
Abstract—In  the  paper,  we  present  the  formulation  of

quadrotor control loops that are based on a decomposition into

a cascade structure and the use of feedback linearization and

optimum modulus  methods  to  determine  controller  parame-

ters. The dynamic model used in this paper considers the dy-

namics of the propeller rotor drive systems. The propeller ro-

tor drive systems are considered as a linear actuated system.

After the synthesizing of the controllers is completed, the sys-

tem is simulated in MATLAB/Simulink. The results from this

work can be useful for the development of autonomous algo-

rithms for UAV - Q (Unmanned Aerial Vehicle - Quadrotor).

The research results serve as the basis for control algorithms

development for other similar systems.

Index  Terms—GameUAV-Q,  propeller  rotor  drive  system,

feedback linearization, modulus optimum.

I. INTRODUCTION

N THE recent years, UAV-Q has been an active research

topic because of their broad applications, especially in the

field of military and media services. Among many types of

UAV-Q have been widely used because of their advantages

such as they have simple structure,  compact size, etc. De-

spite  of  having  simple  and  symmetric  structures,  the  dy-

namic models  of  quadrotor  are  nonlinear  ones.  Therefore,

the control of these types of UAV requires advanced tech-

niques in order to get good control quality. There have been

a lot of studies on the control system design of such UAVs.

Some of them can be listed such as the use of PID controller

based on linearized models of quadrotor [1, 5, 6], or a num-

ber of other approaches that use the sliding mode control,

backstepping [11] or robust control l [5]. Additionally,

most of the previous works have mainly considered the con-

trol inputs to quadrotor as the forces or moments, neglecting

the  dynamics  of  the  rotors  that  driving  the  propellers.  In

fact,  the  dynamics  of  the  propeller  rotor  drive  systems

should be taken into account. This, of course, will increase

the complexity of the UAV-Q system, [6, 13, 14].

I

In this paper, we present the synthesis of position and atti-

tude controllers by breaking down the system into a cascade

structure and the use of the feedback linearization and opti-

mum modulus methods to determine the controllers for the

quadrotor control loops. The dynamic models of quadrotor

take into account the dynamics of the propeller rotor drive

system. 

II. THE DYNAMIC MODEL OF UAV-Q

The dynamics of a quadrotor is presented in [5]. Earth in-

ertial frame (E frame) and body frame (B frame) whose ori-

gin is chosen the as quadrotor center of mass are shown in

Fig. 2.

Fig. 1. The system coordinate of unmanned aerial vehicle quadrotor

The dynamics of a quadrotor [2, 5, 7, 8, 11] is described

as follows:

(1)

where,   is  the  [3x3]  identity  matrix,  ,

 are the quadrotor linear velocity and acceleration

vector  expressed  in  the  B-frame,  while  ,

is the quadrotor angular velocity and acceleration

expressed in the B-frame, is the quadrotor forces vec-

tor with respect  to B-frame and   is  the quadrotor

moment  vector  expressed  in  the  B-frame.  A  generalized

force vector Λ is defined as:

(2)

Equation (1) is rewritten in a matrix form as:

(3)

where   is  generalized  acceleration  vector,   is  inertia

matrix,  and is  Coriolis-centripetal  matrix.  The

dynamic equations of quadrotor [3, 5] are given as follows:
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where the propellers’ speed inputs 1 2 3, ,U U U  and 4U  with 

respect to B-frame are given as: 
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where, 1U  is responsible for the , ,X Y Z  coordinates of the 

quadrotor and their rates of change. 2 3,U U and 4U  are 

responsible for the roll   , pitch   , and yaw    

rotations and their rates of change. This model can be 

written in state space form ( )fX X,U , where 

 1 2 3 4, , ,T
U U U UU  is the input variables and 

( , , , , , , , , , , , )T
X Y Z X Y Z     X with: 
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Therefore, equations (4) are rewritten into (6). In the 

state space model (6), one can see the common model in the 

works on quadrotor control with control input 1 2 3, ,U U U and 

4U . Considering the dynamics of the propeller rotor drive 

systems, an additional system with nonlinear equations must 

be included which has the following general form: 

 ( , )f
dc dc dc

X X U  
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Where 
n

dc
RX  is the vector of the state variables of rotors; 

m

dc
RU is the vector of the input variables to control rotors. 

