
Abstract—In this paper, research on the applications of arti-

ficial  intelligence  in  implementing  Deep  Deterministic  Policy

Gradient (DDPG) on Gazebo model and the reality of mobile

robot has been studied and applied. The goal of the experimen-

tal studies is to navigate the mobile robot to learn the best pos-

sible action to move in real-world environments when facing

fixed and mobile obstacles. When the robot moves in an envi-

ronment with obstacles, the robot will automatically control to

avoid these obstacles. Then, the more time that can be main-

tained within a specific limit,  the more rewards are accumu-

lated and therefore better results will be achieved. The authors

performed various tests with many transform parameters and

proved that the DDPG algorithm is more efficient than algo-

rithms like Q-learning, Machine learning, deep Q-network, etc.

Then execute SLAM to recognize the robot positions, and vir-

tual maps are precisely built  and displayed in Rviz.  The re-

search results will be the basis for the design and construction

of control algorithms for mobile robots and industrial robots

applied in programming techniques and industrial factory au-

tomation control.

Index  Terms—Mobile  robots,  artificial  intelligence,  DDPG

algorithm, autonomous navigation, reinforcement learning.

I. INTRODUCTION

OWADAYS Artificial  Intelligence  (AI),  Internet  of

Things (IoT), and robot controls are receiving a lot of

attention. Robot technology has changed since the first in-

troduction of robots in 1917. Today, machines are present in

our lives, supporting us in everyday life, [1] - [5]. One of

these  new  technologies  is  artificial  intelligence  that  has

come to life as well as robotics and machine tools technol-

ogy, so robots can now properly process and manage infor-

mation, and automatically perform certain tasks without hu-

man  assistance,  replacing  humans  in  industrial  factories.

However, the ability to perceive the environment (feel) and

make decisions (to take action) is a very difficult task for the

computerized machines. Therefore, the field of Artificial In-

telligence  (AI)  is  needed for  mobile robots  to  solve  such

problems, [3, 4, 5, 6].

N

In this paper, the authors present a robot control problem

based on an intelligent and modern Deep Deterministic Pol-

icy Gradient (DDPG). The designed help the robot to navi-

gate in a complex environment with obstacles. Experimental

studies are per-formed on automated navigation for the mo-

bile robot. More specifically, the author introduces the neu-

ral network structure to generalize and approximate the val-

ues of all states based on the DDPG artificial intelligence al-

gorithm.  This  is  a  policy-based,  online  learning  intensive

learning algorithm, and is backboned by the Actor - Critic

intelligent network architecture. The tests are conducted on

the Gazebo emulator using a high-profile computer with a

mobile robot, with its open-source extension to perform au-

tomated navigation tasks for mobile robots, and then carried

out to experiments. The research results will be the basis for

the research  and  application  of  mobile robots  in  practical

production, in industrial plants, [6, 8, 10, 12].

II. MOBILE ROBOT MODEL

Consider  a  mobile  robot  as  in  Fig.  1.  Two  coordinate

frames are used to describe the motion of the mobile robot,

the global coordinate frame (X, Y) which is earth-fixed and

the other is the local coordinate frame (Xl,  Yl) which is at-

tached to the mobile robot. The angle between the two coor-

dinate frames is denoted as θ. The robot's motion will be de-

fined for the navigation stack. As the global coordinate cho-

sen in Fig.  1,  it  is  clear  that  the robot's  velocity  contains

three  components:  the  linear  velocity  along  OX  and  OY

axes, and the angular speed, [6].

Fig. 1. The model mobile robot

To identify  the position  of  the  multi-directional  mobile

robot, the P-coordinate is selected on the robot's frame as its

control center position reference point. Reference point P is

positioned by the coordinates (x, y) in the global frame of

the entire control environment for the robot. In order to for-

mulate the motion of the mobile robot as component move-

ments, it is necessary to define the motion mapping along

the axes of the spherical frame with the motion along the co-

ordinate of the local frame. This mapping is represented as

the following expression:
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By considering the limit of wheel slip 
ly  = 0 implies that the 

wheel cannot slide orthogonal to the wheel plane, then it is 

straightforward to have: 

0xsin ycos               (2) 

Defining forward velocity 
lx  of the multi-directional mobile 

robot as v and rotation speed θ as w, the kinematics of the 

multi-directional mobile robot becomes: 
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The forward velocity and rotation speed of the robot have the 

following relation: 

1
( ),

2 2

v vrlv v v w =rl L


            (4) 

If we consider the linear velocities at the wheels and the 

angular velocities of the two qualified wheels, then we can 

get: 
l lv w R  and 

r rv = w R . The angular velocities of the 

two standard wheels can be represented according to the 

forward velocity and rotation speed of the multi-directional 

mobile robot as: 

