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Abstract—In this article, an method is proposed combining
optimal control for linear system and disturbances observer
to control a 3 degree of freedom (3DoF) robot manipulator.
By making the tracking error follow a given stable linear
reference model through the observer, an optimal controller
LQR will be designed to solve the optimization problem for the
reference system, thereby leading to good control quality for the
original system. The effectiveness of the method is shown through
simulation results performed on Matlab/Simulink.

Index Terms—Adaptive control, Optimal control, Observer,
Disturbance rejection, Manipulator.

I. INTRODUCTION

Robotic manipulators are widely used in industry and they

play an important role in replacing humans in performing

complex jobs that require high accuracy as well as high work-

ing frequency [1]. When the dynamic model of the system is

known, the model based controller such as PD, PID and some

improvements [2], [3], [4] are preferred approaches because

of their simplicity and their capacity to apply in practice

but the noise resistance of these controllers is not really

good. For this reason, the nonlinear control methods including

the sliding moed controller [5], [6], [7], the backstepping

controller as well as the controllers that combine the nonlinear

control method with the linear control method [8], [9], [10]

was studied thereby improving the control quality under the

influence of external disturbances. Although the stability of

system is guaranteed by Lyapunov criterion, the control quality

is still limited by the dependence of the control signal on

the system model. In the case that the dynamic model of

robot is not sufficiently exact, the controllers that rely on

the model will no longer retain their effectiveness. Therefore,

adaptive control methods have been proposed for the purpose

of steer the states of robot to follow trajectory signal without

information of system’s dynamic model. The common utensils

used for adaptive controller design include fuzzy systems

[11] and neural networks [12] due to their property of being

able to approximate any non-linear functions. By adjusting

control parameters according to the change of system and

working environment, the adaptive controller is capable of

improving control quality in a variety of operating situations.

The disturbance observer [13], [14], [15] is also an effective

approach to eliminate the influence of external disturbances

as well as system’s uncertain parameters. The observer can

be used just to estimate the disturbances [14] but if only the

affect of disturbances is removed, the uncertain parameters

can still persist and degrade the control quality. Therefore, by

combining all the uncertainties of system and disturbances into

an unique total uncertain component and remove it during the

operation of system, the observers [13], [15] provide better

capacity to deal with the change of uncertain parameters.

Besides, the optimal control problem is also a requirement

and there are many approaches to solve this problem [16],

[17].

The optimal control problem for nonlinear systems in

general is still a relatively complex and challenging topic.

Algorithms that successfully solve the optimal control problem

for linear systems do not seem to be directly applicable to

nonlinear systems. For this reason, an approach to solve this

problem can be mentioned is to make the tracking error of

nominal nonlinear robot system to follow a reference linear

model and then apply known optimal control algorithms to

this reference model. Inspired by [13], the following paper

will present an optimal control method for the robotic system

based on the removal of non-linearity and make tracking error

converged to zero according to the reference model. The pro-

posed controller will be applied on 3-DoF robot manipulator

which has been studied in [14]. However, unlike [14] where

the observer is utilized to approximate the disturbances, our

proposed observer will be used for linearization purpose by

estimate and eliminate the total uncertain component. The

selection of the reference model plays an important role to

the control quality and an effective reference model can be
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determined through optimal control methods.

II. OPTIMAL CONTROL PROBLEM FOR LINEAR SYSTEM

Consider a linear system:

ẋ = Ax+Bu (1)

where x is the state vector of system, u is the control signal

vector, matrix A and B are constant matrices. The optimal

control problem for a linear system is to design a linear state

feedback controller u = −Rx so that the following cost

function reaches the minimum value:

J =
1

2

t
∫

0

(

xTCx+ uTDu
)

dÄ (2)

with C = CT ≥ 0 and D = DT > 0. From [18], the problem

of finding the optimal control signal u is equivalent to finding a

positive definite symmetry solution L∗ of the Riccati equation

ATL+ LA+ C − LBD−1BTL = 0 (3)

Then, the coefficient matrix of the optimal controller R∗ is

calculated by

R∗ = D−1BTL∗ (4)

However, finding the exact solution of (3) is relatively dif-

ficult and complicated. Therefore, the more commonly used

method is approximating the solution of (3) instead of directly

solving the Riccati equation. An approximate solution method

proposed by Kleiman in [18] goes through the following steps:

• Determine R0 to be the matrix of the state feedback

controller so that the system is stable. If A has made

the system stable, then R0 can be chosen including all

zero elements.

