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Abstract—The paper discusses the possibilities of adapting the
recently introduced interval-valued semantic differential method
to the multiple-criteria decision-making and evaluation context.
It focuses on the differences and common ground of the intended
use of the original semantic differentiation method and general
multiple-criteria evaluation problems. The paper identifies the
aspects of the interval-valued modification of the method that
can be useful in multiple-criteria evaluation and also aspects
that can be beneficial in the multi-expert evaluation setting
and also possible limitations stemming from the transition to
the multiple-criteria (or multi-expert) evaluation context. Finally
the paper suggests potential application areas for the (interval-
valued) semantic differential based methods.

I. INTRODUCTION

T
HE set of methods available for multiple-criteria and

multi-expert evaluation problems is large and it is being

continuously expanded (see e.g. [1], [2], [3], [4], [5], [6]). The

currently available methods include methods for weights deter-

mination (see e.g. [7], [8], [9]), methods for the standardization

of values of criteria, various methods for the aggregation of

values across different criteria [10], [11], [12], [13], methods

for preference representation [14], [15], [16] and aggregation

[17], [18], [19]. We have specific methods based on pairwise

comparisons (see e.g. [20], [21], [22]), methods utilizing ideals

in the evaluation process [23], [24], special methods for ordinal

data [25], [26], [27], methods equipped to deal with different

types of uncertainty [28], [29], [30], [31], [32], [33], [34],

methods capable of dealing with linguistic inputs/outputs and

to process natural language [35], [36], [37], [38], methods for

consensus modeling and analysis [39], [40], [27], [41]. The

list is definitely not complete, nor is it reasonably structured.

The point we would like to make here is that currently

there are many methods available to model and assist with

human-like decision making. They focus on different aspects

of the evaluation in these problems and are able to reflect

many different specific features of the decision-makers, of the

alternatives, of the scales used for the evaluation etc. The

behavioral perspective has entered the multiple-criteria and

multi-expert evaluation and decision-making domain long ago
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and is still gaining momentum [42], [43], [44], [45], [46],

[47], [48], [49], [50]. Most of the methods assume at least

some sort of measurability of the features of the alternatives

that are being evaluated, or of the values of the criteria that are

being used in the process; some circumvent the requirement of

measurability by pairwise comparisons, by the use of linguistic

assessments, by the use of ordinal values only etc. There are,

however, very few methods in the multiple-criteria and multi-

expert evaluation field that would be focused or tailored for

dealing with intangible criteria.

Even though current research is aiming also on the ability

of computers and models to recognize, process, mimic and

interpret emotions [51], the efforts to incorporate affects and

other less tangible criteria in evaluation models are limited.

This might be stemming from the difficulties with measuring

or obtaining the information on affect and other less tan-

gible concepts like attitudes, political preferences, religion,

values, connotative meaning of words etc. On the other hand

there are methods in psychology, anthropology, linguistics

and related fields that are designed for the very purpose of

capturing non-measurable and intangible concepts. One of

these methods, the semantic differential method by Osgood,

Suci and Tannenbaum [52] is going to be investigated in this

paper. We will describe the main principles of this method,

briefly recall its recent interval-valued generalization [53],

[54] and identify how the concepts intended for the capturing

of intangible characteristics can be applied in the multiple-

criteria evaluation and multi-expert evaluation setting. We

will particularly focus on those aspect that are crucial in the

original definition of this tool and have psychological value

(such as partial projectivity, the requirement on the bipolar

adjectives scales being non-descriptive for the evaluated alter-

native/concept, etc.) and their meaningfulness, usefulness or

potential drawbacks if transferred directly into the multiple-

criteria evaluation setting. Our aim is to identify those features

of the semantic differentiation method (and its interval-valued

generalization) rooted in its original social-science use, that

can be beneficial in multiple-criteria evaluation models.
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II. SEMANTIC DIFFERENTIAL AND ITS MAIN FEATURES

Semantic differential (SD) is a method introduced by Os-

good, Suci and Tannenbaum in 1957 [52] as a technique for

the quantification or representation of connotative meaning

of words. Soon enough it found its way to anthropology

[55] and obviously also to psychology for the measurement

(quantification) of attitudes [56], [57].

