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Abstract—Type-1 diabetes (T1D) patients must carefully mon-
itor their insulin doses to avoid serious health complications.
An effective regimen can be designed by predicting accurate
blood glucose levels (BGLs). Several physiological and data-
driven models for BGL prediction have been designed. However,
less is known on the combination of different traditional machine
learning (ML) algorithms for BGL prediction. Furthermore,
most of the available models are patient-specific. This research
aims to evaluate several traditional ML algorithms and their
novel combinations for generalized BGL prediction. The data of
forty T1D patients were generated using the Automated Insulin
Dosage Advisor (AIDA) simulator. The twenty-four hour time-
series contained samples at fifteen-minute intervals. The training
data was obtained by joining eighty percent of each patient’s
time-series, and the remaining twenty percent time-series was
joined to obtain the testing data. The models were trained using
multiple patients’ data so that they could make predictions
for multiple patients. The traditional non-ensemble algorithms:
linear regression (LR), support vector regression (SVR), k-
nearest neighbors (KNN), multi-layer perceptron (MLP), decision
tree (DCT), and extra tree (EXT) were evaluated for forecasting
BGLs of multiple patients. A new ensemble, called the Tree-
SVR model, was developed. The BGL predictions from the DCT
and the EXT models were fed as features into the SVR model
to obtain the final outcome. The ensemble approach used in
this research was based on the stacking technique. The Tree-
SVR model outperformed the non-ensemble models (LR, SVR,
KNN, MLP, DCT, and EXT) and other novel Tree variants (Tree-
LR, Tree-MLP, and Tree-KNN). This research highlights the
utility of designing ensembles using traditional ML algorithms
for generalized BGL prediction.

Index Terms—diabetes, time-series, generalization, machine
learning, stacking

I. INTRODUCTION

Diabetes mellitus is a major global health concern as it

is growing rapidly [1]. It has been reported that the adult

population suffering from diabetes has tripled in the past two

decades [1]. In 2019, this number was estimated to be 9.3%,

which was an astounding 483 million of adults aged 20-79

years [1].

The normal blood glucose levels (BGLs) in a healthy adult

after 8 hours of fasting should be between 70 mg/dl and 100

mg/dl [2]. The human pancreas maintains BGLs in this narrow

range by releasing glucagon and insulin. Type-1 diabetes

(T1D) is an incurable metabolic disorder characterized by

high BGLs, caused by low or no insulin production by the

pancreas. Complications due to T1D include cardio-vascular

diseases, nerve, kidney, and eye damage. However, it has

been shown that proper management can significantly reduce

the complications and high costs related with diabetes [3].

T1D patients commonly use finger prick tests to measure

their BGLs and adjust insulin doses multiple times in a

day [3]. Diabetes management is incredibly difficult due to

data inadequacy and, in some patients, due to improper data

interpretation [3]. Thus, good BGL prediction models can

provide great value for T1D patients.

The literature for BGL prediction contains physiological

models [4][5], neural networks (NNs) [3] [6]-[21] and tra-

ditional machine learning (ML) algorithms [22]-[26]. Phys-

iological models are pretty accurate but they require deep

understanding of glucose metabolism, as the model parameters

should be set only by an expert [2]. Therefore, data-driven

models have an advantage that they can be used by individuals

without any expert knowledge.

The major contributions of this study include development

of novel combinations of traditional ML algorithms, and BGL

prediction for multiple patients by using generalized models.

Few research studies have combined different traditional ML

algorithms using an ensemble approach. Furthermore, most

of the existing research is patient-specific i.e., the models

were trained to predict BGLs for a single patient at a time.

The goal of this study is to evaluate several traditional ML

algorithms for generalized BGL prediction of T1D patients,

and combine them using an ensemble approach based on

the stacking technique. Specifically, this research proposes

an ensemble (Tree-SVR) of decision tree (DCT), extra tree

(EXT) and support vector regression (SVR). The predictions

from the DCT and the EXT models were fed as inputs to the

SVR model to obtain final predictions. The Tree-SVR model

is compared with traditional non-ensemble models (LR, SVR,
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KNN, MLP, DCT, and EXT) and other novel Tree variants

(Tree-LR, Tree-MLP, and Tree-KNN).

This paper is ordered as: mention the literature in BGL pre-

diction, data description, a brief explanation of the numerous

regression models used in this study and their detailed cali-

bration process, the results from different non-ensemble and

ensemble models, discussions, conclusion and the implications

of this study.