The output variables of (6) are the rotor velocities, that are the 

components 1 2 3 4, , ,     in expression (5). The 

decomposition technique is used to transform the state space 

equations (5), (7) and (6) into the below subsystems: The first 

subsystem 1S  includes the different equations, which describes 

the quadrotor's angular rates. 
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The UAV - Quadrotor's Euler angles can be calculated 

by simply integrating 7 8,X X  and 9X . The second 

subsystem includes the different equations, which describe 

the velocities of UAV-Q inputs of the subsystem are Euler 

angles and variable 1U . 
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The third subsystem is described by system of nonlinear 
different equations (7), that describes the propeller rotor 
drive systems of quadrotor.  

III. THE CONTROLLER DESIGN 

According to the paper’s approach, structure of 
quadrotor control system includes the propeller rotor speed 
control loop, the attitude loop and the position control loop. 
In this control architecture, the inner attitude control loop 
faster dynamics compared to the outer loop responses.  In 
this paper a linear model of the propeller rotor drive systems 
depicted as: 


1 2( 1)( 1)

m m
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where m
  is the rotor speed, m

U  is the voltage input. The 

controller synthesis is based on the optimum modulus 
method [8, 15, 16] and select factor 2a  , a desired 

transfer function of open loop is defined by below 
expression: 
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According to [3], [10], the transfer function of the 
controller (C0) in this case is determined by equation (11). 
This is a Proportional-Derivative (PD) controller. 

A. Attitude control design 

It is assumed that the gyroscopic terms are ignored. The 
attitude loop stabilizes the Euler angles following a desired 

vector ( , , )
d d d
    or 4 5 6( , , )

d d d
X X X . The subsystem is 

described in (7) is of nonlinear system. Applying feedback 
linearization [1, 2] and [11] the following linear system can 
be obtained  
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Where 
* * *

2 3 4, ,U U U  are new control variables. Substituting 

(12) into the equation (8) and neglecting the gyroscopic 

terms, we are received the equation (13). 
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new control variables 
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2 3 4, ,U U U  are selected in the right 

side of the equation system (13), which becomes a linear 

system. Toward this end, the following conditions must be 
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with unknown parameters 2 3 4, ,K K K . From above 

expression, it is shown that 
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From equation (13) and (15) one can derive a linear 

equation system (16) as the following: 
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To determine the coefficients 2 3 4, ,K K K , we use the 

following Lyapunov candidate function 
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where 
2 3 4, , 0K K K  . After performing the linearized 

transformation of attitude control systems of quadrotor we 

obtain the following equations: 
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From (22) we can get the transfer function of each 
channel. In this case we implement for roll motion: 


 

 
2

2

1/

( 1/ ) 1)

XX

c

I K
W

U s K s




 
 

 
 

The control design for this channel uses optimum 
modulus method [7, 8, 15, 16]. The the roll angle controller 
is determined as: 

 2
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The other controllers of pitch and yaw channel can be 
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B. Velocity control design 

If the attitude control loop is sufficiently fast, it is 
assumed that the desired roll, pitch, and yaw angles are 
achieved very fast. Therefore, without loss of generality, the 
attitude loop can be regarded as a unity gain. According to 
(8), the position subsystem can be depicted follows 
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where 4 5 6, ,d d dX X X and 1U  are the input variables. These 

are the nonlinear equations and can be rewritten as follows: 
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with newly defined input variables 
1 2 3, ,U U U  are selected 

for a proportional controller in the following form (27). 

