
Designing Graceful Degradation in Software Systems

Rohit Dhall

Enterprise Architect, Engineering and R & D services,

HCL Technologies

Noida, India

e-mail: dhall.r@hcl.com

Abstract— Graceful degradation is an aspect of a fault tolerant

software system, where in case of some failures, system

functionality is reduced to a smaller set of

services/functionalities that can be performed by the system.

During the period of graceful degradation, system runs and

offers only the minimal set of critical services, thus avoiding

total outages. This paper discusses some design approaches

which can be used in a software system to handle graceful

degradation. It also proposes and discusses the design of the

‘Capability Determination Model’ (CDM), and how this model
can be used to build and implement an IT software system with

graceful degradation. This paper presents a high level design

of the CDM and how different aspects of graceful degradation

can be built into a software system using this model

(CDM).Working of different components of CDM is also

discussed. In the end, this paper talks about some of the

alternatives of graceful degradation design and challenges

associated with designing software systems with graceful

degradation.

Keywords- Graceful Degradation, Performance Engineering,

Fault tolerannt system Design, System Dependability, Graceful

Degradation Design.

I. WHAT IS GRACEFUL DEGRADATION?

With software systems becoming more and more
complex and performing some of the most critical operations
of an organization, one thing which hasn’t changed at all is
the possibility of occurrence of an event, which can prevent
the system from performing all its expected functionalities.
This event or exception scenario can prevent the system from
performing its overall responsibilities and can cause a huge
loss to the businesses, which are becoming more and more
dependent on the IT systems.

To minimize the risks associated with errors

scenarios/outages, multiple techniques are used to make a
system fault tolerance. E.g. business may decide to have a
failover/HA components or to have a complete DR site at an
alternate physical location, data replication and so on. But as

the system becomes more complex (more subcomponents,
more external integrations and so on), having a failover for
complete system can turn out to be very costly in terms of
money or effort, needed to build a such failover instance.

Graceful degradation refers to an aspect of fault tolerant

system design, where during the occurrence of an
exceptional event, system capability is gracefully lowered in
terms of the services it offer or perform(in terms of number
of business use cases it support or the NFRs like throughput,
response time etc.).Thus a gracefully degraded system will
not be providing complete set of functionality, which it
generally provides in a fully functional state.

Concept of graceful degradation design is used in a wide

variety of systems and its meaning can vary from system to
system. For example, one system can consider graceful
degradation as offering a smaller set of UI features,
depending upon the capabilities offered by the browser being
used by the end user, another system can consider graceful
degradation as rendering a lower resolution image, a telecom
system switching from 4G to 3G or 2G services, while some
systems may consider graceful degradation as offering only a
limited subset of critical services while making other less
critical services unavailable in case of an error event. This
paper considers all such cases as design aspects of graceful
degradation.

Fig. 1 summarizes the concept of graceful degradation.

The chart on the left side shows a system, working with
100% capabilities in a normal scenario. The chart on the
right side, shows a system, which is now offering 80% of the
overall capabilities, in case of an event. The system handles
this degradation gracefully, by stopping the offering of
certain less critical services, so that other critical services can
still continue to perform. Note that this graceful degradation
can also happen in the form of degradation of performance,
throughput, response time and other such aspects of the
system.

Proceedings of the Second International Conference on Research in

Intelligent and Computing in Engineering pp. 171–179

DOI: 10.15439/2017R15

ACSIS, Vol. 10 ISSN 2300-5963

c©2017, PTI 171

II. WHAT ISSUES GRACEFUL DEGRADATION SOLVE

Graceful Degradation design can help solve multiple
issues associated with unexpected events like an error/failure
scenarios and how the system behaves and interacts with
end-users in such scenarios. Some of the issues it addresses
are

 Avoids high costs associated with setting up
failover/HA instances of all service components,
instead only most critical flows/service paths are
supported

 System can still remain responsive , albeit with a
lower state of services it offers

 System can communicate with end users, providing
them updates on the failures and limited
functionality, which still can be carried out

Note that Graceful degradation design doesn’t rule out other
requirements and methods to achieve a fault tolerant system,
e.g. having a DR site etc., but adds on to these features. With
the help of Graceful degradation design, a smaller subset of
services are still continued to be offered from the main site
or DR site. This paper doesn’t necessarily differentiate
between these aspects/instances etc., unless stated otherwise.

