


Abstract—The testing is an integral part of the software

development. At the same time, the manual creation of

individu-al test cases is a lengthy and error-prone process.

Hence, an intensive research on automated test generation

methods is ongoing for more than twenty years. There are

many vastly dif-ferent approaches, which can be considered

automated test case generation. However, a common feature is

the generation of the data for the test cases. Ultimately, the test

data decide the prog-ram branching and can be used on any

testing level, starting with the unit tests and ending with the

tests focused on the behavior of the entire application. The test

data are also mostly independent on any specific technology,

such as programming language or paradigm. This paper is a

survey of existing litera-ture of the last two decades that deals

with test data generation or with tests based on it. This survey

is not a systematic literature review and it does not try to

answer specific scientific questions formulated in advance. Its

purpose is to map and categorize the existing methods and to

summarize their common features. Such a survey can be

helpful for any teams developing their methods for test data

generation as it can be a starting point for the exploration of

related work.

Index terms—Software testing, test case generation, test data

generation, papers survey.

I. INTRODUCTION

ESTING is an essential part of software development.

At the same time, the manual creation of individual test

cases is a lengthy and error-prone process. In many real-

world projects, there is not enough time to ensure sufficient

testing of the developed software product, which leads to its

lowered quality. The programmers of the test cases can also

miss some inputs, which leads to unexpected behavior of the

software product. Hence, an intensive research of automated

test generation methods is ongoing for more than twenty

years, as can be seen, for example, in [1] or [2].

T

In the existing literature, automated test case generation is

used or at least proposed on various testing levels. These

levels include unit testing focused on the functionality of

 This work was supported by Institutional support for long-term

strategic development of research organizations.

isolated features of the developed application (usually a

method, procedure, or function), but also the regression and

integration testing focused on the correct cooperation of the

individual parts of the application. Automated test case

gene-ration can also be used during the high-level testing of

the functionality of the entire application and its adherence

to the specified requirements. Automated test case genera-

tion is tempting and seems to be promising, as it should re-

duce the time the programmers spend on manual test case

preparation. Nevertheless, there are several limitations.

First of all, it is difficult to automatically verify that the

tested application or its part provides correct results. This

would require generating the expected outputs for all the

generated inputs, which is an inherently difficult task.

Never-theless, this ability is crucial for the usage of the au-

tomated test case generations in real software projects. How-

ever, it should be noted that, in many cases, it is possible to

detect the incorrect behavior of an application even without

the known correct outputs. An obvious example is when the

application crashes, but there can also be limitations of the

outputs, which can be used for incorrectness checking (e.g.,

the calculated volume of a cube cannot be negative).

Another issue, which is often discussed (e.g., in [3]) is re-

lated to the combinatorial explosion. Consider a unit test of a

method with several parameters where various combinations

of the parameters should be considered. Even when the pa-

rameters can be grouped into several discrete classes, the

number of all the possible combinations grows very fast with

the growing number of parameters and classes. This problem

is even more pronounced in higher-level tests, when multiple

methods are executed during one higher-level functionality

testing. Various settings and running environments of the

tested application only worsen this problem. Hence, even in

tools, which are used in real projects, such as EvoSuite or

Randoop [4], the number of generated test cases can be very

high, which leads to long running times. This partially limits

the usability of automated testing. Nevertheless, the problem

can be mitigated by employing efficient test case selection in

Current Trends in Automated Test Case Generation

Tomas Potuzak
0000-0002-8140-5178

Department of Computer Science and Engineering/

NTIS – New Technologies for the Information Society,

European Center of Excellence, Faculty of Applied

Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: tpotuzak@kiv.zcu.cz

Richard Lipka
0000-0002-9918-1299

NTIS – New Technologies for the Information

Society, European Center of Excellence/Department

of Computer Science and Engineering, Faculty of

Applied Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: lipka@kiv.zcu.cz

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 627–636

DOI: 10.15439/2023F9829

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 627 Thematic track: Software Engineering for

Cyber-Physical Systems

order to generate and run the test cases, which provide the
highest expected code coverage and/or have the highest
expected error detection rate. The increasing power of
contemporary computers is also helpful, as running a huge
number of tests is more and more feasible.

The last issue, we would like to mention, is the validation
of the automated test-generating methods themselves. Seve-
ral different approaches for the evaluation of the automated
test-generating methods can be found in the existing
literature. From the practical usability of the methods in real
projects point of view, there are two most important
questions – how realistic the methods are and how well they
perform in finding different types of realistic errors.

There are many different approaches, which can be consi-
dered automated test case generation. However, a common
feature is the generation of the data for the test cases. Ulti-
mately, the test data decide the program branching and can
be used on any testing level, from the unit tests to the tests
focused on the behavior of the entire application. The test
data are also mostly independent on any specific technology,
such as programming language or paradigm.

This paper is a survey of existing literature of the last two
decades that deals with automated test data generation or
with tests based on it. This survey is not a systematic literatu-
re review and it does not try to answer specific scientific
questions formulated in advance. Its purpose is to map and
categorize the existing methods and to summarize their
common features. Such a survey can be useful for any teams
developing their methods for test data generation as it can be
a starting point for the exploration of related work.

The remainder of this paper is structured as follows.
Related surveys are discussed in Section II. The selection of
the papers for this survey is described in Section III. The
existing methods for test data generation are discussed in
Section IV. Their common features and trends are described
in Section V. Threats to validity are described in Section VI.
The conclusions and the future work are in Section VII.

II. RELATED WORK

There are multiple studies, which survey the existing
testing approaches. Our survey is intended to complement
them from the automated test data generation point of view.

A. Existing Methods Studies

Ref. [5] summarizes the methods for test generation based
on control flow analysis, automatic random data generation,
and program execution analysis and/or the methods designed
to produce tests, which maximizes the code coverage. The
majority of the methods described in this survey is designed
to deal only with simple program constructions and are often
based on the models of the program instead of real programs.
This is quite understandable, since the survey is rather old
(from 1999). Nevertheless methods based on the same
principles repeat again and again in more modern papers,
only the methods or at least the examples, on which the

methods are demonstrated, are usually more complex. For
example, a more recent orchestrated survey [6] is focused on
adaptive random testing among other methods.

A thorough review in [7] focuses on the papers dealing
with search-based test case generation. The review makes it
obvious that there is a constant increase in the number of
testing-related publications between 1995 and 2007. The
main focus of the review is the quality of the verification of
the test generation methods. It is concluded that there is a
lack of a standardized rigorous method to perform, asses,
and compare the individual methods. Moreover, in many
papers, there is even not enough empirical data to perform
any comparison. It is also pointed out that, while many
methods can achieve relatively high code coverage, it is not
clear, whether the tests covering the code are able to find
errors in the code. Another survey focused on search-based
test case generation can be found in [8].

The search-based testing with an emphasis on mutation-
based methods is also the theme of the survey in [9]. The
methods described in papers published between the year
1996 and 2014 are based on genetic algorithms, ant colony
optimization, simulated annealing, or hill climbing. The
survey discusses also the relations and development of the
methods in multiple papers. There are several conclusions.
One is that the above-mentioned meta-heuristics significantly
reduce the number of generated test cases without negative
effects on the code coverage. Another is that the automated
test generation methods are not designed for the concurrency
problems. The last conclusion is that the comparability of the
automated methods is difficult, similarly to [7].

