
A Deep Learning Approach with Stack of

Sub-classifiers for Multi-label Classification of

Obstructive Disease from Myocardial Perfusion

SPECT

Ninh Ngan Trieu

Faculty of Information Technology

Le Quy Don Technical University

Hanoi, Vietnam

trieuninhngan2012@gmail.com

Nhu Hai Phung

Institute of Information Technology

AMST

Hanoi, Vietnam

hainda59@gmail.com

Chi Thanh Nguyen*

Institute of Information Technology

AMST

Hanoi, Vietnam

thanhnc80@gmail.com

*Corresponding author

Thanh Trung Nguyen

Department of Medical Equipment

108 Military Central Hospital

Hanoi, Vietnam

thanhtrungys@yahoo.com

Abstract—Artificial intelligence applications, especially deep
learning in medical imaging, have gained much attention in
recent years. With the computer’s aid, Coronary artery disease
(CAD) - one of the most dangerous cardiovascular diseases -
is diagnosed effectively without human interference and efforts.
A lot of research involving predicting CAD from Myocardial
Perfusion SPECT has been conducted and given impressive
results. However, all existing methods detect whether there is a
disease or not. They do not provide information about which
obstructive areas are (mainly in the left anterior descending
artery (LAD), left circumflex artery (LCx), and right coro-
nary artery (RCA) territories) that result in CAD. To further
diagnose CAD, we develop new classifiers to solve a multi-
label classification problem with the highest accuracy and area
under the receiver operating characteristics curve (AUC) when
compared to different methods. Our proposed method is based on
transfer learning to extract features from Myocardial Perfusion
SPECT Polar Maps and a novel stack of sub-classifiers to detect
particularly obstructive areas. We evaluated our methods with
eight hundred and one obstructive images from a database of
patients referred to a hospital from 2017 to 2019.

Index Terms—CAD, Myocardial Perfusion SPECT, multi-label
classification, transfer learning.

I. INTRODUCTION

According to the World Health Organization (WHO), car-

diovascular disease (CVD) is currently the leading cause of

death globally, accounting for 32 percent of all deaths [1].

At the National Heart Conference 2017, a startling number

was reported. Each year, Vietnam has about 200,000 people

die from CVD, twice as many deaths from cancer. More

importantly, the number of people suffering from CVD at a

young age is increasing. Among CVD, coronary artery disease

(CAD) and cerebral stroke are the leading causes of death or

disability.

Coronary artery disease (CAD) [2] is the most common

type of heart disease. It is sometimes called coronary heart

disease or ischemic heart disease. CAD develops when the

coronary arteries become too narrow, or cholesterol blockages

(plaques) develop in the walls. Plaque consists of cholesterol,

fatty substances, waste products, calcium and the clot-making

substance fibrin. As plaque continues to collect on artery

walls, arteries narrow and stiffen. Normally, there are three

main obstructive regions of myocardium corresponding to

three branches: left anterior descending artery (LAD), left

circumflex artery (LCx), and right coronary artery (RCA) ter-

ritories. This disease damages arteries and impedes supplying

oxygen and blood to the heart. Eventually, the blood flow is

reduced, causing chest pain (angina), shortness of breath, or

other coronary artery disease signs and symptoms. A complete

blockage can dangerously cause a heart attack. Particularly

CAD caused by acute myocardial infarction, acute coronary

syndrome can cause immediate death or lead to heart failure

and death later. Moreover, diagnosing CAD usually requires

many processes and experienced doctors. Human mistakes

are sometimes unavoidable, and those flaws are dangerous,

especially in clinical decision-making. Therefore, early and

accurate detection of CAD becomes even more urgent nowa-

days.

In the light of technological developments, the abundance of

modern machines are invented, which help diagnose diseases

in general and CAD in particular. CAD can be detected by a

combination of taking medical history with tests and imaging

methods. Currently, there are several methods of diagnosing
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Fig. 1. Examples of SPECT images in our datasets.

CAD, such as electrocardiograph tests which record the electri-

cal activity of the heart, a blood test that analyses factors in the

blood that affect arteries, or computed tomography angiogram,

which uses CT and contrast dye to view 3D pictures of

moving heart and detect blockages in the coronary arteries.

