Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 13

Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems

A new optimization-based approach for aircraft landing in the presence of windshear


DOI: http://dx.doi.org/10.15439/2017F436

Citation: Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 13, pages 8388 ()

Full text

Abstract. In the article a new approach for aircraft landing with the presence of the windshear phenomena was presented. The differential-algebraic model with variability constraints was under considerations. To transform the optimal control problem into a nonlinear optimization task, a modified direct shooting method was used. Then, to solve the obtained large-scale nonlinear optimization problem, a barrier method was applied. Moreover, in the proposed optimization-based approach, the variability constraints imposed on the state trajectory were considered directly.


  1. S. Baccari, L. Iannelli, F. Vasca. 2012. A Parallel Algorithm for Implicit Model Predictive Control with Barrier Function. 2012 IEEE International Conference on Control Applications (CCA) Part of 2012 IEEE Multi-Conference on Systems and Control October 3-5, 2012. Dubrovnik, Croatia. 1405-1410, http://dx.doi.org/10.1109/CCA.2012.6402342
  2. J.T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9780898718577
  3. R. Bulirsch, F. Montrone, H.J. Pesch. 1991. Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions. Journal of Optimization Theory and Applications. 70:1-23, http://dx.doi.org/10.1007/BF00940502
  4. R. Bulirsch, F. Montrone, H. J. Pesch. 1991. Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy. Journal of Optimization Theory and Applications. 70:223-254, http://dx.doi.org/10.1007/BF00940625
  5. P.W. Chan, K.K. Hon. 2016. Observation and Numerical Simulation of Terrain-Induced Windshear at the Hong Kong International Airport in a Planetary Boundary Layer without Temperature Inversions. Advances in Meteorology. Article ID 1454513, http://dx.doi.org/10.1155/2016/1454513
  6. L.H. De Godoy Patire, N.B.F Silva, K.R.L.J.C Branco. 2016. Data fusion techniques applied to takeoff and landing procedures - A VTOL case study. IEEE Latin America Transactions. 14:3962-3966. http://dx.doi.org/10.1109/TLA.2016.7785919
  7. P. Dra̧g. 2016. Algorytmy sterowania wielostadialnymi procesami deskryptorowymi. Warszawa, Akademicka Oficyna Wydawnicza EXIT, (in polish)
  8. C. Feller, C. Ebenbauer. 2017. A stabilizing iteration scheme for model predictive control based on relaxed barrier functions. Automatica. 80:328-339, https://doi.org/10.1016/j.automatica.2017.02.001
  9. K.K. Hon, P.W. Chan. 2014. Terrain-Induced Turbulence Intensity during Tropical Cyclone Passage as Determined from Airborne, Ground-Based, and Remote Sensing Sources. Journal of Atmospheric and Oceanic Technology. 31:2373-2391, http://dx.doi.org/10.1175/JTECH-D-14-00006.1
  10. B. Li, K.L. Teo, G.H. Zhao, G.R. Duan. 2009. An efficient computational approach to a class of minmax optimal control problems with applications. ANZIAM Journal. 51:162-177, http://doi.org/10.1017/S1446181110000040
  11. MathWorks. 2017. Global Optimization Toolbox. User’s Guide R2017a.
  12. F.L.L. Medeiros, V.C.F. Gomes, M.R.C. De Aquino, D. Geraldo, M.E.L. Honorato, L.H.M. Dias. 2015. Proceedings - 2015 Brazilian Conference on Intelligent Systems, BRACIS 2015, pp. 333-338, http://doi.org/10.1109/BRACIS.2015.53
  13. A. Miele. 1990. Optimal trajectories and guidance trajectories for aircraft flight through windshears. Proceedings of the 29th IEEE Conference on Decision and Control Part 6 (of 6); Honolulu, HI, USA; 5-7 December 1990. 2:737-746, http://dx.doi.org/10.1109/CDC.1990.203686
  14. C. Moscardini, F. Berizzi, M. Martorella, A. Capria. 2011. Signal spectral modelling for airborne radar in the presence of wind-shear phenomena. IET Radar, Sonar and Navigation. 5:796-805, http://dx.doi.org/10.1049/iet-rsn.2010.0234
  15. T. Ohtsuka. 2004. A continuation/GMRES method for fast computation of nonlinear receding horizon control. Automatica. 40:563-574, http://doi.org/10.1016/j.automatica.2003.11.005
  16. V.S. Patsko, N.D. Botkin, V.M. Kein, V.L. Turova, M.A. Zarkh. 1994. Control of an aircraft landing in windshear. Journal of Optimization Theory and Applications. 83:237-267, http://dx.doi.org/10.1007/BF02190056
  17. R. Pytlak, R.B. Vinter. 1999. Feasible Direction Algorithm for Optimal Control Problems with State and Control Constraints: Implementation. Journal of Optimization Theory and Applications. 101:623-649, http://dx.doi.org/10.1023/A:1021742204850
  18. C. Shen, B. Buckham, Y. Shi. 2016. Modified C/GMRES Algorithm for Fast Nonlinear Model Predictive Tracking Control of AUVs. IEEE Transactions on Control Systems Technology, http://dx.doi.org/10.1109/TCST.2016.2628803, (to appear)
  19. N.B.F. Silva, E.A. Marconato, K.R.L.J.C. Branco. 2015. AVALON: Definition and modeling of a vertical takeoff and landing UAV. Journal of Physics: Conference Series. Vol. 633, Article number 012125, http://dx.doi.org/10.1088/1742-6596/633/1/012125
  20. A. Steinboeck, M. Guay, A. Kugi. 2016. Real-Time Nonlinear Model Predictive Control of a Transport-Reaction System. Industrial and Engineering Chemistry Research. 55:7730-7741, http://dx.doi.org/10.1021/acs.iecr.6b00592
  21. Szefostwo Służby Hydrometeorologicznej Sił Zbrojnych RP. 2011. Meteorologia dla pilotów - poradnik. Warszawa, 2011, (in polish)
  22. L. Zhao, X. Yang, H. Gao, P. Shi. 2013. Automatic Landing System Design Using Multiobjective Robust Control. Journal of Aerospace Engineering. 26:603-617, http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000174