The review in [10] focuses on the dynamic symbolic exe-
cution. There are twelve tools, which are compared based on
various features, such as the number of publications dedica-
ted to each tool, the utilized method for automated test gene-
ration, and the environment, in which the tool can be used.
The ability of the tools to detect errors in the software is not
among the investigated features. This feature is investigated
in [11], which is focused on the methods utilizing aspect-
oriented programming (namely Wrasp, Aspectra, Raspect,
and EAT). One of the conclusions is that the structural evo-
lutionary testing (EAT) shows the most promising results but
at the cost of greater effort compared to random testing.

The short survey in [12] focuses on papers dealing with
test data generation. It discusses various types of data
generation from their architecture and usage points of view.
The advantages and disadvantages of the methods as well as
the best practices are discussed.

Although the majority of the surveys described above are
focused on a technology or a set of technologies, there are
also surveys focused on a specific type of software. An
example is a systematic literature review [13], which deals
with automated functional testing of mobile applications.
Another example is a study [14], which discusses application
of several different techniques for verification of flight
software in Jet Propulsion Laboratory.

628 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

B. Practical Usability Studies

There are also studies, which focus on the usage of the
automated testing methods in real projects, such as [15]. This
study is not focused on published papers, but rather descri-
bes how the testing methods are used in real software pro-
jects and how the automated testing methods would improve
the situation. The study has a bit darker tone than the studies
mentioned in Section II.A as it points out that there is a lot of
additional effort necessary when a promising method descri-
bed in a paper should be used in a real industry project.

The study described in [16] is focused on the comparison
of existing tools for automated test generation, such as Rand-
oop, AutoTest, AnalitiX, Jtest, and so on. This study descri-
bes how the comparison of different methods for automated
test generation should look like – precisely the aspect, which
was mentioned as missing in [7] and [9]. In [16], a complex
benchmark consisting of over 30 cases is described, which
enables to empirically determine whether the automated test
generation methods are able to uncover specified conditions.
The results from this benchmark can be used for comparison
of the methods. Although this benchmark is a good basis for
the comparison of the automated test generation methods, it
still utilizes synthetic cases, not real software [16].

An unorthodox practical study is the Java Unit Testing
Tool Contest, which is held annually and its results are repo-
rted at various conferences (e.g., in [17] or [18]). The contest
is intended for test generation tools designed for Java. Their
ability to find errors in programs is tested using a bench-
mark consisting of real-life classes taken from various open-
source GitHub projects. The contesting tools are evaluated
based on the code coverage and mutation score [17], [18].

III. SURVEY DESCRIPTION

This paper is an intermediate result of our exploratory
work to create a substance for a systematic literature review,
which is the main aim of our current and future work (see
Section VII). Although this intermediate result is only a
(non-systematic) survey, the collection of the primary studies
was performed in a rigorous manner described in following
subsections, as the collected papers will also form part of the
basis for our future systematic literature review.

A. Papers Searching

As the sources of the papers, we used the IEEE Xplore1
library, which includes full texts of a large number of techno-
logy-related papers from both conferences and journals and
the ScienceDirect2 library, which includes papers from a
large number of technology-related journals. Due to the
institutional subscription, we have access to the majority of
the full texts of the papers contained in both libraries, which
is essential for the survey. Both libraries enable basic and
advanced searching, but the available filters are quite

1 https://ieeexplore.ieee.org
2 https://www.sciencedirect.com

different. For this reason, we used different settings for each
library to obtain manageable numbers of relevant results. We
made several attempts with various filters and search strings
before we reached the final settings for both libraries.

The final search string for the IEEE Xplore library was
“automated test data generating”. It was used together with
two filters. The year of publication had to be from 2000 to
2022 and the publication topic had to be “Program Testing”.
Using this setting, 461 results were obtained. The final string
for the ScienceDirect was “automated test data generating
program testing”. It was used with three filters. Similarly to
IEEE Xplore, the year of publication had to be from 2000 to
2022. Additionally, the subject area had to be “Computer
Science” and the title of the paper had to contain “test data”.
Using this setting, 58 results were obtained. The searching in
both databases was performed in April 2023.

B. Papers Filtering

From the search results, only the papers focused on the
issues of automated test data generation for software testing,
were selected. In first round, the selection was performed
based on the titles. In second round, the selection was
performed based on the abstracts, but only from the papers,
which passed the first round. After the second round, there
were 179 papers left (see Table I). The full texts were
downloaded and investigated only for the 179 papers, which
passed the second selection round. From these papers, some
were eliminated from further processing, because, despite the
promising title and abstract, the theme of the paper was
outside the scope of this survey. Of the remaining papers,
only 67 were included into the study, because they best
represent the current trends in test data generation.

It should be noted that many of the obtained papers were
already processed during our preliminary work with different
search strings and filter settings in 2022. Hence, only the
newest papers and papers not obtained previously due to
different search settings of the libraries had to be processed.
This enabled us to finish the paper in a relatively short time
after the final search was performed.

C. Aims of the Survey

As this survey is intended to serve as a starting point for
the exploration of related work for research teams dealing
with automated test data generation, the aims of the survey
can be summarized as follows:
• To categorize existing automated test data generation

methods (see Section IV).
• To summarize and discuss common features of the

methods (including their verification, implementation
availability, testing level, and target platform) and
observable trends (see Section V).

TABLE I SUMMARY OF THE NUMBERS OF SELECTED PAPERS

Library Search results count Selected papers count
IEEE 461 136
ScienceDirect 58 43

TOMAS POTUZAK, RICHARD LIPKA: CURRENT TRENDS IN AUTOMATED TEST CASE GENERATION 629

IV. EXISTING METHODS IN LITERATURE

The categorization of the surveyed automated test data
generation methods was performed based on the primary
technology used for the test data generation. This categoriza-
tion enables the readers to focus mainly on the papers related
to the technology of their interest. It is also consistent with
the existing surveys, as they are often focused on a relatively
narrow set of technologies (see Section II). The papers of
individual categories are discussed in following subsections.

A. Pseudorandom Generation-based Methods

The most basic approach, how to obtain test data, is to
generate them using pseudorandom generators. Though the
basic method can give relatively good results (e.g., code
coverage) for number inputs, its usage for a more complex
(and valid) data, such as specific strings or objects is
difficult. Nevertheless, pseudorandom number generation is
often combined with other approaches. In [19], the stochastic
process models of the objects and their random initiation is
used together with random method invocation.

In [20], the pseudorandom generating is combined with
the constraint solving for the generation of test data for
relational database schemas. The testing of object-relational
mapping (ORM) based on the pseudorandom generation and
formal models is described in [21]. In [22], data description
using XML and regular expressions is used together with
pseudorandom generating to generate invalid and atypical
testing inputs for robustness testing.

B. Control-Flow-based Methods

The control-flow-based methods create control-flow
graphs of the tested program using, for example, the static
analysis. From these graphs, the tests are generated. A
common aim is to achieve a high code coverage, which can
be observed for example in [23], [24], or [25].