III. HANDLING GRACEFUL DEGRADATION

Graceful Degradation system design can vary from
system to system. But at high level, common steps or
patterns can be identified, which are critical for a system to
degrade gracefully in case of an exception scenario. Figure 2
present a high level design approach of building graceful
degradation in the system. Some of the important aspects of

such systems are considered and explained how these can be
used to achieve graceful degradation. High level flow to
achieve graceful degradation can be summarized as follow

 System Analyzes and evaluates if all capabilities are
fully functional

 If all required capabilities are available, continue to
offer a full set of services to end consumers

 If all required capabilities are not available, identify
the critical services, which should continue to be
offered (with degraded performance/functionality)

 Check the components which have failed
capabilities, e.g. it can check whether database or
other subcomponent is available and working fine or
not (based on predefined health check routine,
response times, response codes, scheduled outages
etc.)

 Once failed components are identified, evaluate and
identify the set of services, which can continue to be
offered with degraded set of functionality

 Note that to offer degraded set of services, some
alternate/exception flows may need to be invoked for
individual service/use case.

 For example, if some database service is not
available, for query, data can be referenced from
local cache or for writes, records/transactions can be
written to some temporary message stores like
message queues etc. Once database services are
restored, these transaction details can be updated in
the db

 Note that, a system handling graceful degradation,
will also have a check to see if services are back up
and running again. As more and more components
start coming up, more and more services will
continue to be offered to the end consumer.

 Also, note that in some scenarios, offering a subset
of services can have cascading effect on the overall
system. E.g. offering only one subset of functionality
can have an impact on other service’s functionality,
which in turn can impact another set of services.
This can bring down the whole system. This scenario
is very common in today’s business applications,
where one service is integrated with multiple
services to achieve a common business goal.

IV. REAL LIFE IMPLEMENTATION OF GRACEFUL

DEGRADATION

In this section, we will see how Graceful Degradation can

be built into the design of a telecom company’s IT
applications. Consider an imaginary telecom operator

“UserComm Limited”, which has a huge subscriber base of

Prepaid and Postpaid customers. In this paper, we will focus

on prepaid subscribers and applications related to prepaid

subscribers. Figure 3 shows the high level context diagram

of some of the most commonly used applications by a

prepaid subscriber. For simplicity, we will not be discussing

other applications, which may be there in IT eco-system of a

telecom operator.

Figure 1 : Graceful Degradation

Figure 2 High Level Flow of Graceful Degradation

172 PROCEEDINGS OF RICE. GOPESHWAR, 2017

As shown in the context diagram in Figure 3, a prepaid
subscriber can use the following set of applications to
perform various operations:

 Use Prepaid Balance Enquiry service to check the
current balance/talktime available

 Perform a top-up/recharge to get additional talktime
 Perform various operations like enrolling for new

services/user profile management, setting preferred
language etc. using SelfCare channel application

 And get in touch with Customer care over web/call
etc. to solve certain service related issues/inquiries

Note that it may happen that in certain scenarios, it may be
decided to completely stop offering one or more services,
while continuing to offer other services. That is also an
aspect of graceful degradation. But in this section, we will
talk about how, for a particular application, small set of
functionality can be offered to handle graceful degradation.
The techniques presented can be used to cover the first
scenario also.

The rest of this paper explains how graceful degradation
aspect can be built into one of the applications shown above.
This paper will talk about one of the service ‘Prepaid
Balance Enquiry’ in detail, and also discuss how this service
can be designed to handle graceful degradation in the event
of exception/outages caused by various factors.

V. WORKING OF PREPAID BALANCE ENQUIRY SERVICE

Figure 4 shows the high level working of Prepaid
Balance Enquiry Service. Note that this is a simplified
working of the actual service and many details are omitted to
avoid complexity and to keep the focus only on the graceful
degradation design aspect.

Working of Prepaid Balance Enquiry can be summarized as:

 Prepaid subscriber sends request to get his balance
 Once request is received by the BalanceEnquiry

Service, after performing necessary
validations/authentication (not shows in the
sequence diagram to avoid unnecessary complexity)
, balance is retrieved from system knows as
Intelligent Network(IN)

 IN system in a telecom environment are used for a
wide variety of functions, one of which is to
maintain the current balance of a prepaid subscriber
(details of IN system can be found in the links given
in the reference section)

 Once balance is retrieved from the IN system, the
transaction details are stored in database , with the
help of TxnStoreService

 Transaction details needed to be stored for various
reporting, analytics and regulatory requirements.

