A general optimization-based approach for thermal processes modeling
Paweł Drąg, Krystyn Styczeń
DOI: http://dx.doi.org/10.15439/2017F458
Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 1347–1352 (2017)
Abstract. In the article a new optimization approach for thermal processes modeling has been presented. In the designed method, the considered process is monitored by a measurement system with a thermal camera. Then, a spatio-temporal dynamics is discretized and transformed into a large-scale optimization problem with differential-algebraic constraints. To preserve the process dynamics in the assumed range, variability constraints have been imposed. Finally, a new interior-point optimization algorithm has been designed to solve the optimization problem with the variability constraints. The applicability of the new approach has been investigated experimentally.
References
- J.T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9780898718577
- D. Bhaduri, P. Penchev, A. Batal, S. Dimov, S.L. Soo, S. Sten, U. Harrysson, Z. Zhang, H. Dong. 2017. Laser polishing of 3D printed mesoscale components. Applied Surface Science. 405:29-46. http://dx.doi.org/10.1016/j.apsusc.2017.01.211
- L.T. Biegler, S. Campbell, V. Mehrmann. 2012. DAEs, Control, and Optimization. Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia, http://dx.doi.org/10.1137/9781611972252.ch1
- Y. Cao, A. Seth, C.D. Laird. 2016. An augmented Lagrangian interior-point approach for large-scale NLP problems on graphics processing units. Computers and Chemical Engineering. 85:76-83. http://doi.org/10.1016/j.compchemeng.2015.10.010
- F. E. Curtis, N.I.M. Gould, D.P. Robinson, P.L. Toint. 2017. An interior-point trust-funnel algorithm for nonlinear optimization. Mathematical Programming. 161:73-134. http://dx.doi.org/10.1007/s10107-016-1003-9
- P. Drąg. 2016. Algorytmy sterowania wielostadialnymi procesami deskryptorowymi. Akademicka Oficyna Wydawnicza EXIT, Warszawa (in polish).
- P. Drąg, K. Styczeń. 2012. Parallel Simultaneous Approach for optimal control of DAE systems. 2012 Federated Conference on Computer Science and Information Systems, FedCSIS 2012. 517-523.
- P. Drąg, K. Styczeń. 2016. The constraints aggregation technique for control of ethanol production. Studies in Computational Intelligence. 655:179-192. http://dx.doi.org/10.1007/978-3-319-40132-4 11
- M. Fazlyab, S. Paternain, V.M. Preciado, A. Ribeiro. 2016. Interior Point Method for Dynamic Constrained Optimization in Continuous Time. 2016 American Control Conference (ACC), Boston Marriott Copley Place, July 6-8, 2016. Boston, MA, USA. 5612-5618. http://doi.org/10.1109/ACC.2016.7526550
- E. Klintberg, S. Gros. 2016. An inexact interior point method for optimization of differential algebraic systems. Computers and Chemical Engineering. 92:163-171. http://doi.org/10.1016/j.compchemeng.2016.04.013
- Z. Li, T.C.E. Janssen, K.A. Buist, N.G. Deen, M. van Sint Annaland, J.A.M. Kuipers. 2017. Experimental and simulation study of heat transfer in fluidized beds with heat production. Chemical Engineering Journal. 317:242-257. http://dx.doi.org/10.1016/j.cej.2017.02.055
- F. Mariani, F. Risi, C.N. Grimaldi. 2017. Separation efficiency and heat exchange optimization in a cyclone. Separation and Purification Technology. 179:393-402. http://dx.doi.org/10.1016/j.seppur.2017.02.024
- MathWorks. 2017. Global Optimization Toolbox. User’s Guide R2017a.
- J. Mei, X. Xia. 2017. Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system. Applied Energy. 195:439-452. http://dx.doi.org/10.1016/j.apenergy.2017.03.076
- M. Mewa-Ngongang, H.W. du Plessis, U.F. Hutchinson, L. Mekuto, S.K.O. Ntwampe. 2017. Kinetic modelling and optimisation of antimicrobial compound production by Candida pyralidae KU736785 for control of Candida guilliermondii. Food Science and Technology International. 23:358-370. http://dx.doi.org/10.1177/1082013217694288
- J. Nocedal, S. Wright. 2006. Numerical Optimization. Springer, http://dx.doi.org/10.1007/978-0-387-40065-5
- E. Rafajłowicz, K. Styczeń, W. Rafajłowicz. 2012. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. International Journal of Applied Mathematics and Computer Science. 22:313-326. http://dx.doi.org/10.2478/v10006-012-0023-8
- A. Shinde, S. Arpit, P. KM, P.V.C. Rao, S.K. Saha. 2017. Heat Transfer Characterization and Optimization of Latent Heat Thermal Storage System Using Fins for Medium Temperature Solar Applications. Journal of Solar Energy Engineering. 139:031003. http://dx.doi.org/10.1115/1.4035517
- W. Uribe-Soto, J.-F. Portha, J.-M . Commenge, L. Falk. 2017. A review of thermochemical processes and technologies to use steelworks off-gases. Renewable and Sustainable Energy Reviews. 74:809-823. http://dx.doi.org/10.1016/j.rser.2017.03.008
- L. Wang, X. Liu, Z. Zhang. 2017. An efficient interior-point algorithm with new nonmonotone line search filter method for nonlinear constrained programming. Engineering Optimization. 49:290-310. http://dx.doi.org/10.1080/0305215X.2016.1176828
- V.I. Zorkaltsev. 2016. Search for feasible solutions by interior point algorithms. Numerical Analysis and Applications. 9:191-206. http://doi.org/10.1134/S1995423916030022