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Abstract—This paper proposes a novel framework based on a
recently introduced classifier called multi-local power mean fuzzy
k-nearest neighbor (MLPM-FKNN) and the Minkowski distance
to classify biomass feedstocks into property-based classes. The
proposed approach uses k nearest neighbors from each class to
compute class-representative multi-local power mean vectors and
the Minkowski distance instead of the Euclidean distance to fit
the most suitable distance metric based on the properties of the
data in finding the nearest neighbors to the new data point.
We evaluate the performance of the proposed approach using
three biomass datasets collected from several articles published
in reputable journals and the Phyllis 2 biomass database. Input
features of the biomass samples include their characteristics from
the proximate analysis and ultimate analysis. In the developed
framework, we interpret the biomass feedstocks classification as
a five-class problem, and the classification performance of the
proposed approach is benchmarked with the results obtained
from classical k-nearest neighbor-, fuzzy k-nearest neighbor- and
support vector machine classifiers. Experimental results show
that the proposed approach outperforms the benchmarks and
verify its effectiveness as a suitable tool for biomass classification
problems. It is also evident from the results that the features
from both ultimate and proximate analyses can offer a better
classification of biomass feedstocks than the features considered
from each of those analyses separately.

Index Terms—Biomass feedstocks, Fuzzy k-nearest neighbor,
Machine learning, Minkowski distance, Proximate properties,
Ultimate properties

I. INTRODUCTION

B
IOMASS is a biological material obtained from living

organisms such as animals and plants. Biomass feed-

stocks are diverse, usually derived from agricultural residues,

forest products waste, food waste, green waste, municipal

solid waste, and other waste [1]. Due to its organic nature

and abundant supply, biomass is considered as an essential

renewable energy source [2] and has received much attention

in the world [1]. Biomass is typically used to derive various

energy products, for example, biogas, bioethanol, biodiesel,

and solid fuel [3]. Following oil, coal, and natural gas, biomass

has been the fourth largest energy source globally to date [4].

Primary concerns regarding biomass investigations include

enhancing and extending the general understanding of the

biomass properties and compositions, and also using this

knowledge for achieving sustainable development in energy

generation [5]. In the study of biomass, in general, two differ-

ent types of analyses: proximate analysis and ultimate analysis,

are used to determine the nature of biomass in terms of the

chemical compounds [6]. The proximate analysis is applied

to measure the compositions of volatile matter, moisture, ash

and fixed carbon in the biomass. On the basis of ash and

moisture content, ultimate analysis yields the amount of carbon

(C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S)

[6]. These properties and their classification corresponding to

the various biomass materials are considered more important

when they are selected as energy feedstocks [5]. The energy

conversion process has also encouraged the studies for biomass

feedstocks classification considering their properties such as

proximate properties, thermal properties, chemical properties,

to mention few [7].

Artificial intelligence, particularly machine learning (ML),

has been extensively used to analyze various types of data

classification and prediction problems effectively. However,

applying ML-based techniques in biomass analysis is still a

new development [8]. In the literature, a few studies have

focused on the potential of some ML techniques for biomass

classification and related research. Tao et al. [9] used a prin-

cipal component analysis (PCA) based approach to attribute

the biomass properties within five groups. Wang et al. [10]

also applied the PCA to find the most influential features

of biomass for the decision-making process in bioenergy

production. Olatunji et al. [5] attempted to grade the biomass

feedstocks based on their proximate properties using k-nearest

neighbor (KNN) method. The best performance they found

with the KNN model [11] was around 70% in the training and

validation. A recent study by [8] examined the effectiveness

of several ML techniques, including Random Forest, KNN,

Gaussian Naïve Bayes, and Decision Tree models to predict

and differentiate biomass types based on the Pyrolysis molec-

ular beam mass spectrometry (py-MBMS) analyses. They

showed that the KNN classifier generally performed the best

compared to others. The present work introduces a novel ML-

based approach for biomass classification by interpreting the

classification task as a five-class problem.