VI. WORKING OF PREPAID BALANCE ENQUIRY SERVICE

There are some high level issues in the above mentioned

working of Prepaid Balance Enquiry service w.r.t.

availability and reliability aspects.

 IN can be a single point of failure .In case IN is not

available, balance cannot be retrieved

 In case of database services are not available,

TxnStoreService will not be able to store the

transaction details, thus there can be a challenge in

meeting reporting , analytics and regulatory

requirements

VII. HANDLING GRACEFUL DEGRADATION OF PREPAID

BALANCE ENQUIRY SERVICE IN CASE OF FAILURE OF IN

SYSTEM INSTANCES WITH ‘CAPABILITY DETERMINATION

MODEL’ (CDM)

To handle the failures of IN system instances gracefully, a

‘Capability Determination Model’ (CDM) can be used.
Figure 5 summarizes, how CDM can be used to handle IN

system related exception scenarios.

Working of ‘Capability Determination Model’ (CDM), as
shown in figure 5, can be explained as follows:

Figure 3 Context Diagram for a Prepaid Mobile IT system

Figure 4 Sequence diagram of Prepaid Balance Enquiry

service

Figure 5 Model to gracefully degradation of services being offered in

case of IN failure

ROHIT DHALL: DESIGNING GRACEFUL DEGRADATION IN SOFTWARE SYSTEMS 173

 To avoid IN as single point of failure, and also because

IN systems are used by multiple applications in a

telecom environment, sufficient redundancy is

generally built for a given IN instance, by having

active-active nodes working in tandem to serve requests

(shown as IN1, IN2 and so on in the figure 5)

 CDM will use the services of Load Balancer to round

robin the requests to the set of IN servers

 Concurrency to a particular IN server is throttled by use

of Bulkheads. Bulkhead is a dedicated connection pool

to individual IN server, using which max concurrent

hits on a given IN server can be controlled. It can help

in avoiding the overloading of any given IN server

instance.

 In case an IN server instance is not available, because

of some outages etc., Circuit breaker will mark that

instance of the IN server as down, and will remove it

from the Bulkhead and load balancer lists, so that no

requests can be sent to the ‘out of service’ instance

 The FlowManager component of CDM will control the

flows in various scenarios. For example, in case of none

of the active IN instance is available, FlowManager will

activate the alternate flow to handle this scenario

 Finally, there will be a Healthcheck module, which will

keep on monitoring different IN server instances, and

inform circuit breaker if any IN server instance is down

or if any IN instance , which was not available earlier,

has come up again

Figure 6 explains, how services offered are gracefully

degraded for Prepaid balance enquiry service, in the

scenario of one or more IN server instance going down

because of expected or unexpected reasons.

Above sequence diagram of the flow of working of Prepaid

balance enquiry service, and how it handles the exception

scenario gracefully and lowers down the level of services it

offers, is explained below.

 Prepaid subscriber sends request to get his balance

 Once request is received by the BalanceEnquiry

Service, after performing necessary

validations/authentication (not shows in the sequence

diagram to avoid unnecessary complexity) , it gets the

URL of active instance of the IN system from

‘Capability Determination Model’(CDM)
 ‘Capability Determination Model’ (CDM) will use the

services of circuit breakers, bulkheads modules to

figure out the active IN server instance and to get hold

of a connection to one of the active IN instance using

Load Balancer.

 If an active instance of IN server is available, balance

will be retrieved, transaction details stored in the

datastore and the balance will be returned to the

subscriber. This behavior is exactly like the flow in

figure 4, as this is the happy path.

 The only difference is that here IN is no longer a single

point of failure and a suitable redundancy is built for IN

server instances, by providing a set of active-active

instances

 In case none of the instance of the IN server is

available, then there will not be any URL available for

serving the request

 CDM will determine this with the help of circuit

breakers and bulk heads, as explained in description of

figure 5.