The method described in [24] is rather basic. It generates
input data for the tested program in order to ensure the
execution of all branches of the program. The number of
generated test cases is limited by the elimination of already
explored paths in the control-flow diagram. However, the
method is limited to the numerical inputs only. A similar
limitation can be also observed in [23].

The control-flow-based methods are often used for web
applications. The method described in [25] is designed for
the testing of the frontend of web-based applications. It ana-
lyzes the content and structure of the investigated website,
creates the possible paths of the user, and generates the input
testing data for the web forms in order to ensure path
coverage. In [26], a method for the generation of test data for
testing REST APIs is described. The connected control flow
graphs are traversed in order to find patterns of variable
usage to produce usable variable values. Another example of
the usage for the web application can be found in [27].

The control-flow-based methods are also quite often com-
bined (among other technologies) with the pseudorandom

generation of the input data. In [28], stochastic hill climbing
is used for the finding the probabilistic distribution. This dis-
tribution is then used for the generation of the pseudorandom
input testing data. The combination of control-flow diagrams
and pseudorandom data generation can be found also in [29].

C. Specification-based Methods

The specification-based methods utilize a form of the
specification of the investigated software to generate the test
cases. This approach is tempting, as it should compare the
actual behavior of the software with the expected behavior
given by its specification. The existing methods utilize the
UML models (e.g., in [30], [31], [32], or [33]), specification
of use cases (e.g., in [31], [34], [35], or [36]), or contracts
(e.g., in [37]). Program states description is utilized in [38].

In [30], tests of the entire system are generated from the
UML use case and state diagrams. From these diagrams, a
usage model is created, which is then used as the basis for
the tests. In [32], the activity diagram, the sequence diagram,
and the system testing graphs are used to create a
combination graph, which is then explored using a modified
Depth-First Search (DFS) to generate expected test cases.
The contracts in [37] are used similarly to the use case dia-
grams in [30]. They are transformed into models describing
the expected behavior of the investigated program. From this
form, the executable test cases are created.

The method described in [35] utilizes textual use case
specifications for the generation of acceptance tests. The
method is based on natural language processing (NLP) and
constraints solving. In [36], the use cases are used to
generate a control flow graph and a NLP table, which are, in
turn, used for test case generation. The method described in
[39] is designed for process-driven applications. The method
utilizes analysis of the application and the specification of
tests to generate test codes.

D. Program Execution Analysis Methods

The methods based on the program execution analysis
utilize the observation of the application behavior in order to
generate test cases. There are two main approaches – the
approaches based on the instrumentation and on the dynamic
symbolic execution (also known as concolic testing).

First approach is based on instrumentation of the tested
application in order to enable a simple observation of its
behavior. Examples include wrappers around tested functi-
ons or methods (e.g., in [40]) or probes near important points
of the program, such as control structures (e.g., in [41]),
usage of augmented virtual machines (e.g., LLVM [42]), or
usage of runtime instrumentation (e.g., in [43]).

Second approach is used for example in [44], [45], [46],
[47], [48], or [49]. A dynamic symbolic execution is used in
[45] to observe the behavior of the tested application. This
observation is used for checking whether new randomly
generated input data lead to better path coverage than
already stored paths. In [48], the dynamic symbolic
execution works with additional attributes enabling to check

630 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

the efficiency of the paths produced based on the random
input data. It is also possible to check whether the expected
boundary values described by the contracts are observed. In
[50], the dynamic symbolic execution is used for the testing
of C++ Qt Framework classes. A source code preprocessing
phase is used to find constructors of Qt classes parameters. A
similar approach is used in [51], but for C++ templates.

In [52], automated guided symbolic execution combined
with constraint solving is used to avoid exploring useless
paths in the program. The method is used for system vulnera-
bility detection. In [44], preprocessing of enterprise applica-
tions to enable usage of existing symbolic execution tools for
their testing is described. In [53], the tested program is trans-
formed into a set of constraints, which are then solved using
a symbolic reasoning engine. So, the approach resembles the
dynamic symbolic execution. The evaluation of the CREST
concolic testing tool’s ability to find real-life errors in real
embedded applications is described in [54]. In [43], a conco-
lic test generation tool is combined with the automatic gene-
ration of test cases from a formal description of the program
(e.g., database table definitions, process-flow diagrams, etc.).

E. Data-Description-based Methods

In some papers, the described methods are not focused on
a program, but rather on the specification of the input testing
data. This approach is quite common in relation to the incre-
asing number of web-based applications and with the necess-
ity to test their text-based APIs. The frequently used descrip-
tion formats include the Web Services Definition Language
(WSDL) used for example in [55], [56], and [57] or the
JavaScript Object Notation (JSON) used for example in [58].
XML Schema Definition (XSD) is used in [59].

An interesting comparison is described in [57] where a
realistic WSDL-based data set is compared to a fully random
data set. The conclusion is that the utilization of realistic data
leads to a higher code coverage. In [53], a method for gene-
rating complex interconnected data from a WSDL specifica-
tion is described. The method enables to generate both valid
and invalid input data. In [60], a method for the preparation
of the test data for web forms utilizes an ontology and types
of the fields of the web form. In [61], existing data and rules
for their converting were used for testing a data warehouse.

A quite different approach is used in [62]. It uses static
analysis of existing tests for mining of literals, which can be
suitable as input values in generated tests in a specific
domain. Yet another different approach is described in [63].
There, the test cases are generated from inputs specification
in natural language. Natural language processing (NLP) and
key phrases detection are employed for this purpose.

F. Search-based Methods

A common aim of the search-based methods is to provide
high code coverage with a relatively low number of
generated test cases. These methods typically do not rely on
the knowledge of the program structure, but rather employ
various search meta-heuristics to find efficient input test

data. Regardless of the utilized meta-heuristic, there must be
a way to evaluate the solutions found by the heuristic. Hence,
these methods are combined for example with models of the
tested program behavior, such as the control flow [64] and
event flow [65], or with the program instrumentation [66].

The commonly used meta-heuristics include genetic algor-
ithms, which are employed, for example, in [67], [68], [69],
[70], [71], or [72], ant colony optimization (e.g., in [73]), or
particle swarm optimization (e.g., in [74] or [75]). A genetic
algorithm is used for test data generation for unit testing of
Java programs in [67]. In [76], a genetic algorithm is combi-
ned with grammar-based fuzzing to generate highly structu-
red testing input data. In [77], a genetic algorithm is combi-
ned with random search and database instrumentation to
generate test data for SQL queries testing. In [78], a genetic
algorithm, an evolutionary algorithm, and an alternating vari-
able method combined with an Object Constraint Language
(OCL) description of constraints are investigated.

In [73], the ant colony optimization is employed to
achieve higher branch coverage with a relatively small set of
testing data. The method is based on the simulation of the
pheromone path and is reported to provide better branch
coverage than a standard genetic algorithm or particle swarm
optimization. In [74], the particle swarm optimization is
combined with formal specifications (written in SOFL) and
mutation testing. Improved particle swarm optimization is
also employed together with predicate functions and path
similarity calculation in [75] for test case generation. An
unspecified meta-heuristic is employed in [79] together with
constraint solving of manually added constraints.

