
bedridden or hospitalized patients, 2 = Stage C Chronic illness
causing significant but not total activity restriction, 3 = Stage
B Moderate or moderate activity limitation due to illness
(limited work activities), 4 = Stage A Good health, no activity
limitation

MACCABE_J0 Description of the patient’s condition before the
episode leading to ICU

1 = Absence of underlying disease or underlying disease
not life-threatening, 2 = Underlying disease life-threatening
within 5 years, 3 = Underlying disease estimated to be fatal
within one year

SOFA_ADM Indicates the worst case value up to 3 hours after
admission

Min = 2, Max = 16

IGSII_ADM_TYP Indicates the admission type of the patient 0 = Scheduled surgery, 6 = Medical, 8 = Unscheduled surgery

increase in generality (for 15% missing values: from 87%

to 94%, for 20% missing values: from 83% to 91%) –

a trade-off maintaining the required balance. To explore

the research question RQ1 of whether the percentage of

missing values affects the performance of the algorithm,

we performed the first experiment. By examining the

outcomes of the GTRS algorithm via results presented in

Tables IV – VII, when increasing the number of randomly

chosen missing values, the trade-off accuracy/generality

will not be lost.

• In the results presented in Table V, we have increased

the value of k from 5 to 7. In comparison with the initial

thresholds (α, β) = (1, 0) and when testing with only

5% of missing values, we can observe that there is a

slight decrease in accuracy (i.e., 1%) while the generality

improved with 9% reaching 95%. When testing with 10%

and 20% missing values, the GTRS algorithm shows a

minor reduction in accuracy varying from 1% to 3%

with an increase in generality (between 8% and 13%).

Thus, the GTRS model delivers an acceptable trade-

off between accuracy and generality. For the experiment

with 15%, and while comparing the results to the 5%
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missing values, we can note that there is an increase

in the accuracy showing 98% (97% with 5% missing

values) with a 1% decrease in generality. In order to

investigate the research question of whether the value of

k nearest neighbors has an impact on the results RQ2,

Experiment 2 was carried out. Through the interpretation

of the results obtained from the GTRS algorithm, when

increasing the percentage of missing values, and by

increasing k to 7, we can notice a slighter loss in the

trade-off accuracy/generality in comparison to k = 5.

• Table VI and Table VII show the results obtained when

varying the strategies’ initial values with decreasing α

and increasing β by 10% having initial values of α−
equals to 0.90, α−− equals to 0.80, β+ equals to 0.10,

and β++ equals to 0.20. Consistent with the findings in

Table IV, from Table VI, we can notice that from 5% to

15% of missing values the accuracy demonstrates stability

in its values with 98% while the generality presents

a significant increase varying from 88% to 94%. For

20% missing values, the obtained results show a slight

decrease in accuracy with 3% (reaching 96%) and a slight

increase in generality with 2% (reaching 91%).

As was the case in Table V, by analyzing the obtained

results in Table VII, we can notice that when compared

to the initial thresholds (α, β) = (1, 0) and tested with

only 5% of missing values, we observed a slight decrease

in accuracy (by 1%), but a significant improvement in

generality (by 9%). Moreover, for experiments with 10%,

15%, and 20% one can observe that accuracy values

were decreased by approximately 2% while generality

increased by up to 14%. Also, for instance, with initial

values equal to 7%, k = 5, and 20% of missing values

(Table IV), the final values are 96% and 91% for accuracy

and generality, respectively. With initial values equal to

10%, k = 5, and 20% of missing values (Table VI),

the final values are the same registering 96% and 91%

for accuracy and generality, respectively. To answer the

third research question RQ3 to what extent can variations

in the percentage of initial values of α and β, whether

increased or decreased, impact the results, Experiment

3 was implemented. By looking at the obtained results

and interpreting them (Table IV, V, VI, and VII), it is

noticeable that the final output of the GTRS algorithm

is relatively stable regardless of the initial values of the

strategies.

As expected, from the different tables, when using k = 5, the

execution time is observed to be lower than when using k =

7, indicating that a smaller value of k can lead to faster com-

putations. However, for more exploration, the execution time

can be minimized by using several techniques such as Multi-

threading [38], Single Instruction Multiple Data (SIMD) [39],

and Open Multi-Processing (OpenMP) [40]. By employing

these parallelism techniques, the GTRS algorithm execution

time can be reduced, leading to marked improvements in both

its performance and efficiency.

B. Three-way clustering approach evaluation

The previously obtained results show the effectiveness of

the three-way clustering approach with GTRS in handling

missing values. Therefore, in almost all the experiments, for

clustering CS responsiveness, the trade-off accuracy/generality

is maintained. The best trade-off found is with an accuracy

value of 97%, and the generality presents 95%; with k =7 and

5% of missing values.

The final step (Figure 1 (3,5)) in the GTRS algorithm is to

evaluate objects with missing values in M using Equation 4

and then select the best values of (α, β) and test them on the

set M with missing values. As mentioned in Section IV-A, set

M contains 26 patients having missing data (i,e., only 2%).

Table VIII summarizes the obtained results after applying the

three-way clustering approach on the set M and using k = 7

as value of k nearest neighbors. It can be observed that the

accuracy/generality trade-off was preserved, presenting 96%

accuracy and 92% generality. The results revealed that the best

thresholds values for (α, β) = (0.58, 0.42). These final (α, β)

values are used for assigning objects to different regions of a

clusters as follows:

Inside(ck) = {oi ∈ U |e(ck, oi) ≥ 0.58}, (13)

Outside(ck) = {oi ∈ U |e(ck,oi) ≤ 0.42}, (14)

Partial(ck) = {oi ∈ U |0.42 < e(ck, oi) < 0.58}, (15)

.