II. BACKGROUND

Commonly used physiological models include the Meal

Simulation Model of the Glucose-Insulin System [5] and the

Automated Insulin Dosage Advisor (AIDA) [4].

Hamdi et al. [6], Pappada et al. [7], Asad et al. [11], and

Kushner et al [12] utilized NNs for predicting BGLs of T1D

patients. They predicted BGLs in the horizon of 15 minutes,

50-80 minutes and 60-240 minutes, respectively. Recurrent

neural networks (RNNs) were implemented by Sandham et

al. [8][9] for providing short-term therapy to T1D patients.

Martinsson et al. [10] utilized a RNN which was trained to

learn parameters of an uni-variate Gaussian output distribution,

for making BGL predictions up to an hour. Munoz-Organero

[13] implemented a RNN based on long short-term memory

(LSTM) cells on AIDA data. Rabby et al. [14] used stacked

LSTM with Kalman smoothing for predicting BGLs of 6 T1D

patients. Genetic algorithm (GA) was applied on the output of

RNN, LSTM, bidirectional LSTM, stacked LSTM, and gated

recurrent unit to achieve improved performance by Kim et

al. [15].

Zhu et al. [16] introduced a dilated RNN, which was shown

to outperform autoregressive models (ARX), conventional

NNs and SVR model. Li et al. [17] developed a combination

of incremental learning with echo state networks (ESN) and

feedback ESNs, which was shown to perform better than

conventional methods. The ESN belongs to the RNN family.

Wang et al. [18] showed that their proposed LSTM network

optimized with improved particle swarm optimization (IPSO)

and variational modal decomposition (VDM) performed better

than LSTM, VDM-LSTM, VDM-PSO-LSTM for 56 diabetes

patients. Zhu et al. [19] used convolutional neural network

(CNN) and RNN to design a generative adversarial network

(GAN) for BGL prediction.

Assadi et al. [20] implemented extended Kalman filter

(EKF), ARX and extreme learning machine (ELM) for predict-

ing BGLs predictions of 20 AIDA patients. The Levenberg-

Marquardt algorithm was used by Robertson et al. [3] to train

an Elman RNN model for making BGL predictions. A hybrid

model based on grammatical evolution (GE) and physiological

models was designed by Contreras et al. [2].

Robertson et al. [3] and Munoz-Organero [13] showed

that their models were trained by using only one patient’s

data, and they did not perform well for predicting BGLs of

other patients. Thus, it is imperative to use data of multiple

patients to account for inter-individual variability [3]. Monte-

Moreno [21] presented a system for simultaneous noninvasive

blood pressure and BGL estimation. The models, designed

using photoplethysmography (PPG) and ML techniques, did

not need calibration over time and patients. Pappada et al.

[7] developed generalized NNs that were trained on 11-17

patients’ data, and evaluated using the remaining unseen data

that was not included in the NN calibration.

Georga et al. [23] evaluated SVR models on 12 real patients’

data. Hamdi et al. [22] looked into differential equations (DE)

and SVR for predicting BGLs of 12 real patients. Another

patient-specific SVR model was designed by Plis et al. [24]

and Bunescu et al. [25], where input features were generated

using a standard physiological model of BGL dynamics.

Monte-Moreno [21] evaluated ridge linear regression (LR),

random forest (RF), multi-layer perceptron (MLP), and SVR

models for BGL prediction. Mordvanyuk et al. [26] imple-

mented patient-specific k-nearest neighbors (KNN) model for

sequential T1D data, considering only carbohydrates intake,

bolus dose and preprandial BGL as input features. Maged et

al. [27] evaluated several ML and DL patient-specific models,

and found that that EXT regressor and ANN performed the

best.

Saiti et al. [28] evaluated ensemble algorithms: linear, bag-

ging and boosting meteregressor to show that they performed

better than the individual component models for BGL predic-

tion. Ma et al. [29] combined the residual compensation net-

work (RCN) and the autoregressive moving average (ARMA)

model for predicting BGLs in the horizon of 30 minutes

and 60 minutes. Xie et al. [30] compared the performance

of several models: Elastic Net, gradient boosting trees, RF,

SVR, vanilla LSTM, temporal convolutional network (TCN)

etc. with classical ARX model for predicting BGLs of T1D

patients.