• Solving the Lyapunov equation

(A−BRk)
T
Lk+Lk (A−BRk) = −C−RT

k DRk (5)

To find the solution for Lk with k = 0, 1, ...
• Calculate Rk+1 from Lk using the formula

Rk+1 = D−1BTLk (6)

Repeat the second and third steps of algorithm until the error

satisfies the condition Lk+1 − Lk < ÷ for a given arbitrarily

small ÷. With Kleiman’s algorithm, it can be proved that the

larger the number of iterations, the closer the solution found

from the algorithm is to the exact solution of (3), meaning that

lim
k→∞

Lk = L∗ then the coefficient matrix of the controller will

as close to the optimal coefficient matrix lim
k→∞

Rk = R∗. The

proof has been presented in [18] and we obtain the parameter

matrix for the optimal controller LQR.

III. CONTROLLER DESIGN

Since the model of robot manipulator in general and 3-DoF

manipulator in particular is nonlinear, it is relatively difficult

to directly apply the design of the optimal state feedback

controller. Therefore, the Generalized Proportional Integral

Observe is used to estimate all the disturbances affections

along with the non-linearity of the system, thereby bringing the

tracking errors to a linear reference model. From the obtained

linear system, the optimal control algorithm will be applied to

improve the control quality.

A. Model of 3-DoF Robot Manipulator

The model of 3-DoF manipulator is shown in Fig. 1 with 3

states are 3 rotating joint.

Fig. 1. Model of 3-DoF Robot Manipulator [14]

The dynamic model of 3-DoF robot can be described in

Euler-Lagrange form with the following structure

M
(

q
)

q̈ + ¸
(

q, q̇
)

= Ä + Äext (7)

where q ∈ R
3×1 is the vector of movable joint variables, q̇ and

q̈ are respectively the first and the second order derivatives of

q , Ä ∈ R
3×1 is the vector of the control signals and the input

disturbances vector is denoted by Äext. Matrix M ∈ R
3×3 is

the inertia matrix of the system (M is symmetric and positively

definite), ¸ ∈ R
3×1 is the lumped vector of centripetal, coriolis

and gravitational component. The elements of M and ¸ will

be detailed in Section IV.

B. Linearization Observer

The linearization process is performed based on the elimi-

nation of the affect of external disturbances and non-linearity

in the system. First, the dynamic model of 3-DoF Robot is

represented as

q̈ = M−1(Ä + Äext − ¸) (8)

with M and ¸ are are shorthand for M
(

q, q̇
)

q̈ and ¸
(

q, q̇
)

.

From (8), we have

r̈ − q̈ = −M−1Ä + r̈ −M−1(Äext − ¸) (9)

which lead to

À̈ = K1À +K2À̇ −M−1Ä + f (10)
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where r̈ is the second order derivative of the reference signal r,

vector À = r− q is the tracking error, À̇ and À̈ are respectively

the first and the second order derivatives of À, K1 and K2

are two 3 × 3 square parameter matrix which are arbitrarily

chosen. The influence of disturbances and non-linearity in the

system is represented by total uncertain vector f

f = r̈ −M−1(Äext − ¸)−K1À −K2À̇ (11)

The appearance of f in (10) is the cause of the difficulty

in controller design because of its uncertainty. Therefore, the

observer is proposed with purpose of approximating the value

of f thereby eliminating the influence of this component on

the system. Assume that f can be approximated by Taylor

expansion with a sufficiently large number of degrees m with

m is integer and fm = 0. Let À
1
= À, À

2
= À̇, ¶k = f (k−1)

with k = 1, 2, ...,m+1 and denote the corresponding observed

values are À̂
1
, À̂

2
, ¶̂k, the structure of the observer is described

as follow

ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

û

˙̂
À
1
= À̂

2
+ ¼m+1(À1 − À̂

1
)

˙̂
À
2
= K1À̂1 +K2À̂2 −M−1Ä + ¶̂1 + ¼m(À

1
− À̂

1
)

˙̂
¶1 = ¶̂2 + ¼m−1(À1 − À̂

1
)

...

˙̂
¶m−1 = ¶̂m + ¼1(À1 − À̂

1
)

˙̂
¶m = ¼0(À1 − À̂

1
)

(12)

with ¼k ∈ R
3×3 are diagonal matrices of which all the

diagonals are positive. From (12) we deduce

ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

û

À̂
(m+2)

1
= À̂

(m+1)

2
+ ¼m+1À̃

(m+1)

1

À̂
(m+1)

2
=

û

ý

K1À̂
(m)

1
+K2À̂

(m)

2
− (M−1Ä)(m)

+¶̂
(m)

1 + ¼mÀ̃
(m)

1

þ

ø

¶̂
(m)

1 = ¶̂
(m−1)

2 + ¼m−1À̃
(m−1)

1

...