Among these techniques, Conventional single-photon emission

computed tomography (SPECT) myocardial perfusion imaging

(MPI) is one of the most widely used methods. SPECT MPI

evaluates the present, extent, and degree of infarction by using

gamma rays, providing 3-dimensional images. SPECT is based

on the flow-dependent and/or metabolism-dependent selective

uptake of a radioactive tracer by functional myocardial tissue.

SPECT MPI has gained great success over the past decades

as the modality of choice for accurately diagnosing patients

with suspected coronary artery.

Many researches have been conducted [3]–[5], [9], [10],

[12] based on SPECT MPI to help diagnose CAD accurately

and reduce burden on doctors. In [12], four ensemble machine

learning algorithms (Adaptive Boosting, Gradient Boosting,

Random Forests, and Extreme Gradient Boosting) have been

investigated in a dataset including one hundred and seven polar

maps. Especially, the features extraction process generating

inputs for four algorithms is intuitive and efficient. Each image

was sliced into five horizontal and five vertical segments. After

that, ten features were created by summing up pixel intensities

from each segment. The results are impressive: all models had

accuracy > 90 percent and AUC approximately 0.8.

References [4] and [5] analyze 1638 (67% male) and

1160 (64% male) patients without known CAD, respectively.

The authors apply deep learning models for polar maps and

additional input images. Besides, sex information is also

TABLE I
STRESS POLAR MAPS CHARACTERISTICS.

Number LAD RCA LCx Image

Train 416 433 210 601

Test 102 109 53 200

Total 518 542 263 801

included to produce feature maps. Deep learning models

are compared with current quantitative method (TPD - total

perfusion deficit). The results demonstrate that deep learning

models outperform TPD in terms of area under the receiver

operating characteristic curve and sensitivity per patient and

vessel.

In [10], the authors utilize a predefined CNN-based model,

termed RGB-CNN, which was proposed for other clinical

problems, to solve binary-classification detecting CAD. RGB-

CNN gives promising results (accuracy = 93.47% ± 2.81%,

AUC score =0.936). The proposed methods are then compared

with various state-of-the-art CNN backbones for the particular

dataset.

Although many existing methods give impressive results in

solving binary-classification to classify normal and abnormal

SPECT images, none of them work on multi-label classifi-

cation problems. That means, the computers now are able to

predict very well whether or not a patient has disease, but

having no clue about specific areas are being damaged.

The contribution of our research is two-fold:

1) We analyze the multi-label classification problem for

SPECT images - which has not been studied before, in

order to help further diagnose and give the patients and

doctors information of areas causing CAD.

2) We propose a novel neural network-based structure

solving multi-label classification problems in general.

The paper is organized as follows. In Section I introduces

the process of generating datasets. Section III describes the

proposed stack for classifying obstructive areas based on

a fully connected neural network. Section IV presents the

experimental evaluations and analysis. Finally, Section V gives

the concluding remarks.

II. MATERIALS

This section generally presents the process of acquiring

data. Our SPECT images datasets are collected at the De-

partment of Nuclear Medicine, 108 Military Central Hospital

from 2017 to 2019. The datasets were captured at stress by

three kinds of specialized SPECT scanners (Infina, Optima,

Ventri). It includes 801 polar maps, which are diagnosed with

obstructive disease. Before the datasets were collected, all the

patient’s personal information was removed. This research was

conducted with permission from the Department of Nuclear

Medicine, 108 Military Central Hospital.

All images are read by three specialists with at least ten

years of experience, trained in nuclear medicine in developed

countries such as America, Japan, and Australia. Generating
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Fig. 2. An example of proposed stack of sub-classifiers solving multi-label classification problem.

SPECT images requires many processes and technical parts,

from the pharmacist preparing the radiopharmaceuticals, the

injection and imaging technicians, the image quality engineers,

and doctors responsible for reading results. Every step requires

high accuracy and correct sequence to ensure no errors in the

whole implementation process.

A total of 1250 patients without known CAD, injected

Tc
99mMIBI (tracer). The patient’s body weight determines

rest-stress doses by a factor of 0.31mCi/kg. For patients unable

to undergo stress physically, they get Diyridamole at a dose

of 0,56mg/kg for 4 minutes after heart rate has reached 85

percent [8] [7], to increase the blood flow to the heart muscle

as if patients were exercising.