Recent studies on BGL prediction are moving towards data-

driven models [2]. However, to the best of our knowledge, few

researches have combined different traditional ML algorithms

using an ensemble approach. Most of the existing research is

patient-specific i.e., the models were trained for an individual

and used to obtain predictions for the same. Furthermore,

very less is known on the usage of EXT algorithm for BGL

prediction. In this research, the stacking ensemble approach

was used with a slight variation. The predictions from DCT

and EXT models were fed as input to other non-ensemble

models (LR, SVR, KNN, and MLP) to obtain the final

predictions. BGLs for multiple patients can be predicted by

using these models.

III. METHODOLOGY

A. Data

The AIDA simulator [31] was used to generate the data

used in this research. It is a freeware simulator to observe the

effects of glucose-insulin interaction in T1D patients [31]. It

assumes that the patient’s pancreas produces no insulin [31].

The program has been designed for teaching, demonstration

and self-learning purposes [31]. The AIDA model provides

interactive virtual patient scenarios by using comprehensive

glucose and insulin sub-models based on mathematical differ-

ential equations [31]. The user can change the input variables
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Fig. 1. Blood glucose levels of all training samples

for a patient scenario, and immediately see the impact on their

BGLs [31].

The 24-hour time-series data for 40 T1D patients contained

BGLs at 15-minute intervals. The BGL depended on 13

input features: patients’ weight (kilograms), timestamp (hours)

(0-24), carbohydrates intake (grams), short-acting injection

(units) (effect in 2-5 hours), intermediate and long-acting

injection (units) (effect in 24-48 hours), type of medication

(units), kidney functioning renal glucose threshold (RTG)

(mmol/l) (the kidneys start to excrete glucose into urine when

blood glucose concentration reaches RTG), kidney function

renal (ml/min) (a measure of of how well kidneys operate),

liver insulin sensitivity (mmol/l), lower and upper glucose

limit. The injections were taken by patients 15 minutes prior

to their meal to lower BGLs.

There were 97 samples in the time-series data for each

patient. The training data was obtained by stitching the initial

eighty percent of each time-series. Similarly, the testing data

was obtained by stitching the remaining twenty percent of

each time-series. This resulted in 3120 training samples and

760 testing samples. The time-series for different patients were

stitched because we aimed to develop a generalized model.

Instead of personalized models, a single model should be able

to learn and predict BGLs for multiple patients. Figure 1 shows

the stitched training data, where the y-axis represent the BGLs,

which are highly fluctuating in nature.

B. Error Metric

In this research we aimed to estimate BGL, which is a

real value. The distance between the prediction values and the

actual values is used to determine the quality of a regression

model. Root mean squared error (RMSE) [32], which is a

popular metric for regression analysis, was utilized in this

study. The RMSE is obtained by taking the square root of

the mean of squared differences between all the actual and

predicted values. The error is defined by

RMSE =

√

√

√

√

n
∑

i=1

(yi − y2
i
)2

n
(1)

where n is the total number of samples, yi is the predicted

value and y2
i

is the actual value. The results obtained from

different models for different sets of hyperparameters were

compared with each other by using RMSE.

C. Machine Learning Models

This research implemented traditional ML non-ensemble

models and combined them with each other using an ensemble

approach. Scikit-learn in Python [33] was used to implement

all models except MLP. MLP was implemented using Keras in

Python [34]. Model performance is influenced by the choice

of hyperparameters [35]. Therefore, all models were trained

with diverse sets of hyperparameters. The hyperparameters

which obtained the lowest RMSE on the training data were

chosen. The random seed for all algorithms was fixed, so that

the results could be reproduced. The calibration process is

explained as follows.

1) Linear Regression: It is a supervised algorithm that

targets to find the best fit line, which has the least total

error from all data points [36]. The error is the distance of

a data point (training sample) from the line. The line in n-

dimensional space is parameterized by n coefficients [36].

There are no main hyperparameters.

2) K-Nearest Neighbors: It is a supervised algorithm that

stores all the training samples and estimates the outcome for

a testing sample by using the target values of the K nearest

neighbors [37]. The nearest neighbors among the training

samples are calculated using their distance from the test

sample.

The main hyperparameters are the number of nearest neigh-

bors (K) and the distance metric [37]. The distance metric was

varied as Euclidean, Manhattan, and Minkowski. The value of

K was varied 5-99 (in steps of 1).

