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Abstract4Clinching is a mechanical joining method in 

which two sheet workpieces are clamped and locked together 

using a punch and a die. Process parameters for such joint 

elements are often designed based on numeric simulation. 

Before this step, the identification of good material parameters 

is crucial to get validated computational results. In this paper, 

neural network metamodels are used for this specific task as a 

means to deal with large computation time. The identified 

material parameters reduce significantly the error between 

computational results and experimental results. 
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I. INTRODUCTION 

In automotive industry, compared to conventional joining 
processes such as spot welding, mechanical joining offers 
many advantages such as less preparatory work, simpler and 
cheaper equipment, good environmental behavior, no thermal 
degradation and suitable for joining dissimilar materials [1, 2]. 
Clinching, also known as mechanical press joining, is a brand 
of mechanical joining. 

  During clinching, two sheets of same or different 
materials and thicknesses are clamped together by an impact 
extrusion between a punch and a female die. Additional 
elements such as rivets are not necessary.  The two layers are 
locked as the upper layer is spread into the lower layer inside 
the gap at the bottom of the die called the die groove (Fig. 1). 

Numerical simulation is often used for designing clinching 
process parameters to reduce the costs for the experiments. 
Simulation of such joining process has been performed by 
different authors using the finite element method [3, 4, 5]. One 

of the main difficulties is about the choice of material 
parameters, i.e. stress-strain relation at high plastic strains (up 
to 200%) and friction related parameters. For the former one, 
the tensile curve at low strain (< 10 %) is often fitted into a 
strain hardening law, such as power law model which in turn 
is used to extend the stress-strain curve to a wider range of 
plastic deformation. This extrapolation method does not 
ensure a correct material behavior at high strain. For the latter 
one, the coulomb friction model is assumed in most cases. The 
friction coefficients between different parts are often selected 
within the logical range in a rather arbitrary way without solid 
experimental supports for the exact materials and 
configurations. Shear stress limits, if applied, remains also a 
subjective choice.  

In order to select an acceptable combination of parameters 
which produces comparable results to the experiments, one 
must run a large amount of simulations. This routine quickly 
becomes intractable when the number of variable parameters 
increases and if the computation time is at the range of few 
hours which is the case for clinching process simulation. 

In this study, the application of neural network 
metamodels is examined to tackle the cumbersome task 
mentioned above. Specifically, the metamodel replaces 
computationally expensive simulations in the optimization 
loop. It will be shown that a neural network can be used to 
reproduce the effect of material parameters on the punching 
force and the final joint geometry. It also gives an inside 
perspective into the unknown material behaviors.      

In this paper, the experiments and the simulation model 
are described in Section 2. The metamodel construction is 
detailed in Section 3. Its use for the identification of material 
parameters is then discussed in Section 4. 

II. NUMERICAL SIMULATION 

A. Materials and experimental process 

In this study, two identical AA5052 aluminium alloy 
sheets with a thickness of 1.6 mm are joined. During the 
process, the die is fixed. The punch is driven by a hydraulic 
machine. At the initial stage, the punch is supported by a solid 
polyurethane (PU) holder in the form of a ring. The rubber-
like holder is deformed as the punch moves downward and 
guarantees the position of the metal sheets. During the 
process, the maximum punching force is registered.  

 
Fig. 1. Typical clinching joint geometry. 
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The formed clinching joint is then cut into halves so that 
the cross section dimensions can be measured. The geometry 
of the punch and the die is illustrated on Fig. 2. A typical joint 
geometry can be found on Fig. 1.  

Three experiments have been conducted with three 
different configurations of process parameters. The punch 
diameter, the die depth and the final bottom thickness of the 
joint are varied. The details of each experiment and the 
produced joint geometry dimensions are provided in Table 1. 

In this study, The tests A and B will be used to determine 
the material parameters. The test C is reserved for the 
validation. The idea is that an unique combination of material 
parameters should be able to give good numerical results for 
all experiments. 