Our proposed approach is based on the multi-local power

mean fuzzy k-nearest neighbor (MLPM-FKNN) method that is

an enhanced version of the KNN classifier, which was recently

introduced in [12]. This new KNN method is chosen as it

has showed more robust to outliers and random variables than

original ones according to [12]. This technique can perform

well in situations where clear imbalances in class distributions

of the data are found [12]. In this study, we generalize the
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performance of the MLPM-FKNN classifier using k nearest

neighbors from each class to compute class-representative

multi-local power mean vectors. In addition to that, we also

introduce the Minkowski distance for the k nearest neighbor

search in the learning part instead of the Euclidean distance

to fit the most suitable distance metric according to the data

properties in finding the nearest neighbors for the unclassified

data point from each class. Since the Minkowski distance

is a generalized distance of the Euclidean and Manhattan

distances, its utilization allows greater flexibility for obtaining

more relevant neighboring points close to the unclassified data

point.

To examine the classification performance of the proposed

approach, we use three biomass datasets collected from several

articles [7], [13], [14], [15], [16] and the Phyllis 2 biomass

database [17]. Four well-known performance measures are

used to assess the performance of the proposed method, and

the observed results are benchmarked with three state-of-

art techniques such as the KNN, fuzzy k-nearest neighbor

(FKNN) [18], and support vector machine (SVM) [19] clas-

sifiers. From the wide variety of machine learning techniques

[20], [21], these were chosen since they are similar to pro-

posed method and easily available. In summary, the main

contributions of this paper include (i) proposing a general-

ized MLPM-FKNN classifier with Minkowski distance for

biomass classification, (ii) using chemical compound features

derived from ultimate analysis for biomass classification, and

empirically examining whether they have a great influence

on the classification of biomass, (iii) applying biomass data

from Phyllis 2 data repository for classification purpose, and

(iv) comparing the classification performance of the proposed

intelligent model with the performance of several well-known

ML techniques.

II. PRELIMINARIES

This section briefly presents the preliminaries of relevant

k-nearest neighbor classifier variants, the Power mean oper-

ator, and the Minkowski distance measure. In addition, the

Minkowski distance-based generalized MLPM-FKNN classi-

fier is introduced.

A. KNN and FKNN Classifiers

The KNN classifier [11] is a simple, effective, and robust

supervised machine learning technique. Due to its high ac-

curacy and capability in the pattern classification, the KNN

classifier has been widely used in many real-world applications

(for examples, see [22], [23]). It begins with calculating the

Euclidean distances from the query sample (i.e., unclassified

data point) to the training instances. Then, a set of k near-

est neighbors is identified for the query sample from the

sorted training instances in ascending order according to the

Euclidean distances measured. Finally, the query sample is

assigned to the class represented by the majority of the nearest

neighbors. However, the KNN method intuitively suffers from

some weaknesses. For instance, it gives equal importance to

all nearest neighbors neglecting the fact that different instances

have different impacts on the classification of the query sample

[24]. Moreover, it does not take into account the strength of

the class membership for the query sample [25]. To deal with

these issues, the FKNN model [18] has been introduced as an

enhancement of the original algorithm.

In the FKNN, the set of k nearest neighbors of the query

sample (Q) is searched first as in the KNN classifier. After that,

a membership degree for each class is measured for the query

sample using weighted distances from k nearest neighbors to

the query sample. Lastly, it classifies the query sample into the

class with the highest membership degree among all classes.

To compute the class memberships (ui for class i) for Q, the

formula used can be defined as follows:

ui(Q) =

∑k
j=1 uij(1/‖Q−Xj‖

2/(r−1))
∑k

j=1(1/‖Q−Xj‖2/(r−1))
(1)

where, r ∈ (1,+∞) is a fuzzy strength parameter and uij is

the membership degree of the jth nearest neighbor Xj from

the ith class. Also,

To compute uij , there are two main approaches: one is

through the crisp membership, and the other is through the

fuzzy membership [18]. In this study, we use the crisp labeling

approach where the full membership is assigned to the known

class and zero memberships to all other classes.

