Use of Domain Knowledge and Feature Engineering in Helping AI to Play Hearthstone
Przemysław Przybyszewski, Szymon Dziewiątkowski, Sebastian Jaszczur, Mateusz Śmiech, Marcin Szczuka
DOI: http://dx.doi.org/10.15439/2017F567
Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 143–148 (2017)
Abstract. This paper describes two approaches to the AAIA'17 Data Mining Challenge. Both approaches are making extensive use of domain/background knowledge about the game to build better representation of classification problem by engineering new features. With newly constructed attributes both approaches resort to Artificial Neural Networks (ANN) to construct classification model. The resulting solutions are effective and meaningful.
References
- “Hearthstone official game site,” http://us.battle.net/hearthstone/en/.
- A. Janusz, D. Ślęzak, S. Stawicki, and M. Rosiak, “Knowledge Pit - a data challenge platform,” in Proceedings of the 24th International Workshop on Concurrency, Specification and Programming, Rzeszów, Poland, September 28-30, 2015., ser. CEUR Workshop Proceedings, vol. 1492. CEUR-WS.org, 2015, pp. 191–195. [Online]. Available: https://knowledgepit.fedcsis.org/
- T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006. http://dx.doi.org/10.1016/j.patrec.2005.10.010
- “LightForge – Hearthstone Arena tier list,” http://thelightforge.com/TierList.
- “HearthPWN – Hearthstone database, deck builder, news, and more!” http://www.hearthpwn.com/.
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [Online]. Available: http://www.deeplearningbook.org
- Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. http://dx.doi.org/10.1038/nature14539
- S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, ser. JMLR Workshop and Conference Proceedings, vol. 37. JMLR.org, 2015, pp. 448–456. [Online]. Available: http://jmlr.org/proceedings/papers/v37/ioffe15.html
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980
- F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: http://tensorflow.org/
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=2078195