The basic tool in the method are bipolar adjective scales that

are used for the assessment of the given object/term/concept

(the bipolar adjective scales will also be called items in the text

for more simplicity). These scales are the basic “measurement”

instrument in the method. The scales are assumed to share the

same universe, let us say [a, b] ⊂ R. Some authors suggest

that 0 ∈ [a, b], some suggest that a > 0, some that a =
−b, but the actual form of the scale influences mainly the

comfort and reliability of the respondent’s answer. Let us now

assume that the underlying scale is a continuum with extremes

a and b representing the opposite poles of the scale. Originally,

discrete (7-point) scales were used in [52] but the actual form

of the scale was more tailored for that time’s methods of data

collection and analysis. The transition to continuous scales is

of no actual consequence for the design and performance of

the semantic differential method. In other words we can also

use continuous scales instead of discrete ones and the method

works as well.

The method targets the less tangible aspects of the evaluated

object/concept, that is, it intends to capture the connotative

(individual-specific) meaning of the concept, reflect the in-

dividual’s experience and specifics. In social psychology the

ability to capture not-measurable aspects connected with the

assessed concept led to the use of semantic differential in the

quantification of attitudes (mainly in the three-factor model

of attitudes where attitudes are assumed to have cognitive,

conative and affective components - the latter two being

difficult to directly measure). It is therefore suggested by

Osgood et al. ([52]) to avoid such bipolar-adjective scales

that would have actual descriptive power over the evalu-

ated object. Note that this is a very particular requirement

for a method that should be considered for multiple-criteria

evaluation. There are, however, good psychological reasons

behind this requirement. First the use of descriptive items (e.g.

sharp-blunt for the description of a knife) and non-descriptive

items (e.g. happy-sad for the description of the same knife)

together in one assessment tool (inventory or set of bipolar

scales) could result in a lower reliability of the non-descriptive

items. The respondents might simply wonder whether they

understand the evaluation task well as some items have clear

connection with the evaluated concept while others do not.

Second the use of descriptive items provides a description of

the object/concept rather than its actual evaluation. Third the

use of non-descriptive scales decreases respondents’ ability to

provide desirable, “fake-good“ or “fake-bad” answers, which

decreases the potential deliberate distortion of information by

the respondent/evaluator. The whole procedure of using a se-

mantic differential in the assessment of connotative meanings

of concepts or the assessment of attitudes of the respondents

towards these concepts can be summarized in the following

steps (more details can be found in [52]):

1) Generate a set S = {s1, . . . , sn} of bipolar-adjective

scales. It should contain sufficiently many scales, the

meanings of their endpoints should be understandable to

the potential evaluators (respondents), enough of these

scales should be non-descriptive for the concepts to be

evaluated.

2) Carry out pilot run where all these scales are used to

assess some concepts by a representative sample of the

target population.

3) Carry out a factor analysis (both exploratory and con-

firmatory versions are suggested) to determine whether

the dimensionality of the original set of scales can be

reduced to just a few underlying factors. The factors are

to be identified ideally in such a way that they could be

named and interpreted accordingly (apply factor notation

if needed). For example in [52] three factors were identi-

fied: Evaluation, Potency and Activity. These factors are

expected to represent orthogonal evaluation dimensions.

Let us assume that k factors F1, . . . , Fk are identified.

Then the factor loadings of the scale si ∈ S for factors

F1, . . . Fk can be denoted f1si , . . . , fksi
respectively.

Note that the factor loadings (and the factors) are

therefore domain- and culture-specific. In other words

the factor analysis should be performed every time we

apply the chosen scales to the evaluation/assessment of

concepts in a different context, also when we change

the target population. Given the fact that the extreme

values (poles) of the scales are described linguistically,

every language mutation of the scales should have its

own factor analysis performed.

4) Select a subset of the bipolar-adjective scales Z ⊆ S,

Z = {z1, . . . , zm} that would be used for the given

application. Usually scales that sufficiently load at least

one factor are used, it is also good to use scales that

would allow all the factors to be “measured” and also

to allow for repeated measurement of each factor.