Here, the parameters of the controllers 1 2 3, ,n n n could be 

selected such that the outer loop is sufficiently fast 

compared to attitude control loop. These transformed input 

variables is used to calculate the real input variables 

4 5 6, ,
d d d

X X X  and 
1U  by evaluating (25). It is noted that 

any desired velocity vector can be reached regardless any 

yaw rotation, so the system of equations (25) can be 

simplified as follows: 
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These above equations can be solved analytically by 

applying the considering relation: 
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Substitutin ,  into equation (27), we obtain the following 

relations: 
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If 1 0U  , we solve the equation system (26) and obtain the 

following solution ,   and 1U . 1U is always positive, so 

from (27) for 1U  we obtain the unique solution: 
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1 1 2( / )U m U U   

  is unique, hence 4 arcsin
d

X  is uniquely obtained in 

 2 . In the similar fashion, it can be show that 

5 arcsin
d

X  , but   and 5d
X  could be positive or 

negative. This is explained in the following: 


1 4 5 1cos sin . /

d d
U X X U m   

In (30), the first term is positive in the interval [ /2]  and 

the last term  1U m is also positive. Therefore, 
5

X
d

 is 

negative if 
1

U is positive and vice versa. 

C. The Synthesis of position control system   

The design of position controller is implemented after 
the inner-loop controllers are synthesized. The way to 
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design for controller  is the same. We assume that the

velocity loop is of second order. In this section we synthe-

size  the  controller  for  altitude  channel  .  Therefore,  the

transfer function of Z channel has a form:

(31)

According to the optimum modulus method [3], [10], we

can obtain the transfer function of   channel controller in

the following form:

(32)

IV. NUMERICAL SIMULATIONS

From equations describe the quadrotor dynamics (4) and

controllers  for  control  loop  are  synthesized  above  with

quadrotor parameters simulation, we implement the numeri-

cal simulation via Matlab.  The parameters  of controller in

loops  are  chosen  as:  Kp=3,  KD=0.5,  T1 =  0.01,  T2 =  0.1,

K1=K2=K3=-80;  Coefficients  of  velocity  controller:

n1=n2=n3=1,  Kp=0.25,  KD=0.1.  The  thrust  factor  b  =

2,92.10-6 kg.m, total rotational moment of inertia around the

propeller axis JTP = 3,36.10-5 kg.m2,  the aerodynamic drag

factor d = 1,1. 10-7 kg.m2, mass of quadrotor m = 0.5 kg, the

body moment of inertia IXX  =IYY =4,85.10-3 kg.m2 and IZZ =

8,81.10-3  kg.m2,  the  center-to-center  distance  between  the

quadrotor and the propeller l = 0,24 m.

Case 1: The desired inputs ψd = 0 rad, Xd = 0 [m], Yd = 0

m, Zd = 15 m: as shown in the picture Fig 5 and 6 presents

the results of X, Y, Z and Euler angles responses.

Fig. 2.

Fig. 3.

Case 2: The desired inputs ψd = 0 [rad], Xd = 10 [m], Yd

= 0 [m], Zd = 15 [m]: Fig 7 and 8 present the results of value
X, Y, Z and Euler angles responses.

Fig. 4.

Fig. 5.

From the simulation results,  we see that  all  the desired

state  reached  along  channel  Z,  X,  Y  with  fast  response.

These results prove that the controllers work well with good

tracking performance.  Compared with previous studies,  as

shown in [9, 13], the research results of the paper are much

better than previous studies.

CONCLUSIONS

The  paper  has  presented  the  synthesis  results  for

quadrotor  control  loops  (position  control  loop,  attitude

control  loop, propeller rotor control  loop),  which used the

feedback linearization and optimum modulus methods. The

dynamic model of the quadrotor is derived and numerically

implemented. Through the simulation, the nonlinear vehicle

control system is verified and its efficiency is demonstrated.

The results,  which obtained from this paper,  contribute to

the development of algorithms for autonomous UAV-Q.
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