,
v wL v wL

w wrl R R

 
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Considering the acceleration of the multi-directional mobile 

robot in its local working coordinate limit, then the robot 

dynamic can be written as [12]: 
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where m and I are the robot mass and inertia, respectively; R 

is the radius of the two fixed wheels; L is the half of the 

distance between the two fixed standard wheels; 
Tτ = [τ τ ]

1 2
is the input torque vector exerted to the two 

fixed standard wheels, [1, 4, 8, 29]. The goal is to teach multi-

directional mobile robots to track and follow certain 

trajectories within the right spaces and work environments 

with e 0, e 0, e 0
x,k y,k θ,k   . 

 

III. APPLICATION OF ARTIFICIAL INTELLIGENCE TO MOBILE 

ROBOT CONTROL 

A. DDPG algorithm learning method 

DDPG algorithm is built similar to the idea of Double Deep 

Q-Network. It is a model with reinforcement learning, online 

learning and an off-policy algorithm group with an Actor - 

critic network structure, [6, 7]. 

    , , ,max
Q Q Qa

Q s a Q s arg Q s amax           (7) 

If we build a neural network to choose the optimal action for 

a particular state, ( ) ( , )s arg max s a
Qa

Q 
 , then optimize 

component 
Q

Q  according to the network parameters   

just created, then we have:  

, ( )arg max s s
Q

Q 
   

 
           (8) 

This optimization considers the change of 
Q

Q  according to 

the variable  , or in other words, the evaluation of the 

action. This can be calculated using a string rule like the 
following expression: 

.

dQ dQ
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           (9) 

So building a function that approximates the value of 

action by a ( )s
 neural network here is the main 

difference of DDPG. Thus, in each DDPG algorithm structure, 

there are always two components, one is Actor ( )s
 and 

the other is Critic ( , )s a
Q

Q  lattice. The relationship between 

the two aforementioned components and their connection to 

the enhanced learning environment of this algorithm when 

controlling the multi-directional mobile robot in a random 

open environment with many fixed and obstacle obstacles 

mobile. At that time, the DDPG algorithm always meets the 

requirements of the control quality as well as the working 

quality of the robot.  
In fact, we can understand more clearly that the DDPG 

algorithm is improved from other algorithms to have the 

ability to compute continuous action space problems for 

multi-directional mobile robots, when Then we go to update 

the target function as follows: For an input sample set of 

'
( , , , )s a R s

i i i i
, then the formula updates the target function 

value as follows:  

' '
'( , '( ))y R Q s s

i i i i
           (10) 

Then we compute the loss function for the sample M value 
'

( , , , )s a R s
i i i i

to train the written network: 

1 2( ( )),
1

M
J y Q s ai i iM i

 
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        (11) 

According to the string rule in expression (9), the gradient is 

calculated as follows: 

1

1

M
J G Gai iM i

 
  


        (12) 

In which, ( , )ai Q s a
ia

G   is the output gradient of the 

Critic network according to variable a, estimated by the Actor 
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network ( )a s
i

 . And ( )i s
i

G   is the gradient of 

the Actor network input according to the model parameter 

 . 

The DDPG algorithm with neural network training and 

training always ensures the requirements for accurate and 

reliable control, DDPG Agent updates the network parameter 

θ of the Q rating (S, a) at each step of the process. network 

trainer, to do action a, receive new algorithm R, then it will 

significantly improve the performance of the control model 

for multi-directional mobile robot when using DDPG 

algorithm control programming. Moreover, DDPG always 

explores the space for action constantly and this is also a great 

challenge for scientists, [6, 13, 14]. 

B. The robot navigation using DDPG algorithm 

The DDPG is a member of the actor-critic algorithm, 

which contains four neural networks: Current critic network 

( , )Q
s aQ  , current actor network ( )s

 ), target critic 

network '( , )' Q
s aQ  , and target actor network '( )' s

 , 

where 
' ', , ,Q Q     are the network weights. The 

ingredient 'Q and '  are copy of Q and µ respectively in the 

structures. Both 
'Q and 

'  are partially updated from the 

current networks at each timestep. The current critic network 

is updated by minimizing the loss function. Then, the gradient 

function is continuous, ensuring that the robot's agent action 

when controlled in an obstacle environment and now the 

algorithm is updated in a continuous space. The specific 

process of the DDPG algorithm for navigating multi-

directional mobile robots is described in detail as follows, [6, 

7].  
The performance of the DDPG algorithm deployed is very 

positive on the multi-directional mobile robot control model. 