5) Obtain data from the respondents. In other words let

each respondent assess the concept using all m chosen

bipolar-adjective scales z1, . . . , zm. If the assessment of

the concept/object by a respondent X on scale zi is

denoted as xzi
, i = 1, . . . ,m, then the object/concept

O is represented as a point OX in the k-dimensional

space [a, b]k with the following coordinates:

OX =

(

∑m

i=1
xzi

· f1zi
∑m

i=1
|f1zi |

, . . . ,

∑m

i=1
xzi

· fkzi
∑m

i=1
|fkzi

|

)

= (xF1
, . . . , xFk

) . (1)

In other words the coordinates are the factor-loading

weighted average of the answers provided by the re-

spondent. Sometimes only the contribution of the item

to the factor with the highest factor loading is reflected

in the practical applications of semantic differential.
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Fig. 1. An example of the output of the standard semantic differential method
[52] for two objects/concepts X and Y . Three factors are assumed. The
assessment of X is represented by the point OX = (xF1

, xF2
, xF3

) in the
three-dimensional space defined by the factors F1, F2 and F3, the assessment
of Y is represented by the point OY = (yF1

, yF2
, yF3

).

The above described procedure allows for the representation

of a connotative meaning of a concept or an attitude towards

that concept to be represented as a point in an k-dimensional

space where each dimension represents one factor (higher

level characteristic of the object/concept) that is orthogonal

to the other factors. An example of the output of the standard

semantic differential method is presented in Fig. 1.

To summarize, the benefits of the method as proposed

by Osgood et al. ([52]), assessed from a multiple-criteria

evaluation perspective, are the following:

• The factor analysis applied provides a few orthogonal

evaluation dimensions to work with. This means that a

visualization of the results, that is easy to understand,

might be possible.

• The use of non-descriptive bipolar-adjective scales pre-

vents deliberate distortions of the data by respondents.

• The use of bipolar-adjective scales provides a “projective-

like” feature of the data collection that in terms allows

for the assessment of less tangible criteria/aspects of the

concept.

• The fact that more items have non-zero loadings to the

same factor means that we have repeated assessment of

each factor.

• Data input using the semantic differential scales is rather

simple.

• It is possible to define distances in the [a, b]k space

to decide which representations of objects/concepts are

close to each other, which are far from each other.

• As long as the factors are defined with appropriate labels

and can be seen as consistent characteristics “measured”

by multiple items (repeated “measurement”), the co-

ordinates of the concepts in the [a, b]k space can be

interpreted. It is also possible to define “desired” or

“undesired” values in this space, that is to define ideals

to be used in the evaluation or decision-making.

• There is no need for aggregation across the factors. Ag-

gregation within one factor (1) is understood as repeated

measurement of the factor, other aggregation is not nec-

essary. The final representation of the result of semantic

differentiation can therefore be understood as virtually

lossless. The aggregation across factors, if needed, can

also be done, for example, via the definition of the

distance from a given ideal in the [a, b]k space.

It is therefore clear that many features of the semantic differen-

tial can be seen as beneficial for the standard multiple-criteria

or multi-expert evaluation. On the other hand there are certain

clear limitations or drawbacks of the method when considered

for practical multiple-criteria evaluation:

• The factor analyses need to be done. As the factors,

their number, definition and loadings of the scales can

be context and culture dependent, it might take a lot of

time to set up the scales and find their factor loadings.

• Also a conversion to other languages and other domains

of application requires new factor analyses. The language

issues are even more complex than might be apparent

at first sight. If the tool is calibrated, for example, for

English scales for a given context of application (factor

loadings of items are determined with English labels of

the endpoints of the bipolar adjective scales) it should

still not be directly applied with non-native speakers of

English, unless these were present in the original sample

used to determine the factors and their loadings.

• The factors are stemming from the factor analysis. They

are therefore constructed and might not have clear in-

terpretation. This could limit the interpretability of the

results of semantic differential in evaluation applications.

• The issue of concept-scale interaction and lower per-

ceived scale relevance may be present [58]. This means

that the respondents might see some scales as inappro-

priate for the assessment of a given concept and thus the

value of the given item provided by them can be arbitrary

without the researcher knowing so.