 Once it is observed that no active instance of the IN

server is available to serve the request, CDM will also

trigger an alternate flow,with the help of FlowManager

component, which will be offering degraded services

 Now, instead of sending a balance amount as a response

to the customer in real time, request details would be

stored in the transactional datastore

 A response to subscriber will be sent that “his request
has been received and the system will revert with the

details”.
 This ensures that system continues to be responsive and

keeps on communicating with users, instead of dying

out completely

 Once IN server instance is available, all the pending

requests can be retrieved from transactional data store ,

processed and final response sent to the subscriber

 Thus, in the case failure of IN instances ,system was

still able to accept requests, and communicate with end

user, thus providing better user experience and

satisfaction

 Although, the system capability was degraded from

‘sharing the current balance in real time’ to ‘sharing the
current balance after some time window (offline

mode)’, still system was able to perform the services.

 Similarly, in a scenario, where one out of two IN server

instances was down, the system should still be able to

handle 50% requests in real time and the rest of the

requests in offline mode

Table 1 summarizes the scenarios of the failures of the IN

server instances, how much system functionality or

 Figure 6 Sequence diagram of graceful degradation of services

offered by Prepaid balance enquiry

174 PROCEEDINGS OF RICE. GOPESHWAR, 2017

capability is degraded, and how system degrades gracefully

to handle the requests in offline mode.

Table 1 Summary of graceful degradation from real time to offline

fulfillment of requests

Sr.

No

Component

Name

of

Instances

Available

Mode

of

Services

offered

Capabi

lity

Comment

1 IN Instance 3 Real

Time

100% System

working with

full capacity in

real time

2 IN Instance 2 Real

Time

and

offline

66 %

real

time,

33 %

offline

33 % requests

will be

handled

offline , after

graceful

degradation to

offline mode

3 IN Instance 1 Real

Time

and

offline

33 %

real

time,

66 %

offline

66 % requests

will be

handled

offline , after

graceful

degradation to

offline mode

4 IN Instance 0 Offline

Mode

100 %

offline

100 %

requests will

be handled

offline , after

graceful

degradation to

offline mode

VIII. HANDLING GRACEFUL DEGRADATION OF PREPAID

BALANCE ENQUIRY SERVICE IN CASE OF FAILURE OF

DATABASE SERVICES WITH ‘CAPABILITY DETERMINATION

MODEL’ (CDM)

To handle the failures of database services gracefully,

‘Capability Determination Model’ (CDM) can be used.
Figure 7 summarizes, how CDM can be used to handle

database services related exception scenarios. Working of

‘Capability Determination Model’ (CDM) as shown in
figure 7, can be explained as follows:

 To avoid the database as single point of failure, ,

sufficient redundancy is generally built for a given

database instance, by having active-active nodes

working in tandem to serve requests (shown as DB1 ,

DB2 in the figure 5)

 CDM will use the services of Load Balancer to round

robin the requests to the set of DB servers

 Concurrency to a particular Database server is throttled

by use of Bulkheads. Bulkhead is a dedicated

connection pool to individual database server, using

which max concurrent hits on a given database server

can be controlled. It can help in avoiding the

overloading of any given database server instance.

 In case a database server instance is not available,

because of some outages etc., Circuit breaker will mark

that instance of the database server as down, and will

remove it from the Bulkhead and load balancer lists, so

that no requests can be sent to the ‘out of service’
instance

 The FlowManager component of CDM will control the

flows in various scenarios. For example, in case of none

of the active database instance is available,

FlowManager will activate the alternate flow to handle

this scenario

 Finally, there will be a Healthcheck module, which will

keep on monitoring different database server instances,

and inform circuit breaker if any database server

instance is down or if any database instance , which

was not available earlier, has come up again

Figure 8 explains, how services offered are gracefully

degraded for Prepaid balance enquiry service, in the

scenario of one or more database server instances going

down because of expected or unexpected reasons.

Note that for simplicity, following sequence diagram only

shows the database operation of storing transaction details

in the database store. Other operations like getting balance

from the IN servers and how graceful degradation is handled

in those scenarios have been omitted from this figure, as

these have already been explained in detail, in the last

section.

Figure 7 Model to gracefully degradation of services being offered in

case of Database failure

Figure 8 Graceful degradation in case of database failure

ROHIT DHALL: DESIGNING GRACEFUL DEGRADATION IN SOFTWARE SYSTEMS 175

Above sequence diagram (Figure 8) of the flow of

working of database operations of Prepaid balance enquiry
service, and how it handles the database server exception
scenario gracefully and lowers down the level of services it
offers, is explained below.