B. Power Mean and Minkowski Distance

Power mean (also called generalized mean) is a function of

means. If {x1, x2, .., xm} is a set of real numbers and p is a

real parameter, then power mean (Mp) is defined as:

Mp = (
1

m

m
∑

l=1

xp
l )

1/p for p 6= 0 (2)

When p → 0, Mp →
∏m

i=1 X
1/m
i . With the power mean

function, different types of means can be generated including

well-known harmonic mean (p = −1), arithmetic mean (p =
1), and quadratic mean (p = 2). Additionally, Mp approaches

to geometric mean when p→ 0.

The Minkowski distance (also referred to as Lp norm)

between two data points X = {x1, x2, .., xm} and Y =
{y1, y2, .., ym} in m-dimensional space is defined as follows:

dMd(X,Y ) =
(

m
∑

l=1

|xl − yl|
q
)1/q

for q ≥ 1 (3)

The Minkowski distance represents a class of distance

functions that are formed by the parameter q. For instance,

by setting q = 1, we obtain the Manhattan distance (also

called City block distance). Similarly, the Euclidean distance

is observed in the case of q = 2.

C. Modified MLPM-FKNN Classifier

The concept of the multi-local power mean fuzzy k-nearest

neighbor (MLPM-FKNN) classifier is easy to understand. It

has been developed by introducing a local-mean computation

into the learning part of the FKNN method. The local mean
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vectors are calculated for each class in the set of nearest

neighbors by using the power mean function. These vectors

are called multi-local power mean vectors. In this way, the

MLPM-FKNN method creates “representative vectors” for

each class to perceive the class information for query sample

instead of comparing it directly to the k-nearest neighbors.

Also, changing the power mean parameter allows us to find

its best possible options, which will enhance the classification

accuracy [12].

In this study, we deploy a generalized version of this

method. The Minkowski distance function is applied according

to the study by [5] instead of the Euclidean distance to measure

the distances from the query sample to the training instances.

The purpose of using Minkowski distance here is to generate

greater flexibility for obtaining more relevant neighbors close

to the query sample since it has an optimizable parameter to

adjust the function to the data set available. A formal definition

of the developed method can be presented as follows.

Let {Xj , cj}
n
j=1 be a training set with n instances, where

Xj = {x1
j , x

2
j , .., x

m
j } is an input instance j from m-

dimensional feature space, and its output class label is cj ∈ C
(C = {ω1, ω2, .., ωT }: the set of class labels and T is the num-

ber of classes). For a given query sample Q = {q1, q2, .., qm},
the goal is to fit the classifier from the training set in order

to predict the class ω∗ for Q. The steps of the generalized

MLPM-FKNN classifier in this study can be presented as

follows:

(i) Group the training data {Xj , cj}
n
j=1 into each class

ωi. The resulting class subsets can be denoted as

{Xj , ωi}
ni
j=1 for i = 1, 2, .., T . Here ni is the number

of instances in class ωi.

(ii) Find the sets of k nearest neighbors of Q from each class

ωi. In this case, the Minkowski distances are calculated

from the training instances in {Xj , ωi}
ni
j=1 to Q and

the set of k nearest neighbors are identified from the

reordered training instances according to the increasing

distances.

(iii) For each set of k nearest neighbors {Xnn
j }

k
j=1 from

each class ωi (nn means nearest neighbor), power mean

vectors Mi (i = 1, 2, .., T ) are measured and which are

called multi-local power mean vectors.

Mi = (
1

k

k
∑

j=1

(Xnn
j )p)1/p for p 6= 0 (4)

(iv) Compute the Minkowski distances from Q to Mi =
{m̃i

1, . . . , m̃
i
m} for i = 1, 2, .., T such as:

dMd(Q,Mi) =
(

m
∑

l=1

|ql − m̃l
i|
q
)1/q

(5)

(v) Compute the memberships to {ωi}
T
i=1 according to Eq.