After being injected, traces mix with blood and are taken

up by the heart muscle as the blood flows through heart

arteries. This radioactive material stored in the myocardium

emits gamma rays with an energy level of 140 keV - which

is captured by a special camera to show how well the heart

muscle is perfused. We use Xeleris - a specialized program of

Ge Healthcare for image reconstruction, processing 2D SPECT

images, and integrating polar maps. After that, only stress

polar maps are kept for further analysis.

Three specialists read and classified images as five levels

from normal to surely abnormal. From these five categories,

they are grouped more generally into two classes and each

group is binary-labeled as normal or abnormal. In case of

abnormal polar maps, obstructive areas are indicated, including

the left anterior descending artery (LAD), the left circumflex

artery (LCx), and the right coronary artery (RCA). From 1250

cases, merely 801 images with CAD and labeled obstructive

areas are used to solve the multi-label classification problem.

After pre-processing, RGB clinical images are exported in .png

format with matrix size 352x352. Figure 1 above illustrates

examples of all CAD cases having in our datasets. The

datasets are separated into train and test set with the ratio 8:2

respectively. Because of the incidence of patients in Vietnam

is uneven (usually LAD and RCA), our data are imbalanced.

We can easily notice that the last label (LCx) merely has a half

instances compared to others. Table I showcases our datasets

in more details.

III. PROPOSED STACK OF CLASSIFIERS

In this section, we describe in detail our proposed stack

of sub-classifiers - a promising solution solving a multi-label

classification problem for SPECT polar images.

For classification, after extracting useful features, classifiers

solve the rest of problem. In most deep learning models,

fully connected (FC) layers are the potential candidates to

take responsibility for classifying objects. In [4], [5], [10],

FC layers are also implemented to discern non-obstructive

and obstructive SPECT images. However, for the multi-label

classification problem, whether or not applying the same

architecture to classify is good. Coming up with the idea of

finding a multi-label classifier, which is less cumbersome but

effective, we proposed a stack of sub-classifiers suitable for

our datasets. The proposed idea can be applied to other multi-

label classification problems.

Assume our multi-label classification has n labels, and we

already found a good feature extractor that be able to extract

useful image features. The intuitive idea is transforming multi-

label classification to multi-binary classifications, by finding

a suitable classifier for each label. Instead of using merely

one classifier applied for all labels or a stack of n sub-

classifiers for each label, we choose m ones (0 < m < n)
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TABLE II
HYPERPARAMETERS OF NINE MODELS AFTER IMPLEMENTING

HYPERBAND ALGORITHM.

Based model Branch Learning rate
Dense node

LAD RCA LCx

VGG16
3 0.01 576 640 192
2 0.001 448 192
1 0.01 64

ResNet152V2
3 0.0001 640 128 576
2 0.001 192 448
1 0.001 128

InceptionV3
3 0.0001 448 512 128
2 0.0001 384 448
1 0.001 640

and allocate n labels into those sub-classifiers. The features

extracted from the previous part are mutual-used as inputs

of all sub-classifiers. Based on how balanced our data is and

how well the sub-classifier can detect each label, we can find

suitable m to construct our stack. For example, we can group

easy-to-detect labels into one classifier and others with their

own classifiers. In case of our datasets, we have n = 3 (LAD,

RCA, LCx), and m = 2, the first two more easy-to-detect labels

(LAD and RCA) are classified by the same branch. Figure 2

above illustrates our proposed stack of two sub-classifiers.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Implementation details

In this study, to evaluate the proposed method, we

conduct totally nine experiments with three different ap-

proaches on three feature extractors utilized from VGG16 [11],

ResNet152V2 [6], and InceptionV3 [13] models. We apply

transfer learning and use pre-trained feature extractors with

weights from Imagenet. Useful features are extracted with

these based extractors. Parameters from that part of model

are not updated through training process. We mainly focus on

finding out suitable classifiers and assessing how well they

perform on our datasets. For each based model, three kinds

of classifier were analyzed for comparison: a non-stacked

classifier, a stack of two, and three sub-classifiers. Totally,

nine models are analyzed and evaluated (3 feature extractors

x 3 classifiers). To find the optimal hyperparameters of each

model, we use Keras Tuner library. Particularly Hyperband

algorithm was chosen for all hypermodels.