• The method has no means of incorporating uncertainty

stemming from lower perceived item relevance for the

evaluation of the given object/concept, from the misinter-

pretation of the meanings of the endpoints of the scales

or simply from the inability of the respondent to provide

answers using some items because their connection with

the assessment might be too value or unclear.

• The single-point in [a, b]k space might appear much more

precise than it should.

• It might not be clear if a “middle” answer means the

inability of the respondent to use the given bipolar-

adjective scale, or whether his/her assessment is really

neutral.

Even though there are clear benefits that speak in favor

of the semantic differential being used in multiple-criteria

evaluation, there are still some shortcomings that make its use
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problematic. Some of these shortcomings can be overcome by

generalizing the semantic differential into an interval-valued

method as proposed by Stoklasa et al. [54]. The interval-valued

methods are being applied in other areas as well [33].

III. INTERVAL-VALUED GENERALIZATION OF THE

SEMANTIC DIFFERENTIAL

The generalized semantic differential (GSD) method was in-

troduced in 2019 by Stoklasa, Talášek and Stoklasová with the

intention of introducing means for the reflection of uncertainty

of the answers provided by the respondents in the form of

the xzi
values [54]. GSD assumes that each bipolar adjective

scale zi ∈ Z is accompanied by another scale rzi designed

to assess the relevance of the scale zi for the assessment of

the given object/concept as perceived by the decision maker.

The authors suggest a [0%, 100%] universe for each relevance

scale rzi for any i = 1, . . . ,m. The term “perceived relevance”

can be replaced by any potential source of uncertainty of the

values xzi
provided by the respondent/evaluator. The source

of uncertainty discussed specifically in [54] is the incompat-

ibility (partial or full) of the bipolar adjective scale with the

assessment/evaluation task perceived by the respondent. In

other words if the scale is perceived as partially irrelevant

by the person who is supposed to use it to assess the given

concept, the actual value xzi
is not reliable and should not

be considered precise. Due to the partial irrelevance of the

scale zi, the value xzi
might be misspecified by the respondent

due to the fact that it was difficult to him/her to established

a connection between the evaluated object/concept and the

bipolar adjective scale. As such the actually expressed value

xzi
is in these cases accompanied by an interval of “also

possible values” Izi = [xL
zi
, xR

zi
] ⊆ [a, b], whose length is

proportional to the perceived irrelevance of the scale. Stoklasa

et al. [54] suggest the use of Dombi’s kappa function [59] to

parameterize the calculation of the length of the “interval of

also possible values” from the the perceived (ir)relevance of

the scale, in other words κ(rzi) =
∣

∣[xL
zi
, xR

zi
]
∣

∣. This interval is

centered around xzi
, if possible. If this is not possible, then it

is shifted so that the shift is minimal, the whole “interval of

also possible values of xzi
fits within the [a, b] universe and its

length calculated using the kappa function is preserved. The

final representation of the output of GSD for an object/concept

X is the point OX in the [a, b]k space determined from the

xzi
values by (1) accompanied by the box of uncertainty BX

(or box of also possible values) surrounding it determined by

(2), which is a direct analogy to (1) using interval algebra.

BX =

(

∑m

i=1
Izi · f1zi

∑m

i=1
|f1zi |

, . . . ,

∑m

i=1
Izi · fkzi

∑m

i=1
|fkzi

|

)

(2)

Interval algebra (see [31, p. 103] for more details) is applied to

obtain the final outputs from the generalized semantic differ-

ential. This method provides not only the outputs available in

the original version of the method - that is the representation

of the object/concept X as a point OX in the k-dimensional

Cartesian space - but also a box of uncertainty BX surrounding

Fig. 2. An example of the output of the generalized semantic differential
method [54] for two objects/concepts X and Y . Three factors are assumed.
The same two objects X and Y are considered as in Fig. 1 with the same
coordinates of OX and OY respectively. Boxes of uncertainty stemming from
lower perceived relevance of some scales for the assessment of X and Y are
depicted as BX and BY around the Ox and OY respectively.

the point OX . See Fig 2 for an example of the outputs of the

GSD method. The size of the box of uncertainty is proportional

(with respect to the selection of parameters for the kappa

function) to the average perceived irrelevance of the bipolar

adjective scales used for the assessment of the object/concept.