(1) using the distances from Step (iv) and the crisp

approach for calculating uij (i.e., uij = 1 for the known

class and uij = 0 for other classes).

Algorithm 1 Updated MLPM-FKNN classifier

Input: {Xj , cj}
n
j=1, k, p, q, Q

Output: ω∗

START

1: for i← 1 to T do

2: for j ← 1 to ni do

3: Compute dMd(Q,Xj)←
(
∑m

l=1 |q
l − xl

j |
q
)1/q

4: end for

5: Sort {dMd(Q,Xj)}
nj

j=1 in ascending order

6: if (nj < k) then

7: k ← nj

8: end if

9: Find {Xnn
j }

k
j=1

10: Find Mi ← ( 1k
∑k

j=1(X
nn
j )p)1/p

11: end for

12: for i← 1 to T do

13: Compute dMd(Q,Mi)←
(
∑m

l=1 |q
l − m̃l

i|
q
)1/q

14: Compute ui(Q)←

∑T

j=1
uij(1/dMd(Q,Mi)

2/(r−1))
∑T

j=1
(1/dMd(Q,Mi)2/(r−1))

15: end for

16: return ω∗ such that

ω∗ = arg max
ωi

ui(Q)

(vi) Classify Q into the class ω∗ that has the highest mem-

bership degree. In other words:

ω∗ = arg max
ωi

ui(Q) (6)

This method generates class-representative power mean vec-

tors using k nearest neighbors obtained from each class subset

instead of the entire training dataset. This distinguishes the

proposed method from the original MLPM-FKNN algorithm.

Moreover, utilizing the Minkowski distance metric to measure

the distances from the query sample to the training instances

allows the classifier to choose the most suitable distance

metric based on the properties of the data. In the developed

framework, we also examine the performance of the updated

MLPM-FKNN classifier based on the Euclidean distance,

which is denoted as MLPM-FKNN (E). At the same time,

the Minkowski distance-based generalized approach is shown

as MLPM-FKNN (M).

III. DATA AND EXPERIMENTAL SETTING

A. Data Description

In this study, we used three datasets of biomass feedstocks,

two of them were generated from several articles [7], [13],

[14], [15], [16] published in respective journals, and other

one was collected from the Phyllis 2 biomass data repository

[17]. Information and the properties of each of the datasets

are summarized in Table I. It is noteworthy to mention that

these datasets are based on experimental outcomes of the

proximate and ultimate analyses of biomass produced by

previous studies. We attempt to use them for classification

purposes in this study.
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TABLE I: Properties of the data used

Data Source # Instances # Features # Classes

Dataset 1 [13], [14] 212 4 5

Dataset 2 [7], [15], [16] 135 5 5

Dataset 3 [17] 344 9 5

In these datasets, we included five classes of biomass

feedstocks considering the property-based definitions in [5].

In particular, class 1 contained energy grasses and their parts

(fiber materials, leaves), and class 2 comprised fruit residues

and relevant sources (shells, seeds, pit). For class 3, materials

from wood, wood chips, chips-barks, pruning were considered,

while food crop residues (straws, stalks, dust, husk, hull, cob)

were set for class 4. Class 5 included other waste materials

such as milling industry waste, refuse, and municipal solid

waste. Fig. 1 illustrates the percentages of the classes included

in each dataset.

According to Fig. 1, it is clear that there are imbalances of

the classes in each of datasets. Among them, class 3 is the most

frequent class in all datasets, even though it does not account

for over 50% of each dataset. In contrast, class 4 and 5 in

dataset 1, and class 2 and 5 in dataset 2, and class 5 in dataset

3 are associated with a small number of biomass samples.

The features considered in dataset 1 were fixed carbon (FC),

volatile matter (VM), ash, and higher heating value (HHV)

that had been extracted from the proximate analysis. In dataset

2, the features were the chemical properties of the biomass

substances from the ultimate analysis, such as carbon (C),

hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S). For

dataset 3, all feature types included in both dataset 1 and

dataset 2 were considered. In all cases, we assumed that

these features have significant influences on the class variable.