G. Machine-Learning-based Methods

The methods based on machine learning usually utilize
artificial neural networks (ANNs) for the test data generati-
on. In [80], a neural network is used for black-box testing of
the graphical user interface (GUI) of Android applications.
The input of the neural network is a set of screenshots of the
tested application. In [81], generative adversarial networks
are employed for automated test data generation. A neural
network for test generation, which uses the execution trace of
the program as an input, is employed in [82]. In [83], the
dataset for the neural networks training for source code vul-
nerability detection is prepared using a mutation approach.

In [84], two approaches for test oracle generation are
described. One is based on an artificial neural network and
the second is based on data mining from decision trees. The
advantages and limitations of both approaches are discussed.
In [85], no artificial neural network is used. Instead, random
forest, which is a generalization of tree-based classification,
is employed for predictive mutation testing.

V. COMMON FEATURES OF EXISTING METHODS

Regardless of the technology utilized by the methods
described in Section IV, there are common features and
issues of these methods discussed in following subsections.

TOMAS POTUZAK, RICHARD LIPKA: CURRENT TRENDS IN AUTOMATED TEST CASE GENERATION 631

A. Methods Verification

The lack of verification possibilities or of standard ways
how to compare various methods is mentioned in several
works (e.g., in [7] or [9]). Based on the investigated papers,
it can be concluded that an objective comparison and assess-
ment of the methods cannot be done by using the text of the
papers only. Simply, there is not enough information and the
provided examples and technologies are quite often vastly
different. Some papers (e.g., [29]) contain only a very gene-
ral description of the verification or testing of the proposed
method. Some papers (e.g., [33]) contain no testing at all and
focus solely on the description of the proposed method.

Nevertheless, some papers provide means for assessing
the quality of the described methods, which are “above aver-
age”. For example, in [38], [49], [61], or [78], very thorough
descriptions of the evaluation process of the proposed met-
hods can be found. It is reported that the evaluation process
includes tests performed on realistic programs with actual
errors found by the methods. This is in contrast with the
majority of the paper, in which the methods are often demon-
strated on quite simplified examples (e.g., in [67] or [75]).

B. Implementation Availability

It would be beneficial if the implementations of the met-
hods described in individual papers were available for down-
load and further trials. If this is not possible, a complete data
set with data supporting the quality of the described method
would be also quite informative. However, from the investi-
gated papers, the majority does not enable to perform a repli-
cation study without a reimplementation of the methods from
the description in the paper. Of the 67 primary studies
referred in this survey, there were only 15 studies with direct
links to tools with implementation of the described methods.

From the available tools, 11 tools are provided in the form
of GitHub repositories (see Table II) and the remaining 4
tools have dedicated websites. The website of the CREST
[54] also contains a link to the GitHub repository along with

TABLE II DIRECTLY AVAILABLE TOOLS

Ref. Tool name Link
[35] UMTG https://sntsvv.github.io/UMTG
[41] Ocelot https://github.com/ocelab/ocelot
[54] CREST https://www.burn.im/crest/
[43] CATG https://morioh.com/p/bfdc4686b614
[62] TestMiner https://github.com/lucadt/testminer
[72] DCRTT https://www.gsse.biz/products/DCRTT
[77] EvoSQL https://github.com/SERG-Delft/evosql
[79] SDG https://people.svv.lu/tools/SDG

[20] DOMINO
https://github.com/schemaanalyst/
schemaanalyst

[22]
Data-
Generators

https://github.com/simonpoulding/
DataGenerators.jl

[21] CYNTHIA https://github.com/theosotr/cynthia
[80] Deep GUI https://github.com/Feri73/deep-gui

[82] Agilkia
https://github.com/PHILAE-
PROJECT/agilkia

[85] PMT
https://github.com/sei-pku/
PredictiveMutationTesting

[19] SDgen https://github.com/AussieGuy0/Sdgen

Fig. 1 Percentage of individual testing levels in primary studies

a downloadable .zip file. The website of the CATG [43]
contains downloadable .jar files. The method described in
[72] is implemented in the DCRTT, which appears to be a
commercial product, as we were unable to find direct
download links on the website. Finally, the website of the
SDG [79] contains downloadable .zip file. As of May 21
2023, all the links are functional. The available tools are
summarized in Table II.

C. Testing Level

As it was stated in Section I, the automated test case
generation methods exist for various testing levels. From the
primary studies referred in this survey, the vast majority
(specifically 39 papers) was focused on unit testing (see
Fig. 1), for example [19], [23], [27], [59], or [69]. One of the
possible reasons could be that the methods are often
demonstrated on quite simple and/or short examples (see
Section V.B). Short examples correspond well to unit tests,
which usually deal with relatively short part of the source
code with limited functionality.

As can be observed in Fig. 1, there were 6 testing levels,
which were represented by more than one primary study
(including the unit testing). There were papers focused on
functional testing (7 papers, e.g., [20], [34], or [80]),
integration testing (6 papers, e.g., [26] or [43]), system
testing (7 papers, e.g., [25], [29], or [49]), regression testing
(2 papers – [39] and [77]), and vulnerability testing (2 papers
– [52] and [83]). There were also 4 other testing levels, each
represented by a single primary study (4 papers, e.g., [22] or
[64]). These papers/methods are grouped as “others” in
Fig. 1 and 2.

Fig. 2 Main utilized technologies for individual testing levels

632 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

In Fig. 2, the portions of the main utilized technologies of
the methods for the individual testing levels are depicted. For
the unit testing, there are comparatively high numbers of sea-
rch-based methods (12 papers, e.g., [79], [81], or [84]) and
program execution analysis methods (10 papers, e.g., [44],
[48], or [51]). Together, they make up more than half of the
primary studies focused on unit testing. For other testing
levels, the methods are distributed relatively uniformly, but
the numbers are too low to draw any further conclusions.

D. Target Platform

The methods described in primary studies are designed for
a specific platform, for example for a specific programming
language or a specific domain, such as web applications or
databases. The methods can be also sufficiently general to be
utilizable for multiple platforms. Such general methods usua-
lly do not use source code for the generations of the tests, but
rather other forms of descriptions of the application, such as
UML diagrams (e.g., [35] or [36]). There were 7 target
platforms, which were represented by more than one primary
study, including the generally utilizable methods (see Fig. 3).
The generally utilizable methods also form just the largest
group with 19 papers (e.g., [23] or [39]). The specific target
platform with the largest number of papers was Java
language (18 papers, e.g., [59] or [81]) followed by C/C++
languages (14 papers, e.g., [28] or [42]). Further groups
include C#/.NET platform (2 papers – [48] and [56]), web
applications (6 papers, e.g., [26] or [55]), databases (DB – 2
papers – [61] and [77]), and programmable logic controllers
(PLCs – 2 papers – [46] and [47]). There were also 4 met-
hods designed for other target platforms, each represented by
a single primary study (4 papers, e.g., [64] or [74]). These
papers/methods are grouped as “others” in Fig. 3 and 4.