3) Support Vector Regression: It is a supervised algorithm

which is based on the support vector machines (SVMs). The

SVM model aims to fit a hyper-plane in the higher-dimensional

feature space, such that the margin (minimum distance) of

class boundaries is maximized [38]. The model is penalized by

an objective function upon misclassification or if a sample lies

within the margin [38]. The support vector regression (SVR)

algorithm uses this principle for regression problems.

The main hyperparameters are kernel, gamma, and the

degree of the regularization [39]. The kernel specifies the

shape of the hyper-plane and gamma specifies the kernel

coefficient [39]. The degree of regularization (C) is used to

control overfitting on training data. The kernel was varied as

gaussian, sigmoid, and polynomial. For gaussian kernel, C

was varied 0.1-2.0 (in steps of 0.1), 10-1000 (in steps of 10),

and 1000-7000 (in steps of 1000), respectively. For sigmoid

kernel, C was varied 0.1-2.0 (in steps of 0.1). For polynomial

kernel, degree was varied 1-10 (in steps of 1). For the three

degree values that obtained the lowest training RMSE, C was

varied 0.1-2.0 (in steps of 0.1), 10-1000 (in steps of 10), and

1000-7000 (in steps of 1000). The gamma parameter was set

to ‘scale’, which is the default value in scikit-learn [39].

4) Multi-layer Perceptron: A multi-layer perceptron is a

feed-forward fully-connected NN containing at least three

layers: an input layer, a hidden layer, and an output layer [40].
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A layer is an array of perceptrons. A perceptron is a simple

computational unit that calculates output from weighted inputs

by applying a non-linear activation function [41]. The weights

are randomly initialized and then updated by backpropagation

[40]. The aim is to minimize the gap between actual and

predicted output [40].

The various hyperparameters include number of hidden

layers, number of nodes in each layer, learning rate, activation

function, error metric, regularization penalty, and the training

algorithm [40][41]. Each training algorithm has its own addi-

tional hyperparameters. The learning rate is used to determine

the step size of weight updation and regularization is used to

control overfitting on the training data [41].

We evaluated three MLP models. The first layer for each

model was the input layer containing 13 nodes, because each

sample had 13 input features. The specifications for each layer

are described as [number of nodes, activation function], and

the different layers are written in the order of occurrence. The

first model had 3 layers - [13,none], [32,relu] and [1,relu]. The

second model had 4 layers - [13,none], [32,tanh], [64,tanh] and

[1,relu]. The third model had 5 layers - [13,none], [32,tanh],

[64,tanh], [32,tanh] and [1,relu]. The training algorithm (opti-

mizer), weight initializer, and regularizer in each model were

chosen to be adam [42], glorot normal [43] and L1-L2 [44],

respectively. For each model, number of epochs was varied as

10, 50, 100, and 200, with and without regularization.

5) Decision Tree: It is a supervised algorithm [45]. It has

a hierarchical, tree structure with decision nodes and branches

[45]. An attribute is associated with each decision node, and

the node splits into two or more branches [45]. A set of

attribute value(s) is associated with each branch [45]. The

target value is placed at the leaf node, which has no further

branches [45]. During training, the data is broken into smaller

subsets at each node [45]. The aim is to attain maximum

homogeneity at each decision node [45]. To call a subset

as completely homogeneous, it should contain instances with

similar values [45]. For obtaining the output for a test sample,

the algorithm travels down the tree by following the decision

rules present at each node.

Maximum depth and minimum split are the main hyper-

parameters [46]. The maximum distance i.e., the number of

branches from the root node to a leaf node of the tree, is called

the maximum depth [46]. The minimum number of samples

that must be available at each node to attempt a split is called

the minimum split [46]. Unpruned and fully grown trees can

be obtained by using the default values of these parameters

[46]. The maximum depth was varied 1-50 (in steps of 1), for

each minimum split value of 2, 3, and 4.

6) Extra Tree: An extremely randomized tree is similar to

DCT, but while splitting the training dataset at each decision

node, random splits are drawn from the training data present

at that node and the candidate attributes are also selected

randomly [47].

Maximum depth and minimum split are the main hyperpa-

rameters [47]. The maximum depth was varied 1-50 (in steps

of 1), for each minimum split value of 2, 3, and 4.

Fig. 2. The ensemble structure used in this research.