Notice that dataset 2 and dataset 3 have not been used earlier

for classification purposes, and this paper is the first one

showing classification results for them. In particular, we utilize

biomass data instances for the Phyllis 2 database for machine

learning-based classification.

Dataset 1 Dataset 2 Dataset 3

C
la

s
s
 %
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20

30
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60

22.64

17.92

29.25

15.09 15.09
16.42

8.21

31.34 31.34

12.69

19.83

16.42

38.78

18.66

6.12

Class 1

Class 2

Class 3

Class 4

Class 5

Fig. 1: Distribution (%) of each class in dataset 1, dataset 2,

and dataset 3.

B. Testing methodology

The proposed framework for biomass classification has two

main phases: i) training and validation and ii) testing. In

the training and validation step, the model was developed

by optimizing values for parameters k (number of nearest

neighbors), p (power mean parameter), and q (Minkowski

distance parameter). A grid search technique was deployed

to optimize the model parameters. The performance of the

classification models with optimal parameters were evaluated

in the testing phase. To compare the performance of the

generalized MLPM-FKNN classifier, we applied three well-

known methods, namely k-nearest neighbor (KNN) [11], fuzzy

k-nearest neighbor (FKNN) [18] and support vector machine

(SVM) [19] classifiers. In addition to them, the MLPM-FKNN

classifier based on the Euclidean distance [i.e., MLPM-FKNN

(E)] was also applied, and the results were compared.

The analysis started with normalizing all features in the

data into the unit interval. Next, datasets were randomly

split into 60% for training, 20% for validation and 20%
for testing. Stratified random sampling method was applied

to ensure that all instances have the same proportions of

units representing the different classes present as the whole

data set. The holdout technique [26] was adopted for cross-

validation, where the training and validation datasets were

randomly generated 20 times. In the parameter settings, the

number of nearest neighbors k was selected from {1, 2, ..., 15}
for all nearest neighbor methods. The value for p in power

mean was chosen from the range {1, 1.1, .., 5}. The values

from {1, 1.5, ..., 5} were selected for the parameter q of the

Minkowski distance. The fuzzy strength parameter r = 2
was kept, as in [12], [25] for MLPM-FKNN (M), MLPM-

FKNN (E), and FKNN classifiers. Radial basis function kernel

was used with the SVM model. To measure the classification

performance, accuracy was used as the primary evaluation

metric. Additional performance measures such as sensitivity

and specificity were also measured as displaying classification

results with accuracy alone is often not enough to adequately

emphasize the effectiveness of the applied method [12]. The

formulas used for sensitivity and specificity, especially to

multi-class problems can be found from [25]. Additionally,

the standard deviation (STD) of the accuracies was also com-

puted. Based on the resulting confusion matrixes, we further

examined the results of each classifier in the classification of

biomass samples into each class.

IV. RESULTS AND DISCUSSION

This section first presents the results from the training &

validation phase of our methodology. Then the classification

results in the test phase are presented.

A. Classification results with the training and validation data

We collected the accuracy, sensitivity, and specificity values

in each run during the training and validation and averaged

them for all repetitions from the holdout process. When the

mean accuracy reached the maximum, the optimal values

for the parameters (p, q and k) were observed. Table II
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TABLE II: Classification performance with the validation data

Model Measure Dataset 1 Dataset 2 Dataset 3

MLPM-FKNN
(Minkowski)

Accuracy 0.5000 0.6217 0.7815

Sensitivity 0.4775 0.5208 0.7435

Specificity 0.8697 0.8973 0.9447

STD 0.0707 0.0761 0.0722

Op. k, p, q {9, 1.7, 1} {2, 5, 3} {3, 1, 1.5}

MLPM-FKNN
(Euclidean)