In Fig. 4, the portions of the main utilized technologies of
the methods for the individual target platforms are depicted.
For the Java language, there are mostly search-based (6
papers, e.g., [76] or [79]) and then the machine-learning-ba-
sed (3 papers – [80], [84], and [85]) and program execution
analysis (3 papers – [43], [44], and [53]) methods. The
program execution methods are prominent for the C/C++
programming languages (8 papers, e.g., [41] or [50]) and the
data-description-based methods for the web applications (4
papers, e.g., [55] or [60]). The generally utilizable methods
are mostly specification- (8 papers, e.g., [30] or [36]) and
search-based (6 papers, e.g. [65] or [75]).

Fig. 3 Percentage of individual target platforms in primary studies

Fig. 4 Main utilized technologies for individual target platforms

E. Observable Trends

Since the time period of the analyzed primary studies is
more than two decades (2000 to 2022), there are a few
observable trends. Two technologies, which exist for a
relatively long time, but are practically used only recently for
the test case generation, are natural language processing
(e.g., [35] or [36]) and artificial neural networks (e.g., [80]
or [81]). Of the primary studies referred in this survey, the
oldest study is from 2021 and 2020 for the NLP and the
ANNs, respectively. This can be attributed to the relatively
recent but significant progress in these fields leading to the
practical usability of both technologies.

Another observable trend is the slight increase in the
number of studies with direct links to the tools implementing
the proposed methods (see Fig. 5). As can be observed in
Fig. 5, studies with 11 of 15 available tools were published
in 2017 and later. From the primary studies referred in this
survey, there was no available tool before 2007.

VI. THREATS TO VALIDITY

As pointed out in Section I, this survey is not a systematic
literature review and does not attempt to answer specific
research questions formulated in advance. It also does not
attempt to exhaustively list all papers related to the test case
or test data generation. Hence, there are papers, which would
fit the theme of this survey, but we did not include them.
There are several possible reasons:

Fig. 5 Number of available tools in individual years

TOMAS POTUZAK, RICHARD LIPKA: CURRENT TRENDS IN AUTOMATED TEST CASE GENERATION 633

1. The paper was not discovered in the libraries, because
it did not pass the utilized filters (see Section III.A).

2. The paper was not present in the two utilized libraries,
but may be present in others.

3. The paper was discovered and its full text was read, but
because of the similarity to other papers (in the sense of
used techniques and/or their combinations), it was not
included into the survey.

For the reasons described above, the reader should have in
mind that this survey is not exhaustive in any sense, but tries
to summarize the approaches and technologies currently in
use in the field of automated test data generation.

VII. CONCLUSION AND FUTURE WORK

In this paper, the existing literature that deals with test
data generation or with tests based on test data generation
was summarized. The commonly used approaches were
discussed and their common issues and features were
described including a few observable trends.

The collected primary studies, which this (non-systematic)
survey summarizes, will be used as part of the basis for our
future systematic literature review that will cover the theme
of this survey, but will add specific research questions and
formalization of the entire review process.

Another branch of our current and future work is the
creation of a benchmark for the test data generation methods.
Such a benchmark would allow us to objectively compare
the ability of the methods to find known realistic errors. For
this purpose, we are currently developing the Testing Applic-
ations Generator (TAG) [86]. This tool is intended to
generate applications with selected introduced errors of
various types. It enables to introduce errors on the method
level meaning that each method can have several different
implementations with various introduced errors. The result-
ing generated application is a general Java application with
few limitations and with a structure of the entire project (not
only source codes, but also libraries, additional files, and
folder structure). The common types of errors should be also
obtained during our future research. The tool will be used to
create a set of several applications (with several versions
each) with multiple introduced errors. This set will serve as
the benchmark for automated test generation methods.

REFERENCES

[1] N. Gupta, A. P. Mathur, and M. L. Soffa, “Generating test data for
branch coverage,” in Proceedings ASE 2000 - Fifteenth IEEE
International Conference on Automated Software Engineering,
Grenoble, September 2000, https://doi.org/10.1109/ASE.2000.873666

[2] P. Fröhlich and J. Link, “Automated Test Case Generation from
Dynamic Models,” in ECOOP '00: Proceedings of the 14th European
Conference on Object-Oriented Programming, Cannes, June 2000, pp.
472-491, https://doi.org/10.1007/3-540-45102-1_23

[3] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
Interaction Testing: A Systematic Literature Study,” in IEEE Access,
vol. 5, 2017, https://doi.org/10.1109/ACCESS. 2017.2771562

[4] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in
a financial application,” in Proceedings - 2017 IEEE/ACM 39th

International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), Buenos Aires, May 2017,
pp. 263–272, https://doi.org/10.1109/ICSE-SEIP.2017.27

[5] J. Edvardsson, “A Survey on Automatic Test Data Generation,” in
Proceedings of the Second Conference on Computer Science and
Engineering, Linköping, October 1999, pp. 21–28.

[6] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Gries-
kamp, M. Harman, M. J. Harrold, and P. McMinn, “An orchestrated
survey of methodologies for automated software test case generation,”
in The Journal of Systems and Software, vol. 86, no. 8, 2013, pp.
1978-2001, https://doi.org/10.1016/j.jss.2013.02.061

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” in IEEE Trans. Softw. Eng., vol.
36, no. 6, 2009, pp. 742–762, https://doi.org/10.1109/TSE.2009.52

[8] P. McMinn, “Search-based software test data generation: a survey,” in
Softw. Test. Verif. Reliab., vol. 14, no. 2, 2004, pp. 105–156,
https://doi.org/10.1002/stvr.294

[9] R. Jeevarathinam and A. S. Thanamani, “A survey on mutation test-
ing methods, fault classifications and automatic test cases genera-
tion,” in J. Sci. Ind. Res., vol. 70, no. 2, 2011, pp. 113–117.

[10] T. Chen, X. S. Zhang, S. Z. Guo, H. Y. Li, and Y. Wu, “State of the
art: Dynamic symbolic execution for automated test generation,” in
Futur. Gener. Comput. Syst., vol. 29, no. 7, 2013, pp. 1758–1773,
https://doi.org/10.1016/j.future.2012.02.006

[11] R. M. Parizi, A. A. A. Ghani, R. Abdullah, and R. Atan, “Empirical
evaluation of the fault detection effectiveness and test effort efficiency
of the automated AOP testing approaches,” in Inf. Softw. Technol.,
vol. 53, no. 10, 2011, https://doi.org/10.1016/j.infsof. 2011.05.004

[12] S. Popić, B. Pavković, I. Velikić, and N. Teslić, “Data generators: a
short survey of techniques and use cases with focus on testing,” in
2019 IEEE 9th International Conference on Consumer Electronics
(ICCE-Berlin), Berlin, September 2019, https://doi.org/10.1109/ICCE
-Berlin47944.2019.8966202

[13] P. Tramontana, D. Amalfitano, N. Amatucci, and A. R. Fasolino,
“Automated functional testing of mobile applications: a systematic
mapping study,” in Software Quality Journal, vol. 27, 2019, pp. 149–
201, https://doi.org/10.1007/s11219-018-9418-6

[14] A. Groce, K. Havelund, G. Holzmann, R. Joshi, and R.-G. Xu,
“Establishing flight software reliability: testing, model checking,
constraint-solving, monitoring and learning,” in Annals of
Mathematics and Artificial Intelligence, vol. 70, 2014, pp. 315–349,
https://doi.org/10.1007/s10472-014-9408-8