B. Numerical model 

A finite element model is built by the help of the 
commercial software ABAQUS in order to simulate clinching 
process. Fig. 3 shows the schematic of the initial 
configuration. Assuming the axisymmetric nature of the 
problem, a two-dimensional axisymmetric model is adopted. 
Thus, only half of the structure is simulated. The punch and 
die are defined as analytical rigid. 

The two metal sheets and the holder are meshed using the 
quadrilateral bilinear axisymmetric element with reduced 
integration and hourglass control (CAX4R). There are 5000 
and  3277 elements in each metal sheet and in blank holder 
respectively. Remeshing is used to prevent excessive element 
distortions.  

The axisymmetric boundary condition is imposed on the 
center line of the two metal sheets. The loading is applied by 
imposing the punch linear motion along the symmetry axis. 
The initial gap between the punch9s lowest surface and the 
upper surface of the upper metal sheet is 3.75 mm. The 

maximum displacement of the punch is chosen in order to 
reproduce the experimental final bottom thickness of the joint. 
The entire loading time is fixed within 1 second. 

An isotropic elasto-plastic model is used to simulate the 
mechanical behavior law of the two sheets. The data are 
derived from an uniaxial tensile test of a reference sample. The 
Young9s modulus and Poisson9s ratio are 69 GPa and 0.33 
respectively. A power law hardening model is chosen to 
extend the stress-strain curve to a higher plastic strain : 

 ý(ý) = ý0 7 (ý + ý0)ÿ   (ñ) 

where ý ang ý are the true flow stress and true plastic strain 
respectively. Using least square fitting, the material constants 
are determined as ý0  = 330.5 MPa, ý0  = 0.478E-3 and ÿ  = 
0.128. The fitting results are shown on Fig. 4. For simplicity 
purposes, the PU holder is modelled as elasto-plastic materials 
whose data are also derived from an uniaxial tensile test. 

TABLE 1. PROCESS PARAMETERS OF THREE REFERENCE EXPERIMENTS AND COMPARISON TO SIMULATION RESULTS 

Configurations 

Punch 

diameter 

(mm) 

Die depth 

(mm) 

Bottom 

thickness 

(mm) 

Punching force 

(N) 

Interlock 

(mm) 

Neck thickness 

(mm) 

Lower sheet 

bottom thickness 

(mm) 

A 

Experiment 

7 1.1 0.8 

64 400 0.32 0.68 0.56 

Simulation 67 530 0.47 0.59 0.56 

Error 5% 47% 13% 0% 

B 

Experiment 

6.5 1.1 1.0 

50 600 0.12 0.75 0.66 

Simulation 53 680 0.31 0.65 0.67 

Error 6% 158% 13% 2% 

C 

Experiment 

7 0.7 1.0 

51 800 0.03 0.88 0.66 

Simulation 59 660 0.22 0.78 0.68 

Error 15% 633% 11% 3% 

 
Fig. 4.  Fitted stress-strain curve based on experimental data. 

 
Fig. 3.  Illustration of the initial configuration of the FEM model. 

 
Fig. 2.  Punch (a) and die (b) geometry where punch diameter and die 

depth are denoted as x and y respectively. 
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All contacts are defined as surface-to-surface contact 
pairs. No penetration is explicitly allowed (hard contact). This 
contact constraint is enforced by the kinematic contact 
algorithm. The rigid body (tools) surface is always the master 
surface. A balanced master-slave contact pair is used for the 
contact between the two metal sheets. 

The Coulomb friction model is assumed to model the 
tangential behavior. The friction coefficient between the 
different parts is chosen as follows: 1.0 between two metal 
sheets, 0.25 between sheet and punch/die and 0.1 between 
sheet and black holder. Furthermore, a shear stress limit of 75 
MPa which is roughly half the yield stress of the aluminium 
alloy is applied to the friction between the punch and the metal 
sheet. One must note that even if the friction parameters taken 
in the model are within the logical range based on the 
literature, they are taken in a rather arbitrary way. 