In addition to the model architecture, we define hyperpa-

rameter search space for learning rate and the number of

units in FC layers. Our search space has three learning rate

(0.01, 0.001, 0.0001) and various dense node for each classifier

(from 64 to 640, step 64). As a result, in the case of stacked

classifiers, each branch is equivalent to one classifier, having

its own hyperparameter. For example, search space in a stack

of three branches is much larger than two sub-classifiers and

a none-stacked model.

We optimize all networks rigidly with Adam algorithm, Bi-

nary cross-entropy for loss function, metrics using are Binary

accuracy and area under the receive operating characteristics

Fig. 3. A visual comparison of the number of dense nodes having in each
model.

TABLE III
EXPERIMENTAL RESULTS OF NINE DEEP LEARNING ARCHITECTURES FOR

ALL LABELS.

Based model Number of sub-classifier Accuracy AUC

VGG16
3 0.772 0.736

2 (proposed method) 0.787 0.755

1 0.722 0.656

ResNet152V2
3 0.749 0.710

2 (proposed method) 0.785 0.774

1 0.747 0.701

InceptionV3
3 0.741 0.662

2 (proposed method) 0.760 0.736
1 0.737 0.656

curve (AUC). For searching hyperparameters, we set objective

= validation binary accuracy, max epochs = 100, and early

stopping with patience = 5. After each FC layers, we use

dropout = 0.2. Moreover, according to table I above, we can

easily see that datasets are unbalanced. The number of images

labeled LCx (263) is only half of the diagnosed LAD (518)

and RCA (542). Therefore, we use different class weights

for each label—specifically, LAD, RCA, and LCx with 1,

1, and 2, respectively. After using Hyperband algorithm, the

hyperparameters of nine models are chosen and described in

Table II and Figure 3.

Nine deep learning models were implemented in Python

3 using open-source libraries, mainly are Tensorflow, Keras

and Scikit-learn. All experiments are conducted on an HP

computer equipped with an Intel Pentium (R) Core(TM) i5-

8250U (1.60 GHz) and 8 GB of RAM, Windows 10 OS.

B. Results

After having hyperparameters, we train nine models with

different epochs to optimize parameters with each architecture.

We evaluate the model’s performances by using the following

metrics: accuracy, F1 score, recall, precision, and AUC. We

evaluate those metrics for all labels and for each label sepa-

rately. Table III and IV above showcase the performances of

nine models in detail for all labels and each label, respectively.
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TABLE IV
EXPERIMENTAL RESULTS OF NINE DEEP LEARNING ARCHITECTURES FOR EACH LABEL.

Based model Area Number of sub-classifier Precision Recall F1-score

3 0.81 0.84 0.82

LAD 2(proposed method) 0.79 0.85 0.82

1 0.79 0.76 0.77

VGG16
3 0.76 0.91 0.82

RCA 2(proposed method) 0.81 0.89 0.85
1 0.72 0.97 0.82
3 0.71 0.72 0.71

LCx 2(proposed method) 0.74 0.68 0.71

1 0.68 0.37 0.48

ResNet152V2

3 0.81 0.77 0.79

LAD 2(proposed method) 0.82 0.76 0.79

1 0.81 0.78 0.79
3 0.76 0.92 0.83

RCA 2(proposed method) 0.83 0.86 0.84
1 0.71 0.96 0.82
3 0.67 0.60 0.63

LCx 2(proposed method) 0.73 0.75 0.74

1 0.67 0.68 0.68

InceptionV3

3 0.80 0.72 0.76
LAD 2(proposed method) 0.88 0.81 0.85

1 0.77 0.77 0.77
3 0.82 0.87 0.85

RCA 2(proposed method) 0.85 0.76 0.80
1 0.84 0.84 0.84
3 0.80 0.25 0.38

LCx 2(proposed method) 0.64 0.45 0.53

1 0.73 0.23 0.35

According to the results given in Table III above, our

proposed method is outstanding in all three based models.

In term of accuracy and AUC for all labels, our proposed

approach completely outperforms the non-stacked and stack of

three sub-classifiers models. In Table IV, performances of nine

architectures are presented in particularly each label. In term

of LCx - most difficult-to-detect label, our proposed method

generally gives better results compared with other methods.

During experiments, we realize that in the case of three sub-

classifiers - each label has its classifier, the model is fairly

cumbersome. Moreover, the results even drop while having

more parameters. Specifically, after just a few epochs, the

value of loss function of model during the training process

does not improve when the number of epochs increases. The

model encountered a vanishing gradient problem.