Accuracy 0.4824 0.6152 0.7667

Sensitivity 0.4558 0.5252 0.7175

Specificity 0.8619 0.8968 0.9410

STD 0.0676 0.0737 0.0636

Op. k, p {15, 2} {2, 4.1} {3, 1.4}

KNN

Accuracy 0.4588 0.5804 0.7370

Sensitivity 0.4402 0.5402 0.6557

Specificity 0.8582 0.8892 0.9317

STD 0.0736 0.1183 0.0546

Op. k 7 3 5

FKNN

Accuracy 0.4471 0.5804 0.7704

Sensitivity 0.4313 0.5173 0.6839

Specificity 0.8550 0.8866 0.9398

STD 0.0676 0.0928 0.0500

Op. k 15 11 6

SVM

Accuracy 0.4029 0.5348 0.7704

Sensitivity 0.3600 0.3848 0.7056

Specificity 0.8413 0.8684 0.9423

STD 0.0312 0.0632 0.0211

summarizes those maximum performance measures and corre-

sponding parameter values (“Op.”) obtained with the proposed

approach and the benchmarks with each dataset. To assess the

reliability of the achieved mean accuracy value, its standard

deviation (“STD”) is also reported.

According to Table II results, we can see that the MLPM-

FKNN (M) classifier achieves better results than the bench-

marks in the training & validation for all datasets. It also has a

reasonable standard deviation of accuracy and explicit support

from mean sensitivity and specificity values. Moreover, used

classifiers give outstanding performance with dataset 3 among

all datasets while the proposed approach performs the best,

achieving an accuracy of 78.15%. It is also apparent that the

mean accuracy of all classifiers with dataset 2 is comparatively

high compared with dataset 1, even though the sample size

of dataset 2 is relatively small. This implies that the chemical

properties of the biomass from the ultimate analysis offer great

support than the proximate properties for their classifications,

and having features from both analyses may provide even

better results. Moreover, despite the influence of the class

imbalance (as shown in Fig. 1) and the class overlapping

issues [27], having a small number of instances in dataset 1,

and dataset 2 might also have caused all classifiers to yield a

relatively low performance.

Looking at the optimal values of the model parameters,

a low value of k has yielded better results for MLPM-

FKNN (M) than for the KNN and FKNN methods, which

is surprising. This indicates that when the class-representative

power mean vectors are computed using the k nearest neighbor

from each class, it does not necessarily need to have more

instances to make local power mean vectors more robust (and

representative). It also can be seen that p ∈ {1.7, 5, 1} and

q ∈ {1, 3, 5} have produced the maximum accuracy with the

proposed MLPM-FKNN (M) approach for all datasets. Turn-

ing into the distance measure in the MLPM-FKNN classifier,

the Minkowski distance-based approach has achieved slightly

better accuracy than the Euclidean distance-based approach

in all cases considered, which signifies the effectiveness of

using Minkowski distance in the proposed method for biomass

feedstock classification.

To visually inspect the impact of the different values of

k and p on the classification performance of the proposed

MLPM-FKNN (M) approach, Fig. 2 illustrates the mean

accuracies during the training and validation with all datasets

when q at its optimum.

B. Classification performance with the test data

The classification results of each classifier with the test data

instances are presented in Table III. In the testing step, we

evaluated the performance of the trained models with the test

data instances using the training instances that were stored

during the holdout validation. As a result, the mean values of

the performance measures are reported.

The results with the test data instances show that the pro-

posed MLPM-FKNN (M) approach has a high classification

accuracy compared to the benchmarks. In particular, it has a

good accuracy of 70.88% with dataset 3, acceptable perfor-

mance with dataset 2, and somewhat low accuracy of 42.62%
with dataset 1. Along with them, other performance measures

also remain reasonable, while the specificity is always higher

TABLE III: Classification performance with the test data

Model Measure Dataset 1 Dataset 2 Dataset 3

MLPM-FKNN
(Minkowski)

Accuracy 0.4262 0.5320 0.7088

Sensitivity 0.3850 0.4788 0.6935

Specificity 0.8490 0.8736 0.9248

STD 0.0508 0.0552 0.0161

MLPM-FKNN
(Euclidean)

