Prediction of Traffic Intensity for Dynamic Street Lighting
Marzena Bielecka, Andrzej Bielecki, Sebastian Ernst, Igor Wojnicki
DOI: http://dx.doi.org/10.15439/2017F389
Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 1149–1155 (2017)
Abstract. In this paper, the problem of short-term prediction of traffic flow in a city traffic network is considered. This prediction is performed in order to provide input data to a dynamic control system for street lighting. The forecasting is done by a multi-layer using artificial neural network. Because of the limited number of sensors, the data is insufficient to describe the relation between the traffic intensity at a given point and the points in which the flow intensity is measured. The proposed approach is tested by using data from the centre of Krak\'ow. The prediction error turned to be low.
References
- A. Sędziwy and L. Kotulski, “A new approach to power consumption reduction of street lighting,” in 2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), May 2015, pp. 1–5.
- A. S ̨edziwy, “A new approach to street lighting design,” LEUKOS, vol. 12, no. 3, pp. 151–162, 2016. http://dx.doi.org/10.1080/15502724.2015.1080122. [Online]. Available: http://dx.doi.org/10.1080/15502724.2015.1080122
- “Smart cities: background paper,” UK Department for Business, Innovation & Skills, Tech. Rep., 2013.
- A. Bahga and V. Madisetti, Internet of Things: A Hands-On Approach. Vijay Madisetti, 2014. ISBN 9780996025522. [Online]. Available: https://books.google.pl/books?id=mYmzoQEACAAJ
- “Light’s labour’s lost,” International Energy Agency, Tech. Rep., 2006.
- CEN, “CEN/TR 13201-1:2004, Road lighting. Selection of lighting classes,” European Commitee for Standardization, Brussels, Tech. Rep., 2004.
- Ernst, Sebastian, “Optimization of renewable energy-based autonomous device operation using simulation,” E3S Web Conf., vol. 10, p. 00020, 2016. http://dx.doi.org/10.1051/e3sconf/20161000020. [Online]. Available: https://doi.org/10.1051/e3sconf/20161000020
- A. Bielecki, M. Bielecka, and S. Ernst, “Proposal of an intelligent, predictive fuzzy controller for off-grid devices,” IFAC-PapersOnLine, vol. 49, no. 25, pp. 523 – 528, 2016. http://dx.doi.org/http://dx.doi.org/10.1016/j.ifacol.2016.12.077. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S240589631632715X
- F. Mwasilu, J. J. Justo, E.-K. Kim, T. D. Do, and J.-W. Jung, “Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 501 – 516, 2014. http://dx.doi.org/https://doi.org/10.1016/j.rser.2014.03.031. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032114001920
- I. Wojnicki, S. Ernst, and L. Kotulski, “Economic impact of intelligent dynamic control in urban outdoor lighting,” Energies, vol. 9, no. 5, p. 314, 2016. http://dx.doi.org/10.3390/en9050314. [Online]. Available: http://www.mdpi.com/1996-1073/9/5/314
- L. Guo, M. Eloholma, and L. Halonen, “Intelligent road lighting control systems,” Helsinki University of Technology, Department of Electronics, Lighting Unit, Tech. Rep., 2008. [Online]. Available: http://lib.tkk.fi/Diss/2008/isbn9789512296200/article2.pdf
- S. Fan, C. Yang, and Z. Wang, “Automatic Control System for Highway Tunnel Lighting,” in Computer and Computing Technologies in Agriculture IV, ser. IFIP Advances in Information and Communication Technology, D. Li, Y. Liu, and Y. Chen, Eds. Springer Boston, 2011, vol. 347, pp. 116–123. ISBN 978-3-642-18368-3. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-18369-0_14 http://www. springerlink.com/index/N1520PT884727374.pdf
- I. Wojnicki, S. Ernst, L. Kotulski, and A. Sędziwy, “Advanced street lighting control,” Expert Systems with Applications, vol. 41, no. 4, Part 1, pp. 999 – 1005, 2014. http://dx.doi.org/https://doi.org/10.1016/j.eswa.2013.07.044. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417413005319
- D. Leihs and A. Adamski, “Situational analysis in real-time traffic systems,” Procedia - Social and Behavioral Sciences, vol. 20, pp. 506 – 513, 2011. http://dx.doi.org/http://dx.doi.org/10.1016/j.sbspro.2011.08.057. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877042811014376
- A. Adamski, “Intelligent traffic control in ITS systems,” Global Journal of Engineering Science and Research Management, vol. 2, no. 7, pp. 75–86, 2015.
