Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

Ranking Rough Sets in Pawlak Approximation Spaces


DOI: http://dx.doi.org/10.15439/2018F160

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 3538 ()

Full text

Abstract. By the cardinality of finite sets, interval numbers can be assigned to rough sets which are represented by nested sets. Borrowing two different comparison methods from Multiple Attribute Decision Making analysis, rough sets are compared and ranked on the model of interval numbers. Some special cases are investigated. Illustrative examples are presented relying on both methods. The calculated results are compared and interpreted.


  1. Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, vol. 11, no. 5, pp. 341–356, 1982.
  2. Z. Xu, Uncertain Multi-attribute Decision Making. Methods and Applications. Springer-Verlag, 01 2015. ISBN 978-3-662-45640-8
  3. S. K. M. Wong, L. Wang, and Y. Y. Yao, “Interval structure: A framework for representing uncertain information,” CoRR, vol. abs/1303.5437, 2013.
  4. Y. Y. Yao, “On generalizing rough set theory,” in Proceedings of RSFDGrC 2003, ser. LNAI, G. Wang, Q. Liu, Y. Yao, and A. Skowron, Eds., vol. 2639. Springer, 2003, pp. 44–51.
  5. M. Banerjee and M. Chakraborty, “Algebras from rough sets,” in Rough-Neuro Computing: Techniques for Computing with Words, S. Pal, L. Polkowski, and A. Skowron, Eds. Springer, 2004, pp. 157–184.
  6. Z. Bonikowski, “A certain conception of the calculus of rough sets,” Notre Dame Journal of Formal Logic, vol. 33, no. 3, pp. 412–421, 1992.
  7. V. W. Marek and M. Truszczyński, “Contributions to the theory of rough sets,” Fundam. Inf., vol. 39, no. 4, pp. 389–409, 1999.
  8. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics (SIAM), 2009. ISBN 0-89871-669-1
  9. G. Facchinetti, R. Ghiselli Ricci, and S. Muzzioli, “Note on fuzzy triangular numbers,” vol. 13, pp. 613 – 622, 07 1998.
  10. D. Dubois and H. Prade, “An introduction to bipolar representations of information and preference,” International Journal of Intelligent Systems, vol. 23, no. 8, pp. 866–877, 2008. http://dx.doi.org/10.1002/int.20297
  11. D. Dubois and H. Prade, “An overview of the asymmetric bipolar representation of positive and negative information in possibility theory,” Fuzzy Sets and Systems, vol. 160, no. 10, pp. 1355–1366, 2009. http://dx.doi.org/10.1016/j.fss.2008.11.006
  12. D. Ciucci, “Orthopairs: A simple and widely used way to model uncertainty,” Fundam. Inf., vol. 108, no. 3-4, pp. 287–304, 2011.
  13. Z. Csajbók, T. Mihálydeák, and J. Ködmön, “An adequate representation of medical data based on partial set approximation,” in Proceedings of CISIM 2013, ser. LNCS, K. S. et al., Ed., vol. 8104. Berlin Heidelberg: Springer-Verlag, 2013, pp. 108–116.
  14. F. Temurtas, “A comparative study on thyroid disease diagnosis using neural networks,” Expert Syst. Appl., vol. 36, no. 1, pp. 944–949, 2009.
  15. P. Ladenson and M. Kim, “Thyroid,” in Goldman’s Cecil Medicine, L. Goldman and A. I. Schafer, Eds. Philadelphia, Pa: Saunders Elsevier, 2011, p. Chap. 233.
  16. L. Dymova, P. Sevastjanov, and A. Tikhonenko, “A direct interval extension of topsis method,” Expert Systems with Applications, vol. 40, no. 12, pp. 4841 – 4847, 2013. http://dx.doi.org/https://doi.org/10.1016/j.eswa.2013.02.022
  17. Y.-M. Wang, J.-B. Yang, and D.-L. Xu, “A preference aggregation method through the estimation of utility intervals,” Comput. Oper. Res., vol. 32, no. 8, pp. 2027–2049, Aug. 2005. http://dx.doi.org/10.1016/j.cor.2004.01.005