 Prepaid subscriber sends request to get his balance
 Once request is received by the BalanceEnquiry Service,

after performing necessary validations/authentication
(not shows in the sequence diagram to avoid
unnecessary complexity), further steps are explained in
detail, while explaining figure 6 in the last section.

 Once steps to get the balance from the IN system, as
explained in figure 6, are completed, transaction details
need to be stored in database server (in case of none of
the active IN server instance is available, as explained in
figure 6, requests details are also stored in the database.
Hence, next set of steps are also applicable to this
scenario, when requests details are needed to be stored
in the database)

 TxnStoreService , the service which handles the
database related operations to store transaction details,
get the URL of the active database instance from
‘Capability Determination Model’(CDM)

 ‘Capability Determination Model’ (CDM) will use the
services of circuit breakers, bulkheads modules to figure
out the active database server instance and to get hold of
a connection to one of the active database instance using
Load Balancer.

 If an active instance of database server is available,
transaction details stored in the datastore and the balance
returned to the subscriber. This behavior is exactly like
the flow in figure 4, as this is the happy path.

 Only difference is that here database is no longer a
single point of failure and a suitable redundancy is built
for database server instances, by providing a set of
active-active instances

 In case none of the instance of the database server is
available, then there will not be any URL available for
serving the request

 CDM will determine this with the help of circuit
breakers and bulkheads, as explained in description of
figure 5.

 Once it is observed that no active instance of the
database server is available to store the transaction
details , CDM will also trigger an alternate flow, which
will be offering degraded services

 Now, instead of storing the transaction details in the
database, all requests will be stored in a asynchronous
messaging system like ActiveMQ or IBM WebSphere
MQ

 Similarly, read operations can happen from a cached
copy of some of the database tables, or from a read only
replica of the database

 This way, the system will be able to continue with its
working, but reduced and degraded capabilities like
analytical and reporting might now happen on this new
set of data, till the time the database server becomes

active again and transaction details in the messaging
system are committed to the database server

 This ensures that system continues to be responsive and
keeps on communicating with users, instead of dying
out completely

 Once the database server instance is available, all the
transaction details can be retrieved from messaging
system and pushed to the transactional data store

 Although, the system capability was degraded from
‘sharing the current balance in real time’ to ‘sharing the
current balance after some time window (offline mode)’,
or ‘not able to support analytical and reporting
requirements’ , in case all database instances were
down, still system was able to perform the other critical
services.

Table 2 summarizes the scenarios of the failures of the
database server instances, how much system functionality or
capability is degraded, and how system degrades gracefully
to handle the requests in offline mode, or stops offering
analytical and reporting requirements, in case none of the
database instance is available.

Table 2 Summary of graceful degradation (real time & offline mode,

reporting & analytical requirements)

Sr.

No

Component

Name

of

Instances

Available

Mode

of

Services

offered

Capabi

lity

Comment

1 DB Instance 2 Real

Time

100% System working

with full capacity

in real time

2 DB Instance 1 Real

Time

and

offline

50 %

real

time,

50 %

offline

50 % requests will

be handled offline

, after graceful

degradation to

offline mode

3 DB Instance 0 Offline

Mode

100%

offline

100 % requests

will be handled

offline, after

graceful

degradation to

offline mode.

Analytical and

reporting services

also gracefully

downgraded and

no longer will be

available, till

database server

comes up again.

IX. HIGH LEVEL WORKING OF COMPONENTS OF

CAPABILITY DETERMINATION MODEL (CDM)

This section discusses about the high level working of
critical components of the proposed CDM. It will give very
good idea and insights into the working of these components.

176 PROCEEDINGS OF RICE. GOPESHWAR, 2017

A. Working of BulkHeads

Figure 9, summarizes the high level working of
bulkheads. Critical details of the working of bulkheads are
also explained in this section.

 Any application, which needs to connect to a component

(say database or IN server instance, as per scenario
explained in this paper), will request for the connection
to the component

 Connection to each of the components is controlled by
individual bulkhead

 During startup, each of the bulkhead will initialize the
respective connection pool

 When a request for a new connection is made, the
bulkhead will check if the connection to the requested
component is available to serve the request

 If the connection is available, it will allocate this
connection to serve the request and decrease the number
of active connections by one. This is needed to keep
track of free and allocated connections

 In case, no free connection is available, bulkhead will
wait for a pre-defined time interval.