[15] M. Bures, “Automated testing in the Czech Republic: the current
situation and issues,” in Proc. 15th Int. Conf. Comput. Syst. Technol.,
June 2014, pp. 294–301, https://doi.org/10.1145/2659532.2659605

[16] S. J. Galler and B. K. Aichernig, “Survey on test data generation
tools: An evaluation of white- and gray-box testing tools for C#, C++,
Eiffel, and Java,” in Int. J. Softw. Tools Technol. Transf., vol. 16, no.
6, 2014, pp. 727–751, https://doi.org/10.1007/s10009-013-0272-3

[17] U. R. Molina, F. Kifetew, and A. Panichella, “Java Unit Testing Tool
Competition: Sixth round,” in SBST '18: Proceedings of the 11th
International Workshop on Search-Based Software Testing, May
2018, pp. 22–29, https://doi.org/10.1145/3194718.3194728

[18] X. Devroey, S. Panichella, and A. Gambi, “Java Unit Testing Tool
Competition: Eighth Round,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, June
2020, pp. 545–548, https://doi.org/10.1145/ 3387940.3392265

[19] Y. Zheng, Y. Ma, and J. Xue, “Automated large-scale simulation test-
data generation for object-oriented software systems,” in Proceedings
of the 1st International Symposium on Data, Privacy, and E-
Commerce (ISDPE 2007), Chengdu, November 2007, pp. 74-79,
https://doi.org/10.1109/ISDPE.2007.104

[20] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “DOMINO: Fast
and Effective Test Data Generation for Relational Database
Schemas,” in 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), Västeras, April 2018, pp.
12– 22, https://doi.org/10.1109/ICST.2018.00012

[21] T. Sotiropoulos; S. Chaliasos, V. Atlidakis, D. Mitropoulos, and D.
Spinellis, “Data-Oriented Differential Testing of Object-Relational
Mapping Systems,” in 2021 IEEE/ACM 43rd International Conferen-

634 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

ce on Software Engineering (ICSE), Madrid, May 2021, pp. 1535–
1547, https://doi.org/10.1109/ICSE43902.2021.00137

[22] S. Poulding and R. Feldt, “Generating Controllably Invalid and
Atypical Inputs for Robustness Testing,” in Proceedings - 10th IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Tokyo, March 2017, https://doi.org/
10.1109/ICSTW.2017.21

[23] N. T. Sy and Y. Deville, “Automatic test data generation for programs
with integer and float variables,” in Proc. 16th Annu. Int. Conf.
Autom. Softw. Eng. (ASE 2001), San Diego, November 2001, pp.
13–21, https://doi.org/10.1109/ASE.2001.989786

[24] N. Gupta, A. P. Mathur, and M. L. Soffa, “Generating test data for
branch coverage,” in Proc. ASE 2000 15th IEEE Int. Conf. Autom.
Softw. Eng., Grenoble, September 2000, pp. 219–227, https://doi.org/
10.1109/ASE.2000.873666

[25] H. Huang, W.-T. Tsai, R. Paul, and Y. Chen, “Automated model
checking and testing for composite Web services,” in Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC'05), Seattle, May 2005, pp. 300–307, https://
doi.org/10.1109/ISORC.2005.16

[26] D. T. Thu, L. D. Quang, D. A. Nguyen, and P. N. Hung, “A Method
of Automated Mock Data Generation for RESTful API Testing,” in
Proceedings - 2022 RIVF International Conference on Computing and
Communication Technologies (RIVF 2022), Ho Chi Minh City,
December 2022, https://doi.org/10.1109/RIVF55975.2022.10013835

[27] D. T. Thu, D. A. Nguyen, P. N. Hung, “Automated Test Data Genera-
tion for Typescript Web Applications,” in Proceedings – International
Conference on Knowledge and Systems Engineering, Bangkok,
November 2021, https://doi.org/10.1109/KSE53942.2021. 9648782

[28] S. Poulding and J. A. Clark, “Efficient software verification: Statisti-
cal testing using automated search,” in IEEE Trans. Softw. Eng., vol.
36, no. 6, 2010, pp. 763–777, https://doi.org/10.1109/TSE. 2010.24

[29] J. Alava, T. M. King, and P. J. Clarke, “Automatic validation of java
page flows using model-based coverage criteria,” in Proc. - Int.
Comput. Softw. Appl. Conf., Chicaco, September 2006, pp. 439–446,
https://doi.org/10.1109/COMPSAC.2006.32

[30] M. Riebisch, I. Philippow, and M. Götze, “UML-Based Statistical
Test Case Generation,” in LNCS 2591, 2003, pp. 394–411, https://
doi.org/ 10.1007/3-540-36557-5_28

[31] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, “Test Case automa-
te Generation from UML Sequence diagram and OCL expression,” in
Proc. - 2007 Int. Conf. Comput. Intell. Secur., Harbin, December
2007, pp. 1048–1052, https://doi.org/10.1109/CIS.2007.150

[32] Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L. Gaol, “Automa-
ted Test Case Generation from UML Activity Diagram and Sequence
Diagram using Depth First Search Algorithm,” in Procedia Computer
Science, vol. 116, 2017, pp. 629–637, https://dx.doi.org/10.1016/
j.procs.2017.10.029

[33] Y. Zheng, J. Xue, and Y. Zhu, “ISDGen: An automated simulation
data generation tool for object-oriented information systems,” in 2008
Asia Simul. Conf. - 7th Int. Conf. Syst. Simul. Sci. Comput., Beijing,
October 2008, https://doi.org/10.1109/ASC-ICSC.2008. 4675401

[34] M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu, “A Systematic
Approach to Automatically Derive Test Cases from Use Cases
Specified in Restricted Natural Languages,” in LNCS, vol. 8769,
2014, pp. 142–157, https://doi.org/10.1007/978-3-319-11743-0_10

[35] C. Wang, F. Pastore, A. Goknil, and L. C. Briand, “Automatic
Generation of Acceptance Test Cases from Use Case Specifications:
An NLP-Based Approach,” in IEEE Trans. on Softw. Eng., vol. 48,
no. 2, 2022, https://doi.org/10.1109/TSE. 2020.2998503

[36] M. Lafi, T. Alrawashed, and A. M. Hammad, “Automated Test Cases
Generation from Requirements Specification,” in 2021 International
Conference on Information Technology, Amman, July 2021,
https://doi.org/10.1109/ICIT52682.2021.9491761

[37] D. Xu, W. Xu, M. Tu, N. Shen, W. Chu, and C. H. Chang,
“Automated Integration Testing Using Logical Contracts,” in IEEE
Trans. Reliab., vol. 65, no. 3, 2016, pp. 1205–1222, https://doi.org/
10.1109/TR.2015.2494685

[38] O. N. Timo and G. Langelier, “Test Data Generation for Cyclic
Executives with CBMC and Frama-C: A Case Study,” in Electron.
Notes Theor. Comput. Sci., vol. 320, 2016, pp. 35–51, https://doi.org/
10.1016/j.entcs.2016.01.004

