Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

Hybrid Multievolutionary System to Solve Function Optimization Problems

DOI: http://dx.doi.org/10.15439/2017F85

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 8790 ()

Full text

Abstract. Evolutionary algorithms are optimization methods inspired by observation of natural evolution. They usually search for the optimal solution in large space areas. In Evolutionary Algorithms it is very important to select an appropriate balance between the ability of the algorithm to explore and exploit the search space. The paper presents a hybrid system consisting of a Genetic Algorithm and an Evolutionary Strategy designed to optimize the function of many variables. In this system, we combined the ability of the Genetic Algorithm to explore the search space and the ability of the Evolutionary Strategy to exploit the search space. Optimization performed by the Genetic Algorithm and the Evolutionary Strategy runs at the same time, so it is possible to perform parallel computations. The results of the experiments suggest that the proposed system can be an effective tool in solving complex optimization problems.


  1. Bäck T., Hoffmeister F., Schwefel H.-P., A survey of evolution strategies, Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, s. 2-9, 1991.
  2. Beyer H.-G. Schwefel H.-P., Evolution Strategies: A Comprehensive Introduction. Journal Natural Computing, 1(1):3-52, 2002.
  3. Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning Reading, MA: Addison-Wesley, 1989.
  4. Jensi R., Wiselin Jiji G., An improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clustering, Appl. Soft Comput. 46: 230-245, 2016.
  5. Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer Verlag, Berlin (1992).
  6. Karaboga, D., Basturk B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, Volume: 39 Issue: 3, Pages: 459-471, 2007.
  7. Kwasnicka H., Obliczenia ewolucyjne w sztucznej inteligencji. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, 1999, (in Polish).
  8. Potter M.A., De Jong K.A., A cooperative coevolutionary approach to function optimization. In: Davidor Y., Schwefel HP., Männer R. (eds) Parallel Problem Solving from Nature - PPSN III. PPSN 1994. Lecture Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg 1994.
  9. Pytel K., Nawarycz T., Analysis of the Distribution of Individuals in Modified Genetic Algorithms [in] Rutkowski L., Scherer R., Tadeusiewicz R., Zadeh L., Zurada J., Artificial Intelligence and Soft Computing, Springer-Verlag Berlin Heidelberg, 2010.
  10. Pytel K., The Fuzzy Genetic Strategy for Multiobjective Optimization, Proceedings of the Federated Conference on Computer Science and Information Systems, Szczecin, (2011).
  11. Pytel K., Nawarycz T., The Fuzzy-Genetic System for Multiobjective Optimization, [in] Rutkowski L., Korytkowski M, Scherer R., Tadeusiewicz R., Zadeh L., Zurada J., Swarm and Evolutionary Computation, Springer-Verlag Berlin Heidelberg, 2012.
  12. Pytel K., Nawarycz T., A Fuzzy-Genetic System for ConFLP Problem, Advances in Decision Sciences and Future Studies, Vol. 2, Progress & Business Publishers, Krakow 2013.
  13. Pytel K., Hybrid Fuzzy-Genetic Algorithm Applied to Clustering Problem. Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, Gdańsk, 2016, http://dx.doi.org/10.15439/2016F232.
  14. http://infinity77.net/global_optimization/test_functions.html.