7) Ensemble: In this research, we designed ensembles

inspired by the stacking approach. Stacking is an ensemble

approach in which the predictions from multiple base models

are aggregated using a meta-model [48]. The meta-model is

usually a naive algorithm [48]. The model is trained using k-

fold cross-validation [48]. The k−1 folds are used for training

the base models, and the meta-model is trained by using the

remaining 1-fold [48]. The ensemble designed in this research

is slightly different: the meta-model is not a naive algorithm,

and k-fold cross validation is not used for training.

Figure 2 is a visual representation of the ensemble structure.

The first level (level-1) contains the base models (model-1a

and model-1b), and the second level (level-2) contains the

meta-model (model-2). The level-1 models were first trained

on the training data. Then, the obtained predictions were used

to train the level-2 model. For a test sample, the predictions

obtained from level-1 models were fed into level-2 model to

obtain the final outcome.

The calibrated non-ensemble models were selected to be the

constituent models of an ensemble. The best two models were

selected as model-1a and model-1b, and model-2 was varied

as the remaining models. Since the optimal parameters were

already known for model-1a and model-1b from the previous

step, the intermediate level-1 predictions in the ensemble were

fixed. Thus, only model-2 required calibration. The model-

2 was trained to estimate the final BGL value by using the

BGL estimates calculated by model-1a and model-1b as input

features.

IV. RESULTS

The traditional non-ensemble models (LR, SVR, KNN,

MLP, DCT, and EXT) were calibrated to obtain the optimal

values for hyperparameters. In the KNN model, the optimal

hyperparameters were observed to be Manhattan distance

metric with K as 5. In the SVR model, the train RMSE

obtained by the gaussian kernel decreased monotonically for

increasing values of C. The train RMSE obtained by the

sigmoid kernel increased with increasing values of C. The

train RMSE obtained by the polynomial kernel was nearly

the same for degrees 6, 7 and 8. For each degree value,

the train RMSE was observed to decrease monotonically for

increasing values of C. The optimal hyperparameters were

observed to be the gaussian kernel with C as 7000. In the

DCT model, a minimum split of 2 achieved the best training

results. For maximum depth greater than 20, the train RMSE
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was observed to be constant. Therefore, 20 was chosen as the

optimal maximum depth. In the EXT model, a minimum split

of 2 achieved the best training results. For maximum depth

greater than 25, the train RMSE was observed to be constant.

Therefore, 25 was chosen as the optimal maximum depth. The

three MLP models obtained the best results at 200 epochs with

regularization. The second MLP model with 4 layers obtained

the lowest train RMSE among all the evaluated MLP models.

Table 1 presents the performance of traditional non-

ensemble models (LR, SVR, KNN, MLP, DCT, and EXT)

and the optimal hyperparameters obtained by calibration. Table

2 presents the performance of novel Tree variants (Tree-LR,

Tree-MLP, and Tree-KNN, and Tree-SVR). The results are

presented in an increasing order of test RMSE. Figure 5

presents the plot of the actual BGLs and the predicted BGLs

by the Tree-SVR ensemble model for all the testing samples.

TABLE I
PERFORMANCE AND OPTIMAL HYPERPARAMETERS FOR NON-ENSEMBLE

MACHINE LEARNING MODELS

Train Test

Model Optimal hyperparameters RMSE RMSE

DCT maximum depth = 20, 0.202 2.207
minimum split = 2

EXT maximum depth = 25, 0.199 2.207
minimum split = 2

KNN K = 5, distance metric = 0.667 2.374
Manhattan

MLP 4 layers = [13,none], [32,tanh], 2.050 2.507
[64,tanh], [1,relu]

SVR kernel = gaussian, gamma = 2.160 2.642
scale, C = 7000

LR None 2.908 2.777

TABLE II
PERFORMANCE OF DESIGNED ENSEMBLE MODELS

Model-1a Model-1b Model-2 Train RMSE Test RMSE

DCT EXT SVR 0.202 2.201
DCT EXT KNN 0.201 2.206
DCT EXT LR 0.199 2.207
DCT EXT MLP 0.224 3.139

V. DISCUSSIONS

The DCT model and the EXT model outperformed other

models (LR, SVR, KNN, and MLP) by obtaining equal test

RMSEs of 2.207. Because of the considerable gap in train

and test RMSE, the DCT, EXT, and KNN models can be

considered to have overfitting. The SVR and MLP models

can be said to have little or no overfitting. On the other hand,

the LR model can be considered to have underfitting as it had

higher train RMSE as compared to test RMSE. It performed

poorly with highest train and test RMSEs of 2.908 and 2.777,

respectively. This was because the LR algorithm finds a linear

relationship, whereas the BGLs are highly fluctuating (Fig. 1).

