Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

A general optimization-based approach for thermal processes modeling


DOI: http://dx.doi.org/10.15439/2017F458

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 13471352 ()

Full text

Abstract. In the article a new optimization approach for thermal processes modeling has been presented. In the designed method, the considered process is monitored by a measurement system with a thermal camera. Then, a spatio-temporal dynamics is discretized and transformed into a large-scale optimization problem with differential-algebraic constraints. To preserve the process dynamics in the assumed range, variability constraints have been imposed. Finally, a new interior-point optimization algorithm has been designed to solve the optimization problem with the variability constraints. The applicability of the new approach has been investigated experimentally.


  1. J.T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9780898718577
  2. D. Bhaduri, P. Penchev, A. Batal, S. Dimov, S.L. Soo, S. Sten, U. Harrysson, Z. Zhang, H. Dong. 2017. Laser polishing of 3D printed mesoscale components. Applied Surface Science. 405:29-46. http://dx.doi.org/10.1016/j.apsusc.2017.01.211
  3. L.T. Biegler, S. Campbell, V. Mehrmann. 2012. DAEs, Control, and Optimization. Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia, http://dx.doi.org/10.1137/9781611972252.ch1
  4. Y. Cao, A. Seth, C.D. Laird. 2016. An augmented Lagrangian interior-point approach for large-scale NLP problems on graphics processing units. Computers and Chemical Engineering. 85:76-83. http://doi.org/10.1016/j.compchemeng.2015.10.010
  5. F. E. Curtis, N.I.M. Gould, D.P. Robinson, P.L. Toint. 2017. An interior-point trust-funnel algorithm for nonlinear optimization. Mathematical Programming. 161:73-134. http://dx.doi.org/10.1007/s10107-016-1003-9
  6. P. Drąg. 2016. Algorytmy sterowania wielostadialnymi procesami deskryptorowymi. Akademicka Oficyna Wydawnicza EXIT, Warszawa (in polish).
  7. P. Drąg, K. Styczeń. 2012. Parallel Simultaneous Approach for optimal control of DAE systems. 2012 Federated Conference on Computer Science and Information Systems, FedCSIS 2012. 517-523.
  8. P. Drąg, K. Styczeń. 2016. The constraints aggregation technique for control of ethanol production. Studies in Computational Intelligence. 655:179-192. http://dx.doi.org/10.1007/978-3-319-40132-4 11
  9. M. Fazlyab, S. Paternain, V.M. Preciado, A. Ribeiro. 2016. Interior Point Method for Dynamic Constrained Optimization in Continuous Time. 2016 American Control Conference (ACC), Boston Marriott Copley Place, July 6-8, 2016. Boston, MA, USA. 5612-5618. http://doi.org/10.1109/ACC.2016.7526550
  10. E. Klintberg, S. Gros. 2016. An inexact interior point method for optimization of differential algebraic systems. Computers and Chemical Engineering. 92:163-171. http://doi.org/10.1016/j.compchemeng.2016.04.013
  11. Z. Li, T.C.E. Janssen, K.A. Buist, N.G. Deen, M. van Sint Annaland, J.A.M. Kuipers. 2017. Experimental and simulation study of heat transfer in fluidized beds with heat production. Chemical Engineering Journal. 317:242-257. http://dx.doi.org/10.1016/j.cej.2017.02.055
  12. F. Mariani, F. Risi, C.N. Grimaldi. 2017. Separation efficiency and heat exchange optimization in a cyclone. Separation and Purification Technology. 179:393-402. http://dx.doi.org/10.1016/j.seppur.2017.02.024
  13. MathWorks. 2017. Global Optimization Toolbox. User’s Guide R2017a.
  14. J. Mei, X. Xia. 2017. Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system. Applied Energy. 195:439-452. http://dx.doi.org/10.1016/j.apenergy.2017.03.076
  15. M. Mewa-Ngongang, H.W. du Plessis, U.F. Hutchinson, L. Mekuto, S.K.O. Ntwampe. 2017. Kinetic modelling and optimisation of antimicrobial compound production by Candida pyralidae KU736785 for control of Candida guilliermondii. Food Science and Technology International. 23:358-370. http://dx.doi.org/10.1177/1082013217694288
  16. J. Nocedal, S. Wright. 2006. Numerical Optimization. Springer, http://dx.doi.org/10.1007/978-0-387-40065-5
  17. E. Rafajłowicz, K. Styczeń, W. Rafajłowicz. 2012. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. International Journal of Applied Mathematics and Computer Science. 22:313-326. http://dx.doi.org/10.2478/v10006-012-0023-8
  18. A. Shinde, S. Arpit, P. KM, P.V.C. Rao, S.K. Saha. 2017. Heat Transfer Characterization and Optimization of Latent Heat Thermal Storage System Using Fins for Medium Temperature Solar Applications. Journal of Solar Energy Engineering. 139:031003. http://dx.doi.org/10.1115/1.4035517
  19. W. Uribe-Soto, J.-F. Portha, J.-M . Commenge, L. Falk. 2017. A review of thermochemical processes and technologies to use steelworks off-gases. Renewable and Sustainable Energy Reviews. 74:809-823. http://dx.doi.org/10.1016/j.rser.2017.03.008
  20. L. Wang, X. Liu, Z. Zhang. 2017. An efficient interior-point algorithm with new nonmonotone line search filter method for nonlinear constrained programming. Engineering Optimization. 49:290-310. http://dx.doi.org/10.1080/0305215X.2016.1176828
  21. V.I. Zorkaltsev. 2016. Search for feasible solutions by interior point algorithms. Numerical Analysis and Applications. 9:191-206. http://doi.org/10.1134/S1995423916030022