¨̂
¶m−1 =

˙̂
¶m + ¼1

˙̃
À
1

˙̂
¶m = ¼0À̃1

(13)

where À̃
1
= À

1
− À̂

1
is observer error. Equation (13) lead to

À̂
1

(m+2)
=

û

ü

ü

ý

¼m+1À̃
(m+1)

1
+K1À̂

(m)

1
+K2À̂

(m)

2

−M−1Ä (m) + ¼mÀ̃
(m)

1
+ ¼m−1À̃

(m−1)

1

+...+ ¼1
˙̃
À
1
+ ¼0À̃1

þ

ÿ

ÿ

ø

(14)

From (10) we have

(M−1Ä)(m) = K1À
(m)

1
+K2À

(m+1)

1
+ f (m)

− À(m+2)

1
(15)

Substitute (15) into (14) we obtain

f (m) =

û

ü

ü

ý

À̃
(m+2)

1
+ (¼m+1 −K2)À̃

(m+1)

1

+(¼m −K1 −K2¼m+1)À̃
(m)

1

+¼m−1À̃
(m−1)

1
+ ...+ ¼1

˙̃
À
1
+ ¼0À̃1

þ

ÿ

ÿ

ø

(16)

Since fm
≈ 0, according to (16), if we can choose the

parameter matrices so that the following polynomial H(s) is

Hurwitz

H(s) =

û

ý

s(m+2)In + (¼m+1 −K2)s
(m+1)

+(¼m −K1 −K2¼m+1)s
(m)

+¼m−1s
(m−1) + ...+ ¼1ṡ+ ¼0s

þ

ø (17)

we can make the observation error À̃
1
→ 0 when t → ∞.

When À̃
1
→ 0, we also have À̂

1
→ e1 which lead to À̂

2
→ À

2

and ¶̂1 → ¶1 is the total uncertain component f need to be

approximated.

C. Control signal synthesis

From observer the estimation of total uncertainty component

is obtained, we denote this value is f̂ . Then the control signal

Ä for 3-DoF robot manipulator will consist of 2 components

satisfying

Ä = M
(

−u+ f̂
)

(18)

With control signal (18), system (10) becomes

À̈ = K1À +K2À̇ + u− f̂ + f (19)

and when f̂ approaches the real value f we obtain

À̈ = K1À +K2À̇ + u (20)

Let x =
[

À À̇
]T

, A =

[

Θ3 I3
K1 K2

]

and B =

[

Θ3

I3

]

with Θ3

and I3 is the zero matrix and the identity matrix dimension of

3× 3. System (20) will be re-expressed in linear form

ẋ = Ax+Bu (21)

With the linear system (21), we can use Kleiman’s LQR

optimal controller design algorithm that has been presented in

section II to determine the parameter matrix of the optimal

control signal u. From there, combining the output from the

observer and the optimal controller LQR, the complete control

structure of the system is presented as follows

Fig. 2. Structure of controller
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IV. NUMERICAL SIMULATION

To verify the effectiveness of proposed controller, in this

Section it will be applied on 3-DoF robot manipulator. First,

the dynamic model of robot with the form (7)used for simu-

lation will be presented based on [14], we have:

• The inertia matrix

M =

þ

ø

m11 m12 m13

m21 m22 m23

m31 m32 m33

ù

û

with

m11 =³1 + 2´1c23 + 2´2c2 + 2´3c3

m12 =m21 = ³2 + ´1c23 + ´2c2 + 2´3c3

m13 =m31 = ³3 + ´1c23 + ´3c3

m23 =m32 = ³3 + ´3c3

m22 =³2 + ´3c3, m33 = ³3

• The elements of lumped vector of the coriolis, centrifugal

and gravitational components ¸
(

q, q̇
)

= [n1, n2, n3]
T

in

which

n1 =

û

ý

µ1s2q̇
2
1 + µ2s23q̇

2
1 + µ3s2(q̇1 + q̇2)

2

+µ4s3 (q̇1 + q̇2) + µ5s23(q̇1 + q̇2 + q̇3)
2

+µ6s3(q̇1 + q̇2 + q̇3)
2

þ

ø

n2 =

(

µ1s2q̇
2
1 + µ2s23q̇

2
1 + µ4s3(q̇1 + q̇2)