In Fig. 2 it is apparent that the items with high factor loadings

for the factor F1 are perceived as much less relevant for the

assessment of X than they are for the assessment of Y .

The steps needed to apply GSD are similar to those for SD

just with a few minor changes:

1) We again need to have the set S = {s1, . . . , sn} of

bipolar-adjective scales generated with the same require-

ments as in SD.

2) We need to administer all those scales to a representative

sample of the target population to be able to derive

the factors and the factor loadings of the scales (again

exploratory and confirmatory factor analysis is recom-

mended). Note that at this point the perceived relevance

scales are not used yet. This means that the factors

and the factor loadings of the scales are determined

independently of the perceived relevance. This also

means that if factors and factor loadings are already

available for an applicable set of bipolar adjective scales

derived for a compatible area of application, these can

be used in GSD.

3) We select a subset of the bipolar-adjective scales Z ⊆
S, Z = {z1, . . . , zm} that will be used for the given

application in the same way as for SD. To each of these

scales we attach a “perceived relevance” scale rzi . The

rzi scales, i = 1, . . . ,m , are used to capture uncertainty

of the xzi
evaluations provided by the respondents. It is

possible to label this scale so that it captures different

sources of uncertainty of the evaluations as well.
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4) We obtain data from the respondents. The values xzi
are

assigned “intervals of also possible values” that reflect

the irrelevance of the scales and a possible uncertainty

of the evaluations stemming from the scale irrelevances

(either directly, or through the kappa function).

5) The final representation of the objects/concepts is repre-

sented by OX calculated using equation (1) and by the

“box of uncertainty” BX calculated using the equation

(2). Both these representations are depicted graphically

(see e.g. Fig. 2).

Allowing the uncertainty in the semantic differentiation

process takes care of some of the issues connected with scale-

concept interactions. The generalized semantic differential has

the same advantages as the original method, plus the ability to

reflect uncertainty of the answers provided by the respondents.

It can show that the respondent was not very sure about the

answers (contributing to particular factors or to all of the

factors) by increasing the respective dimension of the “box

of uncertainty”. As for the disadvantages, the need to perform

the factor analyses to get the factors and factor loadings of

the bipolar-adjectives scales is still there. Also the factors are

defined automatically in the process. All the other limitations

or drawbacks listed for SD are mitigated or removed. The

method is now slightly more tedious form as it needs to include

two sets of scales, meaning a slightly larger workload for

the respondents. Also there are more parameters in the GSD

to set (the parameters of the kappa function, the framing of

the “relevance” scale). Nevertheless, most of the drawbacks

listed for the original method can be mitigated by the use

of GSD and the method still retains the ability to deal with

less tangible criteria. Let us therefore now see, how applicable

the method might be in a multiple-criteria or multi-expert

evaluation setting.

IV. GENERALIZED SEMANTIC DIFFERENTIAL AND

MULTIPLE-CRITERIA EVALUATION

Before we are able to assess the potential benefits of apply-

ing GSD in multiple-criteria and multi-expert evaluation, and

to suggest the needed modifications of the GSD method for

this purpose, we need to define the multiple-criteria evaluation

problem first. In multiple-criteria evaluation we assume that

we have several objects/alternatives that need to be assessed

and assigned a final evaluation of some sort. Usually the

expected form of the evaluation is a numerical or vector one,

that is in many evaluation methods we are looking for a real-

value (or a vector of real values) that would summarize the

qualities and the downsides of the alternative sufficiently. We

also assume that the k criteria that represent the relevant

features of the alternatives are known in advance (usually

along with their types, underlying scales and also relative

importances). The ultimate goal of the evaluation is then

to a) obtain an ordering of the alternatives to be able to

decide which ones to select (relative-type evaluation) or b)

decide about the acceptability/unacceptability of the alternative

(absolute-type evaluation). Let us now have a look at the

features of the GSD method and comment on their usefulness

or the need for the modification of these aspects for GSD to

become a valid multiple-criteria evaluation method.