 If any connection becomes available during this wait
period, it will be allocated to serve the requests, else an
exception can be returned , indicating no connection is
available

B. Working of CircuitBreaker

Figure 10, summarizes the high level working of circuit
breakers. Critical details of the working of circuit breakers
are also explained in this section.

 Circuit-breaker will use the service of the Healthcheck
component, to see if a given component is working fine

 If Healthcheck of this component is turned out to be
fine, based on policies defined in Healthcheck
component, circuit breaker will continue to work with
this component by sending the requests to this
component, with the help of bulkheads

 In case, this component is not working fine, based on
policies defined in Healthcheck component, the circuit
breaker will stop sending requests to this component all
together

C. Working of Healthcheck

Figure 11 summarizes the high level working of
Healthcheck. Critical details of the working of Healthcheck
is also explained in this section.

 Healthcheck component will try to connect to each
instance of the component, defined in external
configurations of Healthcheck component

 In case connection is not successful, Healthcheck
component will mark this instance of the component as
down

 Any instance, which will be marked down by the
Healthcheck component, Bulkheads will not try to
connect to that instance of the component

 When all the instances of a component are marked down
by the Healthcheck component, CircuitBreaker will
come into action and will stop accessing the component
all together

 CDM’s Flow manager will kick in, and initiate an
alternate flow, in the event of all instances of a
component are marked down

 However, if the connection to the instance of component
was successful, the Healthcheck component will also
check the response time from this instance

 If response time from this instance was beyond SLAs,
even in this case, instance will be marked as down

 If the response time and other policies, defined in the
Healthcheck component are met, this instance will be
marked as active, and will continue to be in use by
Bulkheads

 Figure 9 Working of Bulkhead component of CDM

Figure 10 Working of CircuitBreaker component of CDM

Figure 11 Working of HealthCheck component of CDM

ROHIT DHALL: DESIGNING GRACEFUL DEGRADATION IN SOFTWARE SYSTEMS 177

D. Working of Flow Manager

Figure 12 summarizes the high level working of Flow

Manager. Critical details of the working of Workflow

Manager is also explained in this section.

 Initially, the system is in a normal working state with

full capabilities on offer

 During the execution cycle, one or more instances of

one of the critical component go down(e.g. one of the

database instance)

 If one or more active instance of the critical component

is still available, the system will continue to offer the

full capabilities , but the graceful degradation in

performance (e.g. now instead of two instances, only

one of the database instance is available and handling

load)

 In case, none of the instance of the critical component

is active, workflow manager, with the help of

configured flow definition, will initiate the alternate

flow (e.g. switching the flow from online to offline

mode, by storing the transaction details in a message

oriented middleware)

 Thus the system will shut down the capability, and start

offering some of the gracefully degraded capabilities

with the help of alternate flows.

 Note that there can be additional state transitions as

well, but not shown here for simplicity. These

transitions could be the system with degraded

performance switching back to normal state, in case the

instance which was marked down, comes up again, or

after all components are available, the system starts

offering the complete functionalities , by switching to

fully normal working state

X. FURTHER RESEARCH AND DESIGN IMPROVEMENTS IN

CAPABILITY DETERMINATION MODEL (CDM)

The proposed design and working of CDM can be

improved further by doing more research around the

following areas:

 One of the emerging software architecture pattern

“Microservices based software system architecture” has

inherent quality of “low coupling” between different

components. This feature of microservices based

system can allow simpler and much cleaner graceful

degradation. So, microservice architecture should be

explored further to identify design approaches for

handling graceful degradation in microservices based

software system

 Currently, CDM and all the building blocks of CDM

like circuit-breakers and bulkheads are reactive in

nature

 It means, these components only detect and take action

for the failures and exception scenarios, which have

already occurred

 CDM can be further improved by having a component

called ‘CorrelationManager’,which will correlate all the
historical failure and exception scenarios, determine the

causes and outcome/impact of all such failure events

 It will also perform predictive analytics on this

historical data (collected from application and server

logs etc.) and determine when the next failure event is

likely to occur

 Similarly, planned outage details like rollout,

maintenance and upgrade schedules can be fed to this

new component of CDM

 Based on the outcome of the predictive analytics on the

historical failure scenario logs and planned outage

details, CDM can trigger the alternate flows pro-

actively, without any manual intervention

 Thus, the systems can be more pro-active in predicting

and handling failure scenarios, instead of taking

corrective actions, only after the failure event has

already occurred

XI. ALTERNATIVES OF GRACEFUL DEGRADATION

SYSTEM DESIGN

Table 3 lists down a couple of alternatives to graceful

degradation system design. Both the advantages and

disadvantages of each of this approach are also discussed.