The explicit solver is chosen to solve this problem. Fig. 5 
shows the simulated geometry of the joints and the 
experimental cross sections. The dimensions are detailed in 
Table. 1. Even if the overall shape of the simulated joints is 
rather good, the exact values of important features, i.e. 
interlock, neck thickness, punching force, do not answer to our 
satisfaction. Notes that the equivalent plastic strain in two 
metal sheets can reach up to 200%. 

III. NEURAL NETWORK METAMODELS 

 One can simply try to simulate on a large number of 
possible values of material parameters, in order to find a good  
combination which is able to approximate the experimental 
results of all experiments. However, one FEM simulation 
takes about one hour on our computer. This level of 
computation time makes this routine intractable. Instead, a 
metamodel can be constructed in order to reproduce the 
relation between the material parameters and the results as 
predicted by the simulations, within a reasonable amount of 
simulation runs. 

This section described the construction of a such 
metamodel on the configuration A. The same applies for the 
metamodel on the configuration B which is not detailed here 
for repetition.  

A. Data generation 

The inputs of the model should represent the material 
parameters we want to determine which are the stress-strain 
curve at high strain level and the friction behavior between 
contact surfaces. 

The following contacts are considered : between punch 
and upper metal sheet, between die and lower metal sheet and 
between two sheets. For each contact, two parameters of the 
Coulomb model are considered : the friction coefficient and 
the shear stress limit. In this study, the range of the friction 
coefficients is from 0 and 1. The shear stress limits can range 
from a fifth to the <full= yield stress limit of the aluminium 
alloy 88 MPa. Their value is normalized by the latest before 
fed into the metamodel. 

It is decided to model the extrapolation of the stress-strain 
curve using two values: the stress at 100% plastic strain and 
the stress at 200% plastic strain (Fig. 6). The curve is the linear 
interpolation between the last experimental data point and 
these two points. Despite its oversimplification, this 
representation offers flexibility of the curve and avoids the 
limitation of using a specific work hardening law. However, 
some constraints must be applied to ensure physical common 
sense. First, the stress at 200% strain must be greater than the 
stress at 100% strain which in turn must be greater than the 
last experimental measured stress. Second, as a stress-strain 

  

 

Fig. 5.  Comparison between experimental and numerical cross section of clinching joints. The field color represents the equivalent cumulated plastic 

strain in two metal sheets. 

 
Fig. 6.  Stress-strain curve used for metamodels. The arrows illustrate 

the range and the constraints on the two input parameters. 
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curve must be convex, the stress at 100% strain must be 
greater than the linear interpolation between the stress at 200% 
strain and the last experimental measured stress. In this study, 
the stress at 200% strain is considered up to 500 MPa.  

Within the mentioned ranges, input samples are generated 
pseudo-randomly using Halton sequence, which is one of 
Quasi-Monte Carlo methods, in order to maximize the 
coverage of the parameter space. This method offers an 
advantage over other methods like Latin Hypercube sampling 
that one can incrementally add more points to the data set 
without forming clusters. 

Once input samples are generated, they are fitted into the 
FEM simulations which return outputs. Four outputs are 
considered in this study : maximum punching force, interlock, 
neck thickness and lower sheet bottom thickness. The 
computation routine and the extraction of interested features 
are executed automatically using Python scripts and the 
Abaqus Scripting Interface. Fig. 7 shows the histogram of the 
four outputs. The experimental results are within the covered 
domains. 

In order to speed up learning, the simulation outputs are 
scaled using their minimum and maximum values such that all 
feature values are in the range (0, 1). The last 2 input (stresses) 
features are also scaled by using two limits 250 MPa and 500 
MPa. The first 6 input features are naturally within this range.  

B. Neural network architecture 

A fully connected neural network with only one hidden 
layer is chosen for the metamodel. Its architecture is illustrated 
in Fig. 8. There are 8 (hidden) nodes in the hidden layer (and 

one bias node). This architecture choice is later explained in 
Section III.C. 

Each hidden node represents a neuron of the network. It is 
connected to every node in the previous layer. Each 
connection is assigned with a weight which is a trainable 
parameter of the model. A hidden node calculates the 
weighted sum of the values from the previous nodes and 
passes it to the sigmoid activation function which outputs 
values in  between 0 and 1. No activation function is used for 
the output nodes.  