We need to start with one clear incompatibility between

SD or GSD and the multiple-criteria evaluation setting. This

is the fact that in GSD (and SD) the factors are defined

through factor analysis and thus independent on the user of the

evaluation. On the other hand in multiple-criteria evaluation,

criteria are usually given and need to be used as defined by the

user of the analysis. As we usually expect the k criteria to be

independent, we can easily assume that each criterion would

be represented by one axis in a k-dimensional Cartesian space.

This would mean that if we substitute criteria for factors, we

can obtain a method applicable to multiple-criteria evaluation.

We can even assume that each criterion is “measured” or

assessed repeatedly either through subcriteria, or through

different items in a questionnaire or scorecard. Discarding

the bipolar adjective scales completely we, however, lose the

“projectivity” of the GSD and also the ability to capture less

tangible and intangible aspects of the alternatives, as long

as we do not have specific items for them in the data input

tool (survey, scorecard, etc.). There is always a possibility to

keep those bipolar adjective scales that measure the intangible

factor(s) that might be relevant for our analysis (e.g. affect)

and use externally defined criteria as other dimensions in the

final output space. Being able to include the criteria as separate

dimensions in the final output space, we can now analyze the

other features of the GSD method:

• repeated measurement - semantic differential is built

on the idea of repeated measurement of the factors.

This is stemming from the fact that factor analysis is

applied as a dimensionality reduction technique here.

It also means that GSD is ready to process e.g. data

from questionnaires where criteria are being assessed by

more items. The aggregation of the values provided via

different items in a questionnaire or a scorecard can be

done either by arithmetic mean or any other feasible

aggregation operator, weights can also be reflected, if

needed (but weights of items in a questionnaire might

not be frequently available).

• ability to capture less tangible aspects/criteria - if bipolar

adjectives scale that are not descriptive for the evaluated

object are kept in the pool of the items and their respec-

tive factor(s) constitute(s) separate dimension(s) in the

final output space, then this feature is maintained. On

the other hand factor analysis needs to precede the use

of the bipolar adjective scales to know which ones are

contributing to the desired factor.

• if the intangible criteria/aspects are not important in the

evaluation process, then factor analysis might not be

needed and the method is much simpler to apply as it

does not longer require pre-analysis and an availability

of a sample prior to the main analysis/evaluation.

• simple data input procedure - the data input can still

be done through questionnaires, where groups of items

would contribute to particular criteria. Each item can also
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be assigned a scale for the reflection of uncertainty of

the answer provided through this scale. Instead of “scale

relevance”, it might be better to talk about evaluator’s

confidence with the answer or something similar, though.

Afterwards the kappa function can again be used to cal-

ibrate the method for the given purpose and to calculate

the length of the interval of also possible values based

on the confidence with the particular answer.

• graphical outputs - the original SD method was frequently

shown to result in three factors. This allowed for a

simple three-dimensional graphical representation if the

outputs as points in the three-dimensional Cartesian space

(called semantic space). For more factors or criteria, or

simply for more dimensions of the output space, graphical

outputs might not be achievable or easily understood. Still

the intuition from three dimensional graphical summaries

of the outputs (e.g. those presented in Fig. 2 and Fig. 3)

can prove useful in explaining how the methods works

in higher dimensions of the output space.

• presentation of results without final aggregation - this

is one of the very desirable properties for multiple-

criteria but also multi-expert evaluation. The design of

the outputs allows for separate treatment of all the criteria

representing the dimensions in the output space. The

output objects (points or boxes of uncertainty around

them) can be defined without an explicit knowledge of

the relative importances of the criteria. If the evaluations

represent outputs for different experts, the weights of

experts do not need to be known either.

If a final ordering of the alternatives is required, one needs to

be able to aggregate the information across all the dimensions

of the output space. For this we can either introduce weights of

criteria, or simply work with the k-dimensional representations

of the objects directly and define distances on them. The

multiple-criteria evaluation setting has the benefit of being able

to define the most desired values of the criteria, and based

on them the ideal (potentially non-existent) alternative, or at

least the evaluation thereof (see the preference directions in

Fig. 3 and the “ideal” evaluation defined based on them).