After applying Equations 13, 14, and 15 to assign objects

in set M to clusters, we observed that the algorithm’s non-

deterministic nature resulted in some sepsis patients being

found in the partial region. This means that these sepsis pa-

tients could not be clustered to a specific region as CS(placebo)

sensitive(improved) or resistant(not improved); despite that we

had their correct label in the cohort. In addition to this, when

we examined the patients clustered by GTRS, we found some

false negatives. This suggests that the results were not entirely

deterministic, and further statistical analysis is required to

validate them. One possible explanation to these preliminary

results is that we have only considered 10 risk factors out of

the 24 variables. Despite this, we still can consider that the

initial results in terms of trade-off accuracy and generality are

promising and indicate that GTRS has potential in addressing

the issue of missing data in sepsis patients.

VI. CONCLUSION

The aim of this paper is to investigate the issue of clustering

with missing values in clinical data using a three-way approach

with GTRS. The study utilized data from the APPROCHS

cohort, which included 1240 sepsis patients enrolled in a

randomized controlled trial, and collected by clinicians from

APHP. An important challenge in implementing this approach

was setting appropriate thresholds to determine the three types

of decisions. GTRS was found to be a promising alternative

for clustering objects with missing values.
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TABLE IV
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 5 AND INITIAL VALUES = 7%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time

1 1 0 0.98 0.88
5% 5 7%

2 0.86 0,14 0.98 0.88
22 min

1 1 0 0.98 0.84
2 0.86 0.14 0.98 0.8410% 5 7%
3 0.72 0.28 0.98 0.93

47 min

1 1 0 1 0.87
2 0.86 0.14 1 0.8715% 5 7%
3 0.72 0.28 0.98 0.94

79 min

1 1 0 0.99 0.83
2 0.86 0.14 0.99 0.8320 % 5 7%
3 0.72 0.28 0.96 0.91

154 min

TABLE V
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 7 AND INITIAL VALUES = 7%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time

5% 7 7%

1 1 0 0.98 0.86

28 min
2 0.93 0.07 0.98 0.86
3 0.72 0.28 0.98 0.89
4 0.58 0.42 0.97 0.95

10% 7 7%

1 1 0 0.99 0.8

54 min
2 0.86 0.14 0.99 0.8
3 0.72 0.28 0.96 0.88
4 0.58 0.42 0.95 0.93

15% 7 7%
1 1 0 1 0.87

78 min2 0.86 0.14 1 0.87
3 0.72 0.28 0.98 0.94

20% 7 7%

1 1 0 0.99 0.8

180 min
2 0.86 0.14 0.99 0.8
3 0.72 0.28 0.99 0.85
4 0.58 0.42 0.96 0.93

TABLE VI
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 5 AND INITIAL VALUES = 10%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time

5% 5 10% 1 1 0 0.98 0.88 26 min

1 1 0 1 0.82
2 0.8 0.2 0.98 0.910% 5 10%
3 0.66 0.34 0.98 0.9

50 min

1 1 0 1 0.87
2 0.8 0.2 0.98 0.9415% 5 10%
3 0.66 0.34 0.98 0.94

79 min

1 1 0 0.99 0.82
2 0.80 0.20 0.96 0.9120 % 5 10%
3 0.66 0.34 0.96 0.91

104 min

To evaluate the effectiveness of the GTRS model, three

experiments were conducted. In the first experiment, the

algorithm was tested with varying percentages of missing

data, and the results showed that accuracy and generality can

be preserved despite an increase in the number of missing

values. The second experiment examined how the selection

of the k nearest neighbors in the evaluation function affected

the results. The third experiment evaluated the impact of the

percentages of initial values of the strategies on the results,

and the stability of the final output of the GTRS algorithm

was apparent as it did not significantly vary with the initial

values of the strategies.

As future work, we aim to use four clusters, instead of two,

to further represent sepsis patients (Cortico-sensitive, Cortico-

resistant, improved status with placebo, and unimproved status

with placebo). This may improve the performance of the

algorithm. Also, we aim to explore alternative approaches

such as Reinforcement learning [41]. This approach would

consider accuracy and generality as agents, and increasing

and decreasing α and β strategies as actions to be taken in

the environment. Players would learn a policy through trial

and error that maximizes their rewards. Additionally, one can

expand the evaluation of the results achieved by taking into

account the quality of the model to address concerns related
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TABLE VII
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 7 AND INITIAL VALUES = 10%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time

1 1 0 0.98 0.86
2 0.9 0.1 0.98 0.865% 7 10%
3 0.7 0.3 0.97 0.95

28 min

1 1 0 1 0.78
2 0.8 0.2 1 0.8610% 7 10%
3 0.66 0.34 0.98 0.92

39 min

1 1 0 1 0.83
2 0.8 0.2 1 0.8915% 7 10%
3 0.66 0.34 0.99 0.94

78 min

1 1 0 0.99 0.80
2 0.8 0.2 0.99 0.8520% 7 10%
3 0.66 0.34 0.96 0.93

106 min

TABLE VIII
BEST (α, β) VALUES EVALUATION ON THE SET M WITH MISSING VALUES

Missing values k Iteration Alpha Beta Accuracy Generality

1 1 0 0.95 0.85
2 0.86 0.14 0.95 0.85
3 0.72 0.28 0.95 0.85

2% 7

4 0.58 0.42 0.96 0.92

to overlearning [42], overfitting [43], and the assessment

parameters used to measure the model’s performance.
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