The DCT and the EXT models performed the best among

the non-ensemble models, therefore, they were chosen as level-

1 models for the ensembles. The level-2 model was varied as

Fig. 3. Testing performance of designed ensemble models

Fig. 4. Predicted and actual blood glucose levels for Tree-SVR ensemble
model

LR, SVR, KNN and MLP. These novel ensembles were named

the Tree variants (Tree-LR, Tree-KNN, Tree-MLP, and Tree-

SVR). Because of the considerable gap in train and test RMSE,

all the Tree variants can be considered to have overfitting.

The Tree-KNN and the Tree-SVR models performed slightly

better than the DCT and the EXT models. They obtained

test RMSEs of 2.206 and 2.201, respectively. The Tree-SVR

model performed the best with a test RMSE of 2.201. The

improvement in results from the non-ensemble models to the

novel ensemble is slight. However, it shows a promise that

combination of traditional ML algorithms with each other can

obtain better BGL predictions, thus provide value to T1D

patients.

The models were evaluated and tested on less amount of

data, which is one of the limitations of this study. There

were only 3120 training samples and 760 testing samples. The

smaller number of samples did not allow validation data to be

obtained. Therefore, hyperparameter tuning was performed by

using only training data, which is not an ideal choice. The

AIDA simulator is an educational program, thus, the use of

virtual patients’ data is another limitation of this research.

However, the BGL values were oscillating. Therefore, the

proposed Tree model can be called scalable, and it will be

able to model similar data for real patients.
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VI. CONCLUSIONS

Data-driven models for BGL prediction aim to assist

in designing an effective regimen, thus, preventing serious

health complications associated with diabetes. This study

evaluated traditional non-ensemble models: linear regression

(LR), multi-layer perceptron (MLP), support vector regression

(SVR), k-nearest neighbors (KNN), decision tree (DCT), and

extra tree (EXT) for generalized BGL prediction of type-

1 diabetes (T1D) patients. Novel ensembles were designed,

inspired by the stacking approach, where the predictions from

the DCT and the EXT models were fed to a non-ensemble

model for final BGL prediction. The AIDA simulator was used

to generate 24-hour data of 40 virtual patients [31]. Eighty

percent of each time-series was stitched together for training

generalized models. The root mean squared error (RMSE) was

used to gauge model performance.

The DCT and the EXT models outperformed the other non-

ensemble models (LR, SVR, KNN, and MLP). The ensemble

(Tree-SVR) of DCT, EXT and SVR outperformed all the non-

ensemble models and the Tree variants (Tree-LR, Tree-KNN,

and Tree-MLP) evaluated in this research.

This research has various implications for T1D patients.

The patients’ inability to interpret data often compromises

diabetes management [3]. The models proposed in this re-

search can help individuals in predicting future BGLs without

expert knowledge about the model and glucose metabolism.

Neural networks (NNs) are widely used in research studies

for diabetes and BGL prediction. However, NNs often require

large datasets to give promising results, and deep learning

can be expensive [49]. The state-of-the-art NNs are often

trained on data containing thousands, or even millions of

observations [49]. This study has used only traditional ML

algorithms, which can work well even with datasets containing

smaller number of samples[49]. Few studies have combined

different traditional ML algorithms with each other for BGL

prediction; but this study has developed an ensemble approach

with these algorithms. Majority of the available studies have

been patient-specific, and the developed models calculated

predictions on an individual basis. However, this study has

developed generalized models that were shown to predict

BGLs of multiple patients.

Moving forward, this research can be conducted by using

lesser number of input features. The models can be evaluated

on larger T1D datasets with real patients. Motivated by the

improvement shown by ensemble models, more traditional ML

algorithms can be combined with each other using several

ensemble approaches for BGL prediction.
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Fnaiech, Eric Moreau, and Jean-Marc Ginoux. 2018. Accurate prediction
of continuous blood glucose based on support vector regression and dif-
ferential evolution algorithm. Biocybernetics and Biomedical Engineer-
ing 38, 2 (2018), 362 – 372. https://doi.org/10.1016/j.bbe.2018.02.005

[23] Eleni Georga, Vasilios Protopappas, Diego Ardigò, Michela Marina,
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