[39] K. Schneid, L. Stapper, S. Thone, and H. Kuchen, “Automated
Regression Tests: A No-Code Approach for BPMN-based Process-
Driven Applications,” in 2021 IEEE 25th International Enterprise
Distributed Object Computing Conferenc (EDOC), Gold Coast,
October 2021, https://doi.org/10.1109/EDOC52215.2021.00014

[40] C. Fetzer and Z. Xiao, “An automated approach to increasing the
robustness of C libraries,” in Proc. 2002 Int. Conf. Dependable Syst.
Networks, Washington D.C., June 2002, pp. 155–164, https://doi.org/
10.1109/DSN.2002.1028896

[41] S. Scalabrino, M. Guerra, G. Grano, A. De Lucia, R. Oliveto, D. D.
Nucci, and H. C. Gall, “Ocelot: A search-based test-data generation
tool for C,” in ASE 2018 - Proceedings of the 33rd ACM/IEEE Int.
Conf. on Autom. Softw. Eng., Montpellier, September 2018, pp. 868-
871, https://doi.org/10.1145/ 3238147.3240477

[42] H. Riener and G. Fey, “FAuST: A framework for formal verification,
automated debugging, and software test generation,” in LNCS, vol.
7385, 2012, https://doi.org/10.1007/978-3-642-31759-0_17

[43] H. Tanno, X. Zhang, T. Hoshino, and K. Sen, “TesMa and CATG:
Automated Test Generation Tools for Models of Enterprise
Applications,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Florence, May 2015, pp. 717–
720, https://doi.org/10.1109/ICSE.2015.231

[44] H. Ohbayashi, H. Kanuka, and C. Okamoto, “A Preprocessing
Method of Test Input Generation by Symbolic Execution for Enterpri-
se Application,” in 2018 25th Asia-Pacific Software Engineering
Conference (APSEC), Nara, December 2018, https://doi.org/10.1109/
APSEC.2018.00104

[45] T. Su et al., “Automated Coverage-Driven Test Data Generation
Using Dynamic Symbolic Execution,” in 2014 Eighth Int. Conf.
Softw. Secur. Reliab., San Francisco, June 2014, pp. 98–107,
https://doi.org/10.1109/SERE.2014.23

[46] L. Hao, J. Shi, T. Su, and Y. Huang, “Automated Test Generation for
IEC 61131-3 ST Programs via Dynamic Symbolic Execution,” in
2019 International Symposium on Theoretical Aspects of Software
Engineering (TASE), Guilin, July 2019, https://doi.org/10.1109/
TASE.2019.00004

[47] W. He, J. Shi, T. Su, Z. Lu, L. Hao, and Y. Huang, “Automated test
generation for IEC 61131-3 ST programs via dynamic symbolic
execution,” in Science of Computer Programming, vol. 206, 2021,
https://doi.org/10.1016/j.scico.2021.102608

[48] K. Jamrozik, G. Fraser, N. Tillman, and J. De Halleux, “Generating
test suites with augmented dynamic symbolic execution,” in LNCS,
vol. 7942, 2013, pp. 152–167, https://doi.org/10.1007/978-3-642-
38916-0_9

[49] B. Chen, Z. Yang, L. Lei, K. Cong, and F. Xie, “Automated Bug
Detection and Replay for COTS Linux Kernel Modules with Concolic
Execution,” in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER), London (Canada),
February 2020, https://10.1109/SANER48275.2020.9054797

[50] T. A. Bui, L. N. Tung, H. V. Tran, and P. N. Hung, “A Method for
Automated Test Data Generation for Units using Classes of Qt Frame-
work in C++ Projects,” in 2022 RIVF International Conference on
Computing and Communication Technologies (RIVF), Ho Chi Minh
City, December 2022, https://10.1109/RIVF55975.2022.10013869

[51] M. H. Do, L. N. Tung, H. V. Tran, and P. N. Hung, “An Automated
Test Data Generation Method for Templates of C++ Projects,” in
2022 14th International Conference on Knowledge and Systems
Engineering (KSE), Nha Trang, October 2022, https://doi.org/
10.1109/ KSE56063.2022.9953626

[52] T. Liu, Z. Wang, Y. Zhang, Z. Liu, B. Fang, and Z. Pang, “Automated
Vulnerability Discovery System Based on Hybrid Execution,” in 2022
7th IEEE International Conference on Data Science in Cyberspace
(DSC), Guilin, July 2022, pp. 234-241, https://doi.org/10.1109/
DSC55868.2022.00038

[53] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and C. Csallner,
“SEDGE: Symbolic example data generation for dataflow programs,”
in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Silicon Valley, November 2013,
https://doi.org/10.1109/ASE.2013.6693083

[54] M. Kim, Y. Kim, and Y. Jang, “Industrial application of concolic
testing on embedded software: Case studies,” in 2012 IEEE Fifth Inte-

TOMAS POTUZAK, RICHARD LIPKA: CURRENT TRENDS IN AUTOMATED TEST CASE GENERATION 635

rnational Conference on Software Testing, Verification and Validati-
on, Montreal, April 2012, https://doi.org/10.1109/ICST.2012.119

[55] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai, “WSDL-Based
Automated Test Data Generation for Web Service,” in 2008 Int. Conf.
Comput. Sci. Softw. Eng., Wuhan, December 2008, pp. 731–737,
https://doi.org/10.1109/CSSE.2008.790

[56] W. Krenn and B. K. Aichernig, “Test Case Generation by Contract
Mutation in Spec#,” in Electron. Notes Theor. Comput. Sci., vol. 253,
no. 2, 2009, pp. 71–86, https://doi.org/10.1016/j.entcs.2009.09.052

[57] M. Bozkurt and M. Harman, “Automatically generating realistic test
input from web services,” in Proc. - 6th IEEE Int. Symp. Serv. Syst.
Eng., Irvine, December 2011, pp. 13–24, https://doi.org/10.1109/
SOSE.2011.6139088

[58] A. Arcuri, “RESTful API Automated Test Case Generation,” in 2017
IEEE International Conference on Software Quality, Reliability and
Security (QRS), Prague, July 2017, pp. 9–20, https://doi.org/10.1109/
QRS.2017.11

[59] N. Havrikov, A. Gambi, A. Zeller, A. Arcuri, and J. P. Galeotti,
“Generating unit tests with structured system interactions,” in 2017
IEEE/ACM 12th International Workshop on Automation of Software
Testing (AST), Buenos Aires, May 2017, pp. 30–33, https://doi.org/
10.1109/AST.2017.2

[60] S. Hanna and H. Jaber, “An Approach for Web Applications Test
Data Generation Based on Analyzing Client Side User Input Fields,”
in 2019 2nd International Conference on new Trends in Computing
Sciences (ICTCS), Amman, October 2019, https://doi.org/10.1109/
ICTCS.2019.8923098

[61] H. M. Sneed and K. Erdoes, “Testing big data (Assuring the quality of
large databases),” in 2015 IEEE Eighth Int. Conf. Softw. Testing,
Verif. Valid. Work., Graz, April 2015, pp. 1–6, https://doi.org/
10.1109/ICSTW.2015.7107424