Accuracy 0.3786 0.5180 0.7059

Sensitivity 0.3305 0.4721 0.6932

Specificity 0.8349 0.8702 0.9242

STD 0.0208 0.0527 0.0180

KNN

Accuracy 0.4000 0.4780 0.5853

Sensitivity 0.3463 0.4538 0.5719

Specificity 0.8442 0.8634 0.8931

STD 0.0369 0.0458 0.0192

FKNN

Accuracy 0.3952 0.4760 0.6265

Sensitivity 0.3508 0.3942 0.6232

Specificity 0.8396 0.8570 0.9035

STD 0.0256 0.0428 0.0305

SVM

Accuracy 0.4143 0.4960 0.6912

Sensitivity 0.3605 0.3871 0.6721

Specificity 0.8453 0.8591 0.9200

STD 0.0392 0.0398 0.0180
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(a) Dataset 1 (q = 1) (b) Dataset 2 (q = 3) (c) Dataset 3 (q = 1.5)

Fig. 2: Classification performance of the MLPM-FKNN (M) model with different p and k values for dataset 1, dataset 2, and

dataset 3.

than the sensitivity. By looking at the others, even though the

test performance of the KNN, FKNN and SVM models have

comparable and generally good performance with dataset 3,

they have relatively low performance with dataset 1 and dataset

2. Furthermore, it is apparent that for all methods used, the

SDT is considerably lower for the test data (especially data

set 3) than for the training and validation data.

Fig. 3 shows the mean classification accuracy (measured

from the confusion matrices) of each model for each class

during the testing. It is apparent from the figure that all

classifiers yielded good classifications on class 3 (that includes

the wood-based energy crops) in dataset 1, whereas the SVM

model performed the best. In dataset 2, class 1 (that includes

energy grasses and their parts) and class 4 (that includes food

crop residues-based biomass samples) have offered good and

reasonable performance with all classifiers. In contrast, the

classification performance of all methods in other classes of

dataset 1 and dataset 2 appear to be poor—it is even worst for

some cases, for instance, with class 2 in dataset 1. This might

be because these classes are represented by a small number

of biomass samples in the data. On the contrary, the classes

(for example, class 3 in dataset 1) that are largely represented

in the data have offered better classification. This indicates

that the classification performance of these classes can be

improved by introducing more data with approximately the

same number of instances from all classes. It is also apparently

supported by the results on dataset 3, where one can observe

that the biomass samples in all classes generally produced

good classification performance with all methods. This finding

indicates that more biomass samples with relevant features

from the proximate and ultimate analyses contribute to better

results in their classification. Overall, it is evident from the

result on dataset 3 that even though all the classifiers have

comparable good performance, the MLPM-FKNN classifiers

appear to be performing well for all classes classifications,

whereas the KNN method performs the least.

V. CONCLUSION

This paper presents a novel approach based on the MLPM-

FKNN classifier and Minkowski distance for biomass feed-
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Fig. 3: Comparison of classification performance of each

model for each class with test data.
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stocks classification. An essential characteristic of this ap-

proach is that the generalization through power means and

the Minkowski distance allows testing of different parameter

values and enables a better fit of the method, consequently

improving classification accuracy. We interpreted the biomass

feedstocks classification as a five-class problem. Input features

of the biomass samples included their characteristics from the

proximate analysis and ultimate analysis. The experimental

classification results clearly show that the proposed approach

can achieve better performance than the benchmarks and can

potentially produce an efficient classification that can benefit

categorization of biomass sources for generating energy. The

experimental results also validate the usefulness of the pro-

posed MLPM-FKNN (M) method for multi-class imbalance

real-world problems. Besides, it is evident from the results

that the features from both ultimate and proximate analyses

can offer a better classification of biomass feedstocks than the

features considered from each of those analyses separately.

Future research possibilities include, for example, testing

the classification performance of the proposed approach with

more extensive biomass data that adequately comprises all

classes specified in this study. Additional data will enhance the

accuracy and the classification performance for wider range of

biomass types and characteristics, in general.
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