C. Training 

The first hundred samples in the Halton sequence are 
selected for the validation set which is used to evaluate the 

 

 
 

Fig. 8.  Neural network architecture used for metamodels 

 
Fig. 9.  Root mean squared errors (RMSE) on the training set and the 

validation set against the number of epochs during the training. 

 
Fig. 7.  Histograms of outputs in the dataset. The red lines represent the experimental results. 
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model9s performance on unseen data. The next 400 samples 
are used as the training set. 

For the training, the loss function is the mean squared error 
(MSE) averaged over 4 outputs. Backpropagation learning is 
performed with the Adam algorithm that involves gradient 
descent with momentum and adaptive learning rate. An epoch 
is comprised of only one batch which contains the full training 
set. In other words, the training is not stochastic. Early 
stopping regularization is used to stop the training before 
overfitting with the validation loss as the monitored metric. 
The model weights are initialized randomly from a normal 
distribution with mean 0 and variance 1. In order to get a good 
local minimum, different seeds are tested for weight 
initialization. Then the seed giving the lowest validation loss 
is chosen for the final results. The training history is shown in 
Fig. 9. The oscillation near the convergence is a typical feature 
of the Adam algorithm related to the adaptive momentum.  

The necessary code was implemented in Python using 
Keras library with TensorFlow backend.  

D. Hyperparameters tuning 

The number of hidden layers and the number of nodes in 
each hidden layers are two important hyperparameters to be 
tuned for each problem. An oversimple architecture neural 
network cannot predict with good accuracy. A complex model 
is difficult to train and can suffer from overfitting. One must 
find a compromise between these two problems. 

Fig. 10 plots the evolution of the error (loss) evaluated on 
the validation set in function of the number of hidden nodes 
for two cases: one hidden layer and two hidden layers. For 
simplicity, the numbers of nodes in two hidden layers are 
constrained to be equal. It is shown that a neural network with 
more than 8 hidden nodes does not offer a higher prediction 
accuracy. In addition, adding another hidden layer also does 
not significantly improve the metamodel performance. 

E. Effect of the training set size 

Fig. 11 shows the metamodel accuracy in function of the 
size of the training set. It can be seen that adding more data 
over 300 samples does not help to improve the prediction 
accuracy remarkably. Moreover, it is a good indication that 
the error on the validation set is close to the error on the 
training set. 

IV. MATERIAL PARAMETER IDENTIFICATION 

Two metamodels have been constructed for two process 
configurations A and B in order to predict simulation results 
from 8 material parameters. The material parameters therefore 
can be optimized in order to minimize the difference between 
the simulation results and the experimental results. The loss is 
chosen to be the average of the mean squared error of the four 
outputs of the two metamodels. The optimization is performed 
using a gradient based algorithm. The gradient of the loss is 
calculated by automatic differentiation  thanks to 
GradientTape API provided by TensorFlow. 

 
Fig. 11.  Root mean squared errors on the validation set as a 

function of the training set size. 

 
Fig. 10.  Root mean squared errors on the validation set as a function 

of the number of nodes in each hidden layer. 

TABLE 2. OPTIMIZED MATERIAL PARAMETERS 

Solutions 

Friction 

coefficient 

punch/sheet 

Friction 

coefficient 

die/sheet 

Friction 

coefficient 

sheet/sheet 

Shear stress 
limit 

punch/sheet 

(normalized) 

Shear stress 
limit 

die/sheet 

(normalized) 

Shear stress 
limit 

sheet/sheet 

(normalized) 

Flow stress 

at 100% 

strain (MPa) 

Flow stress 
at 200% 

strain 

(MPa) 