[62] L. D. Toffola, C. A. Staicu, and M. Pradel, “Saying 'Hi!' is not
enough: Mining inputs for effective test generation,” in 2017 32nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Urbana, October 2017, https://doi.org/10.1109/
ASE.2017.8115617

[63] T. Li, X. Lu, and H. Xu, “Automated Test Case Generation from Input
Specification in Natural Language,” in 2022 IEEE International
Symposium on Software Reliability Engineering Workshops, Charlot-
te, October 2022, https://doi.org/10.1109/ISSREW55968.2022.00076

[64] T. Shu, Z. Ding, M. Chen, and J. Xia, “A heuristic transition
executability analysis method for generating EFSM-specified protocol
test sequences,” in Information Sciences, vol. 370–371, 2016, pp. 63–
78, https://doi.org/10.1016/j.ins.2016.07.059

[65] A. Rauf, S. Anwar, M. A. Jaffer, and A. A. Shahid, “Automated GUI
test coverage analysis using GA,” in 7th Int. Conf. Inf. Technol. New
Gener., Las Vegas, April 2010, pp. 1057–1062, https://doi.org/
10.1109/ ITNG.2010.95

[66] S. Khor and P. Grogono, “Using a genetic algorithm and formal
concept analysis to generate branch coverage test data automatically,”
in 19th Int. Conf. Autom. Softw. Eng., Linz, September 2004, pp.
346–349, https://doi.org/10.1109/ASE.2004.1342761

[67] Z. J. Rashid and M. Fatih Adak, “Test Data Generation for Dynamic
Unit Test in Java Language using Genetic Algorithm,” in 6th
International Conference on Computer Science and Engineering
(UBMK), Ankara, September 2021, https://doi.org/10.1109/
UBMK52708.2021.9558953

[68] E. Diaz, J. Tuya, and R. Blanco, “Automated software testing using a
metaheuristic technique based on Tabu search,” in 18th IEEE Int.
Conf. Autom. Softw. Eng., Montreal, October 2003, pp. 310–313,
https://doi.org/10.1109/ASE.2003.1240327

[69] J. Khandelwal and P. Tomar, “Approach for automated test data
generation for path testing in aspect-oriented programs using genetic
algorithm,” in Int. Conf. Comput. Com. Autom., Greater Noida, May
2015, pp. 854–858, https://doi.org/10.1109/CCAA.2015.7148494

[70] B. L. Li, Z. S. Li, J. Y. Zhang, and J. R. Sun, “An Automated Test
Case Generation Approach by Genetic Simulated Annealing
Algorithm,” in Third Int. Conf. Nat. Comput., Haikou, August 2007,
pp. 106–111, https://doi.org/10.1109/ICNC.2007.187

[71] Z. J. Rashid and M. F. Adak, “Test Data Generation for Dynamic
Unit Test in Java Language using Genetic Algorithm,” in 2021 6th
International Conference on Computer Science and Engineering

(UBMK), Ankara, September 2021, http://dx.doi.org/10.1109/
UBMK52708. 2021.9558953

[72] R. Gerlich and C. R. Prause, “Optimizing the Parameters of an
Evolutionary Algorithm for Fuzzing and Test Data Generation,” in
2020 IEEE 13th International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Porto, October
2020, https://doi.org/10.1109/ICSTW50294.2020.00061

[73] H. Sharifipour, M. Shakeri, and H. Haghighi, “Structural test data
generation using a memetic ant colony optimization based on
evolution strategies,” in Swarm Evol. Comput., vol. 40, 2018, pp. 76-
91, https://doi.org/10.1016/j.swevo.2017.12.009

[74] R. J. Cajica; R. E. G. Torres, and P. M. Álvarez, “Automatic
Generation of Test Cases from Formal Specifications using Mutation
Testing,” in 18th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE), Mexico City,
November 2021, http://dx.doi.org/10.1109/CCE53527.2021.9633118

[75] H. Cui, L. Chen, B. Zhu, and H. Kuang, “An efficient automated test
data generation method,” in 2010 International Conference on Mea-
suring Technology and Mechatronics Automation (ICMTMA),
Changsha, March 2010, https://doi.org/10.1109/ICMTMA.2010.556

[76] M. Olsthoorn, A. van Deursen, and A. Panichella, “Generating
Highly-structured Input Data by Combining Search-based Testing and
Grammar-based Fuzzing,” in ASE '20: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software
Engineering, December 2020, pp. 1224-1228, http://dx.doi.org/
10.1145/3324884.3418930

[77] J. Castelein, M. Aniche, M. Soltani, A. Panichella, and A. Van
Deursen, “Search-based test data generation for SQL queries,” in
Proceedings of the 40th International Conference on Software
Engineering, Gothenburg, May 2018, pp. 1220–1230, https://doi.org/
10.1145/3180155.3180202

[78] S. Ali, M. Zohaib Iqbal, A. Arcuri, and L. C. Briand, “Generating test
data from OCL constraints with search techniques,” in IEEE
Transactions on Software Engineering, vol. 39, no. 10, 2013, pp.
1376–1402, https://doi.org/10.1109/TSE.2013.17

[79] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Synthetic data
generation for statistical testing,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Urbana, October 2017, https://doi.org/10.1109/ASE.2017.8115698

[80] F. Y. B. Daragh and S. Malek, “Deep GUI: Black-box GUI Input
Generation with Deep Learning,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Melbourne, November 2021, pp. 905–916, https://doi.org/10.1109/
ASE51524.2021.9678778

[81] X. Guo, H. Okamura, and T. Dohi , “Automated Software Test Data
Generation With Generative Adversarial Networks,” in IEEE Access,
vol. 10, 2022, https://doi.org/10.1109/ACCESS. 2022.3153347

[82] M. Utting, B. Legeard,F. Dadeau, F. Tamagnan, and F. Bouquet,
“Identifying and Generating Missing Tests using Machine Learning
on Execution Traces,” in 2020 IEEE International Conference On
Artificial Intelligence Testing (AITest), Oxford, August 2020,
https://doi.org/10.1109/AITEST49225.2020.00020

[83] K. Cheng, G. Du, T. Wu, L. Chen, and G. Shi, “Automated
Vulnerable Codes Mutation through Deep Learning for Variability
Detection,” in 2022 International Joint Conference on Neural
Networks (IJCNN), Padua, July 2022, https://doi.org/10.1109/
IJCNN55064.2022.9892444

[84] Vineeta, A. Singhal, and A. Bansal, “Generation of test oracles using
neural network and decision tree model,” in 2014 5th Int. Conf. -
Conflu. Next Gener. Inf. Technol. Summit, Noida, September 2014,
pp. 313–318, https://doi.org/10.1109/CONFLUENCE.2014.6949311

[85] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia,and L. Zhang,
“Predictive Mutation Testing,” in IEEE Transactions on Software
Engineering, vol. 45, no. 9, 2019, pp. 898–918, https://doi.org/
10.1109/TSE.2018.2809496

[86] T. Potuzak and R. Lipka, “Generation of Benchmark of Software
Testing Methods for Java with Realistic Introduced Errors” in
FedCSIS 2023 communication papers, September 2023, to be
published

636 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