Table 3 Advantages and disadvantages of alternatives of Graceful

Degradation

Sr.

No.

Alternative

Approach

Advantages Disadvantages

1 Not handling

exception and

failure scenarios

gracefully (no

capability

degradation, no

failover etc.)

 No extra

effort

required

to design

and

implement

 Costs of

designing

and

setting up

 One

exception/

failure

event can

cause

complete

system

outage

 Cost of

outages can

Figure 12 Working of Flow Manager Component of CDM

178 PROCEEDINGS OF RICE. GOPESHWAR, 2017

alternate

flows can

be

avoided

be very

high to

business

 User

experience

can be

impacted

because of

non-

responsive

system

2 Providing

failover/alternate

instances of all

subcomponents

of the system, to

handle failure

scenarios

 Provides

‘always
available’
system

 Complete

system

functionali

ty and

capabilitie

s will

always be

available,

even in

case of a

disaster

 Setting up

failover

and

alternate

instances of

all

subcompon

ent can be a

costly

effort

 In today’s
world of

integrated

application

environmen

t, providing

failover for

all sub-

component

s may not

be feasible,

as some

application

s may lie

outside the

scope of a

single

organizatio

n, e.g.

vendor

application

s, COTS

etc.

XII. CHALLENGES IN DESIGNING SOFTWARE SYSTEMS

WITH GRACEFUL DEGRADATION

Designing and implementing software systems with graceful

degradation has its own challenges. But the benefits it

provides, in terms of availability and fault tolerance of

critical services, it is an effort worth taking to try to mitigate

the challenges of designing such systems. Some of the

challenges in graceful degradation system design are listed

below

 Determining the impact of an failure scenario in

complex business flows can be difficult

 Failures in any part of the system, with multiple

integrations, can have cascading effect on the working

of overall system. Determining the services capabilities

, which can still function, can be a challenging task

 Extra effort is needed to design and implement

strategies for handling graceful degradation , which can

have impact on the project budget, in terms of cost and

schedule

XIII. CONCLUSION

Handling exception and failure scenarios gracefully is an

aspect of IT system, which if handled well, can increase the

system availability and user experience. By handling such

scenarios gracefully and lowering the capabilities the system

offer, in case of failure scenarios, is called graceful

degradation. This paper talked about the concept of graceful

degradation, and presented a high level approach of how

graceful degradation can be designed into a system. This

paper further elaborated how graceful degradation was

designed and implemented in a real world application for a

telecom operator. It talked about the “Capability
Determination Model” (CDM), which can be designed and
built to handle couple of such failure scenarios and

gracefully degrade the system capabilities.

In the end, this paper also presented the high level approach

of working of components of CDM. This approach can be

used to build and design such models in other IT systems as

well. Finally, this paper talked about some of the challenges,

which can make designing systems with graceful

degradation, difficult.

ACKNOWLEDGMENT

Sincere thanks to Tarun Sukhu (tsukhu@hcl.com) and
Suneev Motwani(mot@hcl.com) for reviewing this paper
and sharing valuable inputs.

REFERENCES

[1] Titos Saridakis . Design Patterns for Graceful Degradation -
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105
.996&rep=rep1&type=pdf

[2] Towards Robust Distributed Systems ,
http://www.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-
keynote.pdf

[3] Rad aideh, Moh’d A.. Architecture of Reliable Web
Applications Software . http://www.igi-
global.com/book/architecture-reliable-web-applications-
software/78

[4] Circuit Breaker Design Pattern -
https://en.wikipedia.org/wiki/Circuit_breaker_design_pattern

[5] Bulkhead design Pattern -
http://stackoverflow.com/questions/30391809/what-is-bulkhead-
pattern-used-by-hystrix

[6] ActiveMQ - http://activemq.apache.org/

[7] IBM WebSphere MQ - http://www-
03.ibm.com/software/products/en/ibm-mq

ROHIT DHALL: DESIGNING GRACEFUL DEGRADATION IN SOFTWARE SYSTEMS 179