The evaluation task can then be approached by defining

distances between the evaluations of the alternatives (up to

k-dimensional entities) from the ideal evaluation (also more

ideals can be considered like e.g. in TOPSIS). The introduction

of uncertainty in the SD represented by GSD then allows for

the determination of interval-valued distances (for example

shortest distance from the box of uncertainty to the ideal

and longest distance from the box of uncertainty to the ideal

defining the interval of possible distances - see Fig. 3). Overall

GSD has the needed properties to be applied in multiple-

criteria evaluation:

• it can handle multiple criteria (including less tangible

ones - see the discussion above)

• it is capable of handling uncertainty of the evaluations

with respect to the (sub)criteria

• the uncertainty can be assessed using a simple

questionnaire-based input procedure. It does not require

the respondent to be able to express uncertainty/risk in

a complex way and can still derive the intervals of also

possible values around the crisp evaluations provided by

less certain or less experienced evaluators.

• it is designed for repeated measurement

• for low values of k it provides a graphical interface to

present the results to the evaluators

• the k-dimensional representation of the final evaluation

of the object does not require aggregation across criteria

• ordering of the alternatives can be obtained applying

a suitable distance (interval-valued, if needed) of the

k-dimensional representations of the evaluations of the

alternatives and the k-dimensional representation of an

ideal or desirable alternative (its evaluation). The dis-

tances from the least desirable alternative (its evaluation)

can also be reflected ‘TOPSIS-style’. These distances can

reflect also the weights of criteria, or even be based

on OWA operators as proposed in the linguistic OWA-

TOPSIS [60].

As such GSD-based multiple-criteria evaluation seems to

be particularly promising in areas where uncertainty of the

evaluations is to be expected and needs to be reflected some-

how. The design of the method and the application of the

kappa function in combination with a simple assessment of

(un)certainty or relevance of the provided evaluation is par-

ticularly suitable for those evaluation problems where laymen

(in terms of risk/uncertainty representations) are evaluating,

and where either less tangible or less usual criteria are being

used, or where the alternatives are complex, abstract or novel

in some way. The area of design management and design eval-

uation comes to mind as a first representative [53], [61]. But

the applications are much wider and include social sciences

and business in general, the evaluation of alternatives with

emotional value for the evaluators, the assessment of risk, etc.

What seems to be an even stronger argument speaking

in favor of the application of the GSD framework in the

multiple-criteria evaluation setting is its capability of serving

as a multi-expert evaluation analysis tool. In the multi-expert

evaluation problem, we can assume the same that we did in

the multiple-criteria evaluation setting, plus the fact that the

evaluations are being provided by more evaluators and all their

views/evaluations need to be reflected in the final decision to

some extent. If we assume k criteria are used and m experts are

involved in the evaluation task, then the evaluation of a single

alternative can be represented by m k-dimensional objects in

the k-dimensional Cartesian evaluation space. Apart from the

desirable properties of GSD listed before, we can now consider

also:

• the ability to see potential clusters of experts with sim-

ilar evaluations - their number, distance etc. Obviously

clustering techniques can be applied directly to the k-

dimensional evaluations to define the clusters, if needed.

This can bring understanding concerning the composition

of the set of evaluators in terms of their priorities, mutual
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agreement or even the number of potential points of view

on the evaluation

• the overall evaluation of the alternative does not need

to be represented as a single k-dimensional object in

the evaluation space calculated as an average of all the

expert evaluations (applying some aggregation operator)

but instead can be represented by:

– centroids of clusters of experts with similar back-

ground/opinion or simply similar evaluations of the

alternative (information summarization such that dif-

ferent groups of experts and their views/evaluations

remain visible)

– by the set of m k−dimensional evaluations (no

information reduction)

– by a ‘union’ of the m k−dimensional evaluations

constructed e.g. as a minimum k-dimensional evalu-

ation such that all the other evaluations are its subsets

in the k-dimensional space (maximally careful but

potentially very uncertain summary)

– by an ‘intersection’ of the m k−dimensional evalua-

tions (if a nonempty intersection exists) - this would

represent the ‘common ground’ or ‘full agreement’

of the experts in terms of their evaluations

– by an evaluation of a specified shape (in the k-

dimensional space) that is the closest to all the other

evaluations (ideal compromise)

– etc.