In terms of non-stacked architecture, the model is not

much different from traditional binary classification. Instead

of having two units, the last FC layer now comprise n units,

where n is the number of labels in multi-label classification.

For example, in our datasets, n = 3. This kind of model

can work well in binary classification, the idea can be found

in [4], [5], [10]. However, as our results have proved, most

non-stacked models have the poorest performance because of

trouble to predict LCx. In our experiments, the models can

detect with much higher accuracy for the first two labels (LAD,

RCA) compared to the last label (LCx). The reason is that our

dataset is imbalanced and detecting LCx is harder than the

other two labels because the number of images having this

label (263) is only half of LAD (518) and RCA (542) (Table

I). Non-stacked architecture may still detect well on balanced

datasets. However, imbalanced labels in multi-label problems

are sometimes unavoidable, especially when the number of

labels increases significantly.

The remaining problems of the two models above are

addressed in terms of the two-sub-classifier model. By finding

suitable branches for our stack and allocating labels in the

appropriate sub-classifiers, we can deal with cumbersome

architecture and give better result on unbalanced datasets. The

results in Table III demonstrate the efficiency of our proposed

method. This stack of two sub-classifiers effectively solves the

multi-label classification problem with promising results.

V. CONCLUSION

This paper applied transfer learning methods, utilizing pre-

trained features extractors from pre-knowledge of Imagenet,

and proposed a practical stack of classifiers solving multi-label

classification problems. We conduct extensive experiments

on different models and classifiers on clinical polar SPECT

datasets. Experimental results demonstrate that our proposed

stack works well and gives the most outstanding results when

combined with various features extractors while keeping a

moderate number of parameters.

More importantly, our method can give better results in im-

balanced datasets for each label - one of the most challenging

obstacles that multi-label classification commonly faces. Our

proposed method can help solve other multi-label classification

problems with promising efficiency and accuracy. In the future,

we will work more to address multi-label classification for

imbalanced SPECT images datasets and go further with others
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multi-label classification problems. Hopefully, our study is

able to apply in solving other multi-label classification prob-

lems for diverse kinds of objects and datasets.
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[7] Hesse, B., Tägil, K., Cuocolo, A., Anagnostopoulos, C., Bardiès, M.,
Bax, J., Bengel, F., Busemann Sokole, E., Davies, G., Dondi, M., et al.:
Eanm/esc procedural guidelines for myocardial perfusion imaging in
nuclear cardiology. European journal of nuclear medicine and molecular
imaging 32(7), 855–897 (2005)

[8] Holly, T., Abbott, B., Al-Mallah, M., Calnon, D., Cohen, M., DiFilippo,
F., Ficaro, E., Freeman, M., Hendel, R., Jain, D., Leonard, S., Nichols,
K., Polk, D., Soman, P.: Single photon-emission computed tomography
(10 2010). https://doi.org/10.1007/s12350-010-9246-y

[9] Kaplan Berkaya, S., Ak, I., Gunal, S.: Classification models for spect
myocardial perfusion imaging. Computers in Biology and Medicine 123,
103893 (07 2020). https://doi.org/10.1016/j.compbiomed.2020.103893

[10] Papandrianos, N., Papageorgiou, E.: Automatic diagnosis of coronary
artery disease in spect myocardial perfusion imaging employing deep
learning. Applied Sciences 11(14), 6362 (2021)

[11] Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556 (09 2014)

[12] de Souza Filho, E.M., Fernandes, F.d.A., Wiefels, C., de Carvalho,
L.N.D., dos Santos, T.F., dos Santos, A.A.S.M.D., Mesquita, E.T.,
Seixas, F.L., Chow, B.J.W., Mesquita, C.T., Gismondi, R.A.: Ma-
chine learning algorithms to distinguish myocardial perfusion spect
polar maps. Frontiers in Cardiovascular Medicine 8, 1437 (2021).
https://doi.org/10.3389/fcvm.2021.741667, https://www.frontiersin.org/
article/10.3389/fcvm.2021.741667

[13] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking
the inception architecture for computer vision. pp. 2818–2826 (06 2016).
https://doi.org/10.1109/CVPR.2016.308

266 PROCEEDINGS OF THE RICE. HUNG YEN, 2022