2

+µ6s3(q̇1 + q̇2 + q̇3)
2

)

n3 =µ2s23q̇
2
1 + µ4s3(q̇1 + q̇2)

2

where ci = cos (qi), si = sin (qi), cij = cos (qi + qj) and

sij = sin (qi + qj) and the model parameters selected for

simulation are given through Table I

TABLE I
THE PARAMETERS OF 3-DOF ROBOT

Parameter Value Parameter Value Parameter Value

α1 1.0425 β2 0.1742 γ3 -0.1742

α2 0.4398 β3 0.0281 γ4 0.0281

α3 0.1788 γ1 0.1742 γ5 -0.0405

β1 0.0405 γ2 0.0405 γ6 -0.0281

The controller is designed with two components. The first

component is the observer that converts nominal nonlinear

system to linear model with the Taylor approximation order

of f is m = 1, the parameter matrices of observer are

K1 = − diag ([25; 49; 36]) , K2 = −diag ([10; 14; 12])

¼2 = 3W0 +K2, ¼1 = 3W0
2 + ¼2K2 +K1

¼0 = W0
3, W0 = diag ([80; 80; 80])

The second component is the LQR controller which is de-

signed by the algorithm of Kleiman for linear system (1) with

A =

[

Θ3 I3
K1 K2

]

, B =

[

Θ3

I3

]

, C = I6, D = I3

and the parameter matrix for LQR optimal controller is ob-

tained as

R =

þ

ø

1.93 0 0 4.28 0 0
0 1.01 0 0 3.26 0
0 0 1.36 0 0 3.71

ù

û

Three scenarios for simulation will be performed as follows

• Scenario I: The system is not affected by disturbances

and the reference is a trapezoidal signal given by

r(t) =

ù

ü

ú

ü

û

0.4trt, 0 < t < 2.5

rt, 2.5 ≤ t ≤ 7.5

(1− 0.4(t− 7.5)) rt, t > 7.5

(22)

where rt = [1; 1.2; 0.7]
• Scenario II: The system is not affected by disturbances

and the reference is a cyclic signal given by

r(t) =
(

1 + sin
Ã

2.5
t−

Ã

2

)

rs (23)

with rs = [0.5; 0.8; 0.2]
• Scenario III: The system is affected by sinusoidal distur-

bances (see Fig. 3) and the reference is cyclic signal (23).

The form of disturbances is designed according to [14]

because it can perform the waveform of contact force in

practice [14]
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Fig. 3. The disturbances τext = [τext1 ; τext2 ; τext3 ]
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Fig. 4. State response of link 1, Scenario I
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Fig. 7. State response of link 1, Scenario II

In the absence of disturbances, the simulation results cor-

responding to Scenarios I (from Fig. 4 to Fig. 6) show that

with desire trajectory is trapezoid, the proposed controller can

quickly bring the states of the system to follow the trajectory

signal. Furthermore, the proposed control strategy also shows

efficiency when the reference is cyclic through the results in

Scenarios II (from Fig. 7 to Fig. 10).

On the other hand, under the influence of disturbances, we

can observe from Fig. 11 to Fig. 14 in Scenarios III that the

proposed controller still retains the quality and efficiency. The

angle of all 3 joints quickly track the trajectory signal and there
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Fig. 8. State response of link 2, Scenario II
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Fig. 9. State response of link 3, Scenario II
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Fig. 10. Control signal τ = [τ1; τ2; τ3], Scenario II

is not too much difference compared to the control quality in

Scenario II. Therefore, it can be concluded that the affect of

disturbances has been removed by the linearization observer

and the LQR optimal controller has completed the remaining

job of optimally regulate the tracking error to converge to zero.

V. CONCLUSIONS

This paper presents an optimal control method to optimize

the references model for an disturbances rejection controller

based on linearization observer for 3-DoF robot manipu-

lator. The simulation results have shown the effectiveness
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Fig. 11. State response of link 1, Scenario III
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Fig. 12. State response of link 2, Scenario III
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Fig. 13. State response of link 3, Scenario III

of proposed method even when the system is affected by

disturbances. By combining all the non-linearity in the system

together with the external disturbances into a total uncertain

vector and remove it through observer, the tracking errors

of nominal nonlinear model are regulated to follow a linear

reference model. From there, the LQR optimal controller is

designed to bring all the states of reference model to zero,

lead to all the states of the original system track the references

signal. The linear reference model holds the most important

position determining the determining the efficiency of the

controller. Therefore, determining the reference model based
on the optimal control algorithm provide us an alternative

approach instead of choosing arbitrarily.
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