- A. Abadi, T. Rajabioun, and P. A. Ioannou, “Traffic flow prediction for road transportation networks with limited traffic data,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 653–662, April 2015. http://dx.doi.org/10.1109/TITS.2014.2337238
- M. Castro-Neto, Y. Jeong, M. K. Jeong, and L. D. Han, “Online-svr for short-term traffic flow prediction under typical and atypical traffic conditions.” Expert Syst. Appl., vol. 36, no. 3, pp. 6164– 6173, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/eswa/eswa36.html#Castro-NetoJJH09a
- K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, “Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg #x2013;marquardt algorithm,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 2, pp. 644–654, June 2012. http://dx.doi.org/10.1109/TITS.2011.2174051
- J.-M. Chiou, “Dynamical functional prediction and classification, with application to traffic flow prediction,” Ann. Appl. Stat., vol. 6, no. 4, pp. 1588–1614, 12 2012. http://dx.doi.org/10.1214/12-AOAS595. [Online]. Available: http://dx.doi.org/10.1214/12-AOAS595
- W.-C. Hong, Y. Dong, F. Zheng, and C.-Y. Lai, “Forecasting urban traffic flow by svr with continuous aco,” Applied Mathematical Modelling, vol. 35, no. 3, pp. 1282–1291, 2011. http://dx.doi.org/10.1016/j.apm.2010.09.005
- Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, “Traffic flow prediction with big data: A deep learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, April 2015. http://dx.doi.org/10.1109/TITS.2014.2345663
- B. L. Smith and M. J. Demetsky, “Short-term traffic flow prediction models-a comparison of neural network and nonparametric regression approaches,” in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 2, Oct 1994. http://dx.doi.org/10.1109/IC-SMC.1994.400094 pp. 1706–1709 vol.2.
- B. L. Smith and M. J. Demetsky, “Short-term traffic flow prediction: neural network approach,” Transportation Research Record, vol. 1453, pp. 98–104, 1994.
- B. L. Smith and M. J. Demetsky, “Traffic flow forecasting: Comparison of modeling approaches,” Journal of Transportation Engineering, vol. 123, no. 4, pp. 261–266, Issue: object: http://dx.doi.org/10.1061/jtpedi.1997.123.issue-4, revision: rev:1479465310792-29747:http://dx.doi.org/10.1061/jtpedi.1997.123.issue-4, http://dx.doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)
- A. Stathopoulos and M. Karlaftis, “A multivariate state space approach for urban traffic flow modeling and prediction,” Transportation Research Part C, vol. 11, no. 2, pp. 121–135, April 2003. http://dx.doi.org/10.1016/S0968-090X(03)00004-4
- S. Sun and X. Xu, “Variational inference for infinite mixtures of gaussian processes with applications to traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp. 466–475, June 2011. http://dx.doi.org/10.1109/TITS.2010.2093575
- E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach,” Transportation Research Part C: Emerging Technologies, vol. 13, no. 3, pp. 211 – 234, 2005. http://dx.doi.org/https://doi.org/10.1016/j.trc.2005.04.007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0968090X05000276
- H. Yin, S. Wong, J. Xu, and C. Wong, “Urban traffic flow prediction using a fuzzy-neural approach,” Transportation Research Part C: Emerging Technologies, vol. 10, no. 2, pp. 85 – 98, 2002. doi: https://doi.org/10.1016/S0968-090X(01)00004-3. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0968090X01000043