Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

UAV downwash dynamic texture features for terrain classification on autonomous navigation

, ,

DOI: http://dx.doi.org/10.15439/2018F185

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 10791083 ()

Full text

Abstract. The information generated by a computer vision system capable of labelling a land surface as water, vegetation, soil or other type, can be used for mapping and decision making. For example, an unmanned aerial vehicle (UAV) can use it to find a suitable landing position or to cooperate with other robots to navigate across an unknown region. Previous works on terrain classification from RGB images taken onboard of UAVs shown that only static pixel-based features were tested with a considerable classification error. This paper proposes a robust and efficient computer vision algorithm capable of classifying the terrain from RGB images with improved accuracy. The algorithm complement the static image features with dynamic texture patterns produced by UAVs rotors downwash effect (visible at lower altitudes) and machine learning methods to classify the underlying terrain. The system is validated using videos acquired onboard of a UAV.


  1. Pinto, E., Marques, F., Mendonca, R., Lourenco, A., Santana, P., & Barata, J. (2014). An autonomous surface-aerial marsupial robotic team for riverine environmental monitoring: Benefiting from coordinated aerial, underwater, and surface level perception. 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014, 443–450. https://doi.org/10.1109/ROBIO.2014.7090371
  2. Bestaoui Sebbane, Y. (2018). Intelligent Autonomy of UAVs : Advanced Missions and Future Use. CRC Press.
  3. Ebadi, F., & Norouzi, M. (2017). Road Terrain detection and Classification algorithm based on the Color Feature extraction. In 2017 Artificial Intelligence and Robotics (IRANOPEN) (pp. 139–146). IEEE. https://doi.org/10.1109/RIOS.2017.7956457
  4. Feng, Q., Liu, J., & Gong, J. (2015). UAV Remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sensing, 7(1), 1074–1094. https://doi.org/10.3390/rs70101074
  5. Khan, Y. N., Komma, P., Bohlmann, K., & Zell, A. (2011). Grid-based visual terrain classification for outdoor robots using local features. IEEE SSCI 2011: Symposium Series on Computational In telligence - CIVTS 2011: 2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems, 16–22. https://doi.org/10.1109/CIVTS.2011.5949534
  6. Pietikäinen, Matti, Abdenour Hadid, Guoying Zhao, and Timo Ahonen. 2011. Computer Vision Using Local Binary Patterns. Vol. 40. Computational Imaging and Vision. London: Springer London. https://doi.org/10.1007/978-0-85729-748-8.
  7. Yan, W. Y., Shaker, A., & El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, 158, 295–310. https://doi.org/10.1016/j.rse.2014.11.001
  8. Wallace, L., Lucieer, A., Malenovsky, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), 1–16. https://doi.org/10.3390/f7030062
  9. GruszczynSki, Wojciech, Matwij, Wojciech, Cwiakała, P. (2017). Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 168–179. https://doi.org/10.1016/j.isprsjprs.2017.02.015
  10. Pombeiro, R., Mendonca, R., Rodrigues, P., Marques, F., Lourenco, A., Pinto, E., Barata, J. (2015). Water detection from downwash-induced optical flow for a multirotor UAV. In OCEANS 2015 - MTS/IEEE Washington (pp. 1–6). IEEE. https://doi.org/10.23919/OCEANS.2015.7404458
  11. Mora, A.; Santos, T.M.A.; Łukasik, S.; Silva, J.M.N.; Falcão, A.J.; Fonseca, J.M.; Ribeiro, R.A. (2017) Land Cover Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study. Information 2017, 8, 147. https://doi.org/10.3390/info8040147
  12. Heung, Brandon, Hung Chak Ho, Jin Zhang, Anders Knudby, Chuck E. Bulmer, and Margaret G. Schmidt. 2016. “An Overview and Comparison of Machine-Learning Techniques for Classification Purposes in Digital Soil Mapping.” Geoderma 265 (March): 62–77. https://doi.org/10.1016/j.geoderma.2015.11.014
  13. Giusti, Alessandro, Jerome Guzzi, Dan C. Ciresan, Fang-Lin He, Juan P. Rodriguez, Flavio Fontana, Matthias Faessler, et al. 2016. “A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots.” IEEE Robotics and Automation Letters 1 (2): 661–67. https://doi.org/10.1109/LRA.2015.2509024.
  14. Farneback, G. (2003). Two-Frame Motion Estimation Based on Polynomial Expansion. Lecture Notes in Computer Science, 2749(1), 363–370. https://doi.org/10.1007/3-540-45103-X_50