One of the reasons authors chose to study this algorithm for 

the primary control of multi-directional robots was to develop 

something industrially controllable. Comparing the DDPG 

algorithms with other algorithms has also been successful for 

the goal of mobile navigation for robots. Some tests for each 

form have been given and it is clear that the DDPG algorithm 

works better than other algorithms like Q-learning, RL, etc. 
Algorithm: Deep Deterministic Policy Gradient  algorithm for the mobile robot
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Therefore, to build a complete DDPG algorithm, it is 

always necessary to meet the needs of selecting a control 

action to a robot, executing the action, receiving rewards, 

storing and sampling to train the algorithm, calculating of the 

target function. Subsequently updating the model parameters 

by minimizing the loss function on all selected samples, 

followed by selecting the method to update the target neural 

network parameters, and finally updating the environmental 
discovery coefficient during the control process [3, 5, 6, 15, 

16]. 

IV. EXPERIMENTAL RESULTS 

A. The research TurtleBot mobile robot 

 Here the authors go to study the model of mobile robot: 

with the actual hardware architecture of this robot is shown 

as shown in figure 3, in which each hardware module will 

perform a number of tasks, in the sequence of activities of 

this mobile robot: such as finding a path, crossing obstacles, 

etc. 

In the tests, the authors perform several tasks in the 

sequence of the mobile robot's operations, such as the 

Ubuntu-powered Raspberry Pi 3 Model B +. The Raspberry 

Pi embedded computer directly processes information from a 

range of sensors including the Astra smart camera and the 

smart sensor then transmits commands to a smart 

microcontroller. To record images from the environment as 

well as measure the distance between mobile robots and 

unknown obstacles, mobile robots are equipped with cameras 

and smart sensors, in which the smart camera can do 360 

degrees laser scanning and ranges within 12m generate map 
data to be used for the mapping process. The smart 

microprocessor control circuit receives control signals from 

Raspberry Pi 3 Model B+. 

3600 LiDAR for SLAM and Navigtion

 

Scalable structure

Single Board Computer

(Raspberry Pi)

OpenCR (ARM Cortex-M7)

DYNAMIXEL x 2 for Wheels

Sprocket Wheels for Tire and Caterpillar

Li-Po Battery 11.1V 1,800mAh
 

Fig. 3. Pictures of the actual TurtleBot robot 

B. The experimental results 

In this section, the actual mobile robot TurtleBot is tested 

in a real environment, which is the environment used for real 

world testing consisting of flowerpots as obstacles. 

Robot

 
Fig. 5. The TurtleBot robot is in the process of creating 

concurrent mapping 
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In order to set up an operating environment for the pur-

pose  of  controlling  and  navigating  the  robot,  the  authors

have created a map with the goal of creating an obstacle en-

vironment  of  flowerpots  with  many  different  colors,  then

programmed for the controller, for the mobile robot as de-

picted in Fig. 5 and 6. The environment here includes obsta-

cles created by different flowerpots, the robot's path will be

taught in advance via computer, Wifi network, and the ac-

tual TurtleBot Robot. based on DDPG artificial intelligence

algorithm and SLAM algorithm. This is primarily a visual-

ization tool that can provide live updates of maps generated

from the  SLAM and  DDPG algorithms.  Furthermore,  the

vehicle's trajectory in the map can also be displayed in the

real-world environment where the training and teaching and

identification process so that the robot knows during the ob-

stacle avoidance process intelligently and perfectly.

Fig. 6. Results of navigating Robot TurtleBot done on Rviz

From  the  simulation  results  and  experimental  results,

compared  with some other  algorithms:  Q-learning,  DDPG

algorithm is better than DQN, Q-learning in terms of value

accuracy and control strategy are presented in [13, 16], this

is also consistent with the DDPG algorithm that the authors

have proposed in the paper. Accelerated learning technology

and rapid action processing in large environments,  can be

used to achieve action status  maps and meet the mobility

needs of mobile robots. The data also demonstrated that the

robot's  path  planning  method  based  on  DDPG  method  is

better than previous studies, as shown in [13]. The above re-

sults prove the strength of the algorithm, the optimal prob-

lem of the proposed method in planning the path of the mo-

bile robot that allows interaction with objects based on arti-

ficial intelligence.

V. CONCLUSIONS

The  paper  has  presented  the  construction  and  control

formulation of the mobile robot TurtleBot control structure.

It  is  shown  that  the  good  effect  of  Slam  when  using

Gmapping  stack  to  construct  2D  map.  This  article  also

performs a successful route planning for mobile robot when

interacting  with  objects  that  are  static  and  unknown

obstacles  due  to  constant  update  of  local  path  in  the

environment. Tasks are based on data generated from smart

cameras and smart sensors. Furthermore, robot activity can

be monitored through visual tools.
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