• the benefit from the possibility of finding consensus

of expert evaluations [61] (intersections of the eval-

uations within a specified (sub) group of evaluators)

and analyzing the compatibility of expert assessments

by investigating the intersections of the k-dimensional

evaluations either overall or dimension by dimension,

or the distances of the expert evaluations from each

other, from the centroids of clusters (if available), etc.

Stoklasová et al. [61] define various types of consensus

of expert evaluations that can be applied in the multiple-

criteria multi-expert evaluation setting using the GSD

evaluation method.

Overall the method allows for various definitions of the

overall evaluation of the alternative based on m expert evalua-

tions including such that lose very little information, it allows

for the identification of (non) existence of the consensus of

expert evaluations (overall and in terms of specific criteria),

and for the identification of various types of consensus pro-

posed in [61]. It can be used not only for the determination

of the final group evaluation, but also for the analysis of the

group of evaluators based on their evaluations. From the above

mentioned points it seems that the GSD evaluation applied in

the multi-expert setting can prove to be a useful tool for the

evaluation and also for the understanding of the evaluation

process.

V. CONCLUSIONS

Given the above mentioned analysis of the main features

and potential benefits of the use of the GSD in multiple-criteria

Fig. 3. An example of the output of the generalized semantic differential
method [54] for two objects/concepts X and Y in the multiple-criteria
evaluation setting. Three criteria C1, C2 and C3 are assumed. The two
evaluated objects X and Y are represented by OX and OY and by the
“boxes of uncertainty” BX and BY around the Ox and OY respectively.
The preference direction for all three criteria is shown in green and an ideal
evaluation is defined based on this. Green dashed arrows denote the closest
Euclidean distances from the ideal to the boxes of uncertainty, black ones the
largest distance from the ideal to the points in the boxes of uncertainty.

and multi-expert evaluation, the tool seems to be a reasonable

candidate for future research concerning its applicability in

this domain. We have managed to identify and stress some

possible benefits of the use of this tool including the ability to

assess less tangible aspects, the ability to model uncertainty,

a convenient way of the presentation of results, simplicity of

obtaining inputs etc. We have also analyzed the requirements

of the method and there do not seem to be any major

drawbacks preventing the applicability of the GSD-based tools

in multiple-criteria and multi-expert evaluation problems. We

have outlined a possible way to apply the main ideas of GSD

in this context. More detailed description of the applicability

of the method and practical application studies will be the

subject of future research.
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[13] P. Holeček, J. Talašová, and I. Müller, “Fuzzy Methods of Multiple-
Criteria Evaluation and Their Software Implementation,” in Cross-

Disciplinary Applications of Artificial Intelligence and Pattern Recogni-

tion: Advancing Technologies, V. K. Mago and N. Bhatia, Eds., Hershey,
2012, pp. 388–411. ISBN 9781613504291

[14] Z. Gong, Y. Lin, and T. Yao, Uncertain Fuzzy Preference Relations and

Their Applications. Heidelberg New York Dordrecht London: Springer-
Verlag, 2013. ISBN 9783642284472

[15] A. Sen, “Behaviour and the Concept of Preference,” Economica, vol. 40,
no. 159, pp. 241–259, 1973. doi: 10.2307/2552796

[16] Z. Xu, “A method based on linguistic aggregation operators for
group decision making with linguistic preference relations,” In-

formation Sciences, vol. 166, no. 1, pp. 19–30, oct 2004. doi:
10.1016/j.ins.2003.10.006

[17] E. Herrera-Viedma, J. L. García-Lapresta, J. Kacprzyk, M. Fedrizzi,
H. Nurmi, and S. Zadrozny, Eds., Consensual processes. Berlin
Heidelberg: Springer, 2011. ISBN 9783642133428

[18] S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo,
and R. R. Yager, Eds., Advances in Computational Intelligence: 14th

International Conference on Information Processing and Management

of Uncertainty in Knowledge-Based Systems IPMU 2012, Catania, Italy,

July 9-13, 2012, Proceedings, Part IV. Heidelberg New York Dordrecht
London: Springer, 2012.

[19] G. Tzeng and J. Huang, Multiple Attribute Decision Making: Methods

and Applications. Boca Raton, London, New York: CRC Press, Taylor
& Francis group, 2011. ISBN 978-1-4398-6157-8
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