Global 

optimum 
1.0000 1.0000 1.0000 0.2000 1.0000 0.3575 415.8707 391.7660 

1 0.7410 0.5162 0.4858 0.3386 1.0000 0.3611 394.5972 372.5730 

2 0.5881 0.4398 0.7545 0.3160 1.0000 0.2994 399.2369 371.1448 

3 0.5959 0.7602 0.5231 0.3577 1.0000 0.2826 441.4521 351.3855 

4 0.7469 0.4927 0.4655 0.3442 1.0000 0.3248 415.6395 360.2948 

5 0.5983 0.5205 1.0000 0.2138 1.0000 0.3340 440.7345 382.0971 

6 0.7800 0.5051 0.8045 0.2543 1.0000 0.3671 397.4937 386.2823 

7 0.8225 0.6115 0.8042 0.3382 1.0000 0.2777 416.7320 361.1949 

8 0.2781 0.6865 0.4518 0.3875 1.0000 0.2846 404.0742 355.6252 

Mean 0.64 0.57 0.66 0.32 1.0 0.32 414 368 
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The Table 2 shows some material parameter combinations 
as suggested by the optimization which give approximately 
the same level of deviation from the experimental results as 
predicted by two metamodels (less than 10% than the 
variation range, see Fig. 7). Each solution results from a 
different initialization of the input variables at the beginning 
of the optimization process.  

It is worth to mention that the global optimum in this 
problem stays at the border of the searched domain. We opted 
for slightly lower accuracy for more physical meanings. 
However, the shear stress limit at the contact between die and 
sheet still remains at its maximum which is the yield stress 
limit of the aluminium sheet. There may be a physical 
meaning behind this fact, but it is quite surprising that the 
contact between punch and sheet (basically the same 
materials) does not exhibit the same behavior. All other 
material parameters seem to fluctuate around and close to 
some means. However, a combination of these means does not 
give results comparable with the experiments.  

The simulation results using the first solution are shown in 
Table 2. Even if the error in the interlock on the configuration 
A is still non negligible, the error levels are significantly 
smaller and more spread out over all outputs compared to the 
results obtained with non-optimized material parameters in 
Table 1. The observed high error indicates that the 
optimization algorithm has a hard time to satisfy two 
experimental results simultaneously, despite a rather high 
number (8) of variables. 

Interestingly, even if no metamodel is constructed for the 
configuration C and their experimental results are not used to 
tune material parameters, we get a good comparison. The 
simulated joint geometry is shown in Fig. 12. The vanishing 
of the interlock is well simulated. This shows the 
generalizability of the determined material parameters on 
others process configurations.  

V. CONCLUSION AND PERSPECTIVES 

In this paper, the authors explore the applicability of 
machine learning based metamodels to tackle the high 
computation time problem encountered during the material 
parameter tuning task in the context of clinching process 
simulation. It is shown that simple neural network 
metamodels are able to learn with high precision the relation 
between material parameters and joint geometry as predicted 

by FEM numerical simulations. They then are used to replace 
simulations inside the optimization loop.  

The obtained results are promising. The optimized 
material parameters help to reduce significantly the error 
between simulated results and experimental results, not only 
in the configurations where metamodels are constructed but 
also on a new simulation. This methodology shows its value 
in the cases where material parameters are not available or 
difficult to measure. On top of that, it may help to understand 
more about physical phenomena behind the numbers. 

In order to increase the reliability of the determined 
material parameters, it is worth to conduct more experiments. 
The applicability of others machine learning algorithms can 
also be assessed.  
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TABLE 3. SIMULATION RESULTS WITH OPTIMIZED MATERIAL PARAMETERS 

Configurations 
Punching force 

(N) 
Interlock 

(mm) 
Neck thickness 

(mm) 

Lower sheet 

bottom thickness 

(mm) 

A 

Experiment 64 400 0.32 0.68 0.56 

Simulation 75 960 0.19 0.77 0.52 

Error 18% 40% 13% 7% 

B 

Experiment 50 600 0.12 0.75 0.66 

Simulation 49 400 0.12 0.75 0.60 

Error 2% < 8% < 1% 9% 

C 

Experiment 51 800 0.03 0.88 0.66 

Simulation 57 050 0.01 0.90 0.66 

Error 10% 67% 2% < 2% 

 

 
Fig. 12.  Simulation results on the configuration C with